Mercurial > repos > bgruening > sklearn_regression_metrics
view model_prediction.py @ 19:28d51b976c29 draft
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 60f0fbc0eafd7c11bc60fb6c77f2937782efd8a9-dirty
author | bgruening |
---|---|
date | Fri, 09 Aug 2019 07:21:31 -0400 |
parents | |
children | 203b2ade8097 |
line wrap: on
line source
import argparse import json import numpy as np import pandas as pd import warnings from scipy.io import mmread from sklearn.pipeline import Pipeline from galaxy_ml.utils import (load_model, read_columns, get_module, try_get_attr) N_JOBS = int(__import__('os').environ.get('GALAXY_SLOTS', 1)) def main(inputs, infile_estimator, outfile_predict, infile_weights=None, infile1=None, fasta_path=None, ref_seq=None, vcf_path=None): """ Parameter --------- inputs : str File path to galaxy tool parameter infile_estimator : strgit File path to trained estimator input outfile_predict : str File path to save the prediction results, tabular infile_weights : str File path to weights input infile1 : str File path to dataset containing features fasta_path : str File path to dataset containing fasta file ref_seq : str File path to dataset containing the reference genome sequence. vcf_path : str File path to dataset containing variants info. """ warnings.filterwarnings('ignore') with open(inputs, 'r') as param_handler: params = json.load(param_handler) # load model with open(infile_estimator, 'rb') as est_handler: estimator = load_model(est_handler) main_est = estimator if isinstance(estimator, Pipeline): main_est = estimator.steps[-1][-1] if hasattr(main_est, 'config') and hasattr(main_est, 'load_weights'): if not infile_weights or infile_weights == 'None': raise ValueError("The selected model skeleton asks for weights, " "but dataset for weights wan not selected!") main_est.load_weights(infile_weights) # handle data input input_type = params['input_options']['selected_input'] # tabular input if input_type == 'tabular': header = 'infer' if params['input_options']['header1'] else None column_option = (params['input_options'] ['column_selector_options_1'] ['selected_column_selector_option']) if column_option in ['by_index_number', 'all_but_by_index_number', 'by_header_name', 'all_but_by_header_name']: c = params['input_options']['column_selector_options_1']['col1'] else: c = None df = pd.read_csv(infile1, sep='\t', header=header, parse_dates=True) X = read_columns(df, c=c, c_option=column_option).astype(float) if params['method'] == 'predict': preds = estimator.predict(X) else: preds = estimator.predict_proba(X) # sparse input elif input_type == 'sparse': X = mmread(open(infile1, 'r')) if params['method'] == 'predict': preds = estimator.predict(X) else: preds = estimator.predict_proba(X) # fasta input elif input_type == 'seq_fasta': if not hasattr(estimator, 'data_batch_generator'): raise ValueError( "To do prediction on sequences in fasta input, " "the estimator must be a `KerasGBatchClassifier`" "equipped with data_batch_generator!") pyfaidx = get_module('pyfaidx') sequences = pyfaidx.Fasta(fasta_path) n_seqs = len(sequences.keys()) X = np.arange(n_seqs)[:, np.newaxis] seq_length = estimator.data_batch_generator.seq_length batch_size = getattr(estimator, 'batch_size', 32) steps = (n_seqs + batch_size - 1) // batch_size seq_type = params['input_options']['seq_type'] klass = try_get_attr( 'galaxy_ml.preprocessors', seq_type) pred_data_generator = klass( fasta_path, seq_length=seq_length) if params['method'] == 'predict': preds = estimator.predict( X, data_generator=pred_data_generator, steps=steps) else: preds = estimator.predict_proba( X, data_generator=pred_data_generator, steps=steps) # vcf input elif input_type == 'variant_effect': klass = try_get_attr('galaxy_ml.preprocessors', 'GenomicVariantBatchGenerator') options = params['input_options'] options.pop('selected_input') if options['blacklist_regions'] == 'none': options['blacklist_regions'] = None pred_data_generator = klass( ref_genome_path=ref_seq, vcf_path=vcf_path, **options) pred_data_generator.fit() preds = estimator.model_.predict_generator( pred_data_generator.flow(batch_size=32), workers=N_JOBS, use_multiprocessing=True) if preds.min() < 0. or preds.max() > 1.: warnings.warn('Network returning invalid probability values. ' 'The last layer might not normalize predictions ' 'into probabilities ' '(like softmax or sigmoid would).') if params['method'] == 'predict_proba' and preds.shape[1] == 1: # first column is probability of class 0 and second is of class 1 preds = np.hstack([1 - preds, preds]) elif params['method'] == 'predict': if preds.shape[-1] > 1: # if the last activation is `softmax`, the sum of all # probibilities will 1, the classification is considered as # multi-class problem, otherwise, we take it as multi-label. act = getattr(estimator.model_.layers[-1], 'activation', None) if act and act.__name__ == 'softmax': classes = preds.argmax(axis=-1) else: preds = (preds > 0.5).astype('int32') else: classes = (preds > 0.5).astype('int32') preds = estimator.classes_[classes] # end input # output if input_type == 'variant_effect': # TODO: save in batchs rval = pd.DataFrame(preds) meta = pd.DataFrame( pred_data_generator.variants, columns=['chrom', 'pos', 'name', 'ref', 'alt', 'strand']) rval = pd.concat([meta, rval], axis=1) elif len(preds.shape) == 1: rval = pd.DataFrame(preds, columns=['Predicted']) else: rval = pd.DataFrame(preds) rval.to_csv(outfile_predict, sep='\t', header=True, index=False) if __name__ == '__main__': aparser = argparse.ArgumentParser() aparser.add_argument("-i", "--inputs", dest="inputs", required=True) aparser.add_argument("-e", "--infile_estimator", dest="infile_estimator") aparser.add_argument("-w", "--infile_weights", dest="infile_weights") aparser.add_argument("-X", "--infile1", dest="infile1") aparser.add_argument("-O", "--outfile_predict", dest="outfile_predict") aparser.add_argument("-f", "--fasta_path", dest="fasta_path") aparser.add_argument("-r", "--ref_seq", dest="ref_seq") aparser.add_argument("-v", "--vcf_path", dest="vcf_path") args = aparser.parse_args() main(args.inputs, args.infile_estimator, args.outfile_predict, infile_weights=args.infile_weights, infile1=args.infile1, fasta_path=args.fasta_path, ref_seq=args.ref_seq, vcf_path=args.vcf_path)