Mercurial > repos > bgruening > sklearn_searchcv
diff keras_macros.xml @ 11:68753d45815f draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit ba6a47bdf76bbf4cb276206ac1a8cbf61332fd16"
author | bgruening |
---|---|
date | Fri, 13 Sep 2019 12:24:39 -0400 |
parents | 82b6104d4682 |
children | c1ca24a1509d |
line wrap: on
line diff
--- a/keras_macros.xml Fri Aug 09 07:12:16 2019 -0400 +++ b/keras_macros.xml Fri Sep 13 12:24:39 2019 -0400 @@ -1,5 +1,5 @@ <macros> - <token name="@KERAS_VERSION@">0.4.0</token> + <token name="@KERAS_VERSION@">0.4.2</token> <xml name="macro_stdio"> <stdio> @@ -24,34 +24,34 @@ </expand> </xml> - <xml name="keras_activations"> + <xml name="keras_activations" token_none="true" token_tanh="false"> <param argument="activation" type="select" label="Activation function"> - <option value="linear" selected="true">None / linear (default)</option> + <option value="linear" selected="@NONE@">None / linear (default)</option> <option value="softmax">softmax</option> <option value="elu">elu</option> <option value="selu">selu</option> <option value="softplus">softplus</option> <option value="softsign">softsign</option> <option value="relu">relu</option> - <option value="tanh">tanh</option> + <option value="tanh" selected="@TANH@">tanh</option> <option value="sigmoid">sigmoid</option> <option value="hard_sigmoid">hard_sigmoid</option> <option value="exponential">tanh</option> </param> </xml> - <xml name="keras_initializers" token_argument="kernel_initializer" token_default_kernel="false" token_default_bias="false" token_default_embeddings="false"> + <xml name="keras_initializers" token_argument="kernel_initializer" token_default_glorot_uniform="false" token_default_zeros="false" token_default_random_uniform="false" token_default_ones="false"> <param argument="@ARGUMENT@" type="select" label="@ARGUMENT@"> - <option value="zeros" selected="@DEFAULT_BIAS@">zero / zeros / Zeros</option> - <option value="ones">one / ones / Ones</option> + <option value="zeros" selected="@DEFAULT_ZEROS@">zero / zeros / Zeros</option> + <option value="ones" selected="@DEFAULT_ONES@">one / ones / Ones</option> <option value="constant">constant / Constant</option> <option value="random_normal">normal / random_normal / RandomNormal</option> - <option value="random_uniform" selected="@DEFAULT_EMBEDDINGS@">uniform / random_uniform / RandomUniform</option> + <option value="random_uniform" selected="@DEFAULT_RANDOM_UNIFORM@">uniform / random_uniform / RandomUniform</option> <option value="truncated_normal">truncated_normal / TruncatedNormal</option> <option value="orthogonal">orthogonal / Orthogonal</option> <option value="identity">identity / Identity</option> <option value="glorot_normal">glorot_normal</option> - <option value="glorot_uniform" selected="@DEFAULT_KERNEL@">glorot_uniform</option> + <option value="glorot_uniform" selected="@DEFAULT_GLOROT_UNIFORM@">glorot_uniform</option> <option value="he_normal">he_normal</option> <option value="he_uniform">he_uniform</option> <option value="lecun_normal">lecun_normal</option> @@ -109,133 +109,120 @@ </xml> <xml name="keras_layer_types_core"> - <option value="Dense">Dense</option> - <option value="Activation">Activation</option> - <option value="Dropout">Dropout</option> - <option value="Flatten">Flatten</option> - <option value="Reshape">Reshape</option> - <option value="Permute">Permute</option> - <option value="RepeatVector">RepeatVector</option> + <option value="Dense">Core -- Dense</option> + <option value="Activation">Core -- Activation</option> + <option value="Dropout">Core -- Dropout</option> + <option value="Flatten">Core -- Flatten</option> + <option value="Reshape">Core -- Reshape</option> + <option value="Permute">Core -- Permute</option> + <option value="RepeatVector">Core -- RepeatVector</option> <!--option value="Lambda">Lambda - Not supported</option--> - <option value="ActivityRegularization">ActivityRegularization</option> - <option value="Masking">Masking</option> - <option value="SpatialDropout1D">SpatialDropout1D</option> - <option value="SpatialDropout2D">SpatialDropout2D</option> - <option value="SpatialDropout3D">SpatialDropout3D</option> + <option value="ActivityRegularization">Core -- ActivityRegularization</option> + <option value="Masking">Core -- Masking</option> + <option value="SpatialDropout1D">Core -- SpatialDropout1D</option> + <option value="SpatialDropout2D">Core -- SpatialDropout2D</option> + <option value="SpatialDropout3D">Core -- SpatialDropout3D</option> </xml> <xml name="keras_layer_types_Convolutional"> - <option value="Conv1D">Conv1D</option> - <option value="Conv2D">Conv2D</option> - <option value="SeparableConv1D">SeparableConv1D</option> - <option value="SeparableConv2D">SeparableConv2D</option> - <option value="DepthwiseConv2D">DepthwiseConv2D</option> - <option value="Conv2DTranspose">Conv2DTranspose</option> - <option value="Conv3D">Conv3D</option> - <option value="Conv3DTranspose">Conv3DTranspose</option> - <option value="Cropping1D">Cropping1D</option> - <option value="Cropping2D">Cropping2D</option> - <option value="Cropping3D">Cropping3D</option> - <option value="UpSampling1D">UpSampling1D</option> - <option value="UpSampling2D">UpSampling2D</option> - <option value="UpSampling3D">UpSampling3D</option> - <option value="ZeroPadding1D">ZeroPadding1D</option> - <option value="ZeroPadding2D">ZeroPadding2D</option> - <option value="ZeroPadding3D">ZeroPadding3D</option> + <option value="Conv1D">Convolutional -- Conv1D</option> + <option value="Conv2D">Convolutional -- Conv2D</option> + <option value="SeparableConv1D">Convolutional -- SeparableConv1D</option> + <option value="SeparableConv2D">Convolutional -- SeparableConv2D</option> + <option value="DepthwiseConv2D">Convolutional -- DepthwiseConv2D</option> + <option value="Conv2DTranspose">Convolutional -- Conv2DTranspose</option> + <option value="Conv3D">Convolutional -- Conv3D</option> + <option value="Conv3DTranspose">Convolutional -- Conv3DTranspose</option> + <option value="Cropping1D">Convolutional -- Cropping1D</option> + <option value="Cropping2D">Convolutional -- Cropping2D</option> + <option value="Cropping3D">Convolutional -- Cropping3D</option> + <option value="UpSampling1D">Convolutional -- UpSampling1D</option> + <option value="UpSampling2D">Convolutional -- UpSampling2D</option> + <option value="UpSampling3D">Convolutional -- UpSampling3D</option> + <option value="ZeroPadding1D">Convolutional -- ZeroPadding1D</option> + <option value="ZeroPadding2D">Convolutional -- ZeroPadding2D</option> + <option value="ZeroPadding3D">Convolutional -- ZeroPadding3D</option> </xml> <xml name="keras_layer_types_Pooling"> - <option value="MaxPooling1D">MaxPooling1D</option> - <option value="MaxPooling2D">MaxPooling2D</option> - <option value="MaxPooling3D">MaxPooling3D</option> - <option value="AveragePooling1D">AveragePooling1D</option> - <option value="AveragePooling2D">AveragePooling2D</option> - <option value="AveragePooling3D">AveragePooling3D</option> - <option value="GlobalMaxPooling1D">GlobalMaxPooling1D</option> - <option value="GlobalAveragePooling1D">GlobalAveragePooling1D</option> - <option value="GlobalMaxPooling2D">GlobalMaxPooling2D</option> - <option value="GlobalAveragePooling2D">GlobalAveragePooling2D</option> - <option value="GlobalMaxPooling3D">GlobalMaxPooling3D</option> - <option value="GlobalAveragePooling3D">GlobalAveragePooling3D</option> + <option value="MaxPooling1D">Pooling -- MaxPooling1D</option> + <option value="MaxPooling2D">Pooling -- MaxPooling2D</option> + <option value="MaxPooling3D">Pooling -- MaxPooling3D</option> + <option value="AveragePooling1D">Pooling -- AveragePooling1D</option> + <option value="AveragePooling2D">Pooling -- AveragePooling2D</option> + <option value="AveragePooling3D">Pooling -- AveragePooling3D</option> + <option value="GlobalMaxPooling1D">Pooling -- GlobalMaxPooling1D</option> + <option value="GlobalAveragePooling1D">Pooling -- GlobalAveragePooling1D</option> + <option value="GlobalMaxPooling2D">Pooling -- GlobalMaxPooling2D</option> + <option value="GlobalAveragePooling2D">Pooling -- GlobalAveragePooling2D</option> + <option value="GlobalMaxPooling3D">Pooling -- GlobalMaxPooling3D</option> + <option value="GlobalAveragePooling3D">Pooling -- GlobalAveragePooling3D</option> </xml> <xml name="keras_layer_types_locally_connected"> - <option value="LocallyConnected1D">LocallyConnected1D</option> - <option value="LocallyConnected2D">LocallyConnected2D</option> + <option value="LocallyConnected1D">Locally_connected -- LocallyConnected1D</option> + <option value="LocallyConnected2D">Locally_connected -- LocallyConnected2D</option> </xml> <xml name="keras_layer_types_recurrent"> - <option value="RNN">RNN</option> - <option value="Masking">Masking</option> - <option value="SimpleRNN">SimpleRNN</option> - <option value="GRU">GRU</option> - <option value="LSTM">LSTM</option> - <option value="ConvLSTM2D">ConvLSTM2D</option> - <option value="ConvLSTM2DCell">ConvLSTM2DCell</option> - <option value="SimpleRNNCell">SimpleRNNCell</option> - <option value="GRUCell">GRUCell</option> - <option value="LSTMCell">LSTMCell</option> - <option value="CuDNNGRU">CuDNNGRU</option> - <option value="CuDNNLSTM">Dense</option> + <option value="SimpleRNN">Recurrent -- SimpleRNN</option> + <option value="GRU">Recurrent -- GRU</option> + <option value="LSTM">Recurrent -- LSTM</option> + <option value="ConvLSTM2D">Recurrent -- ConvLSTM2D</option> + <option value="ConvLSTM2DCell">Recurrent -- ConvLSTM2DCell</option> + <option value="SimpleRNNCell">Recurrent -- SimpleRNNCell</option> + <option value="GRUCell">Recurrent -- GRUCell</option> + <option value="LSTMCell">Recurrent -- LSTMCell</option> + <option value="CuDNNGRU">Recurrent -- CuDNNGRU</option> + <option value="CuDNNLSTM">Recurrent -- CuDNNLSTM</option> </xml> <xml name="keras_layer_types_embedding"> - <option value="Embedding">Embedding</option> + <option value="Embedding">Embedding -- Embedding</option> </xml> <xml name="keras_layer_types_advanced_activations"> - <option value="LeakyReLU">LeakyReLU</option> - <option value="PReLU">PReLU</option> - <option value="ELU">ELU</option> - <option value="ThresholdedReLU">ThresholdedReLU</option> - <option value="Softmax">Softmax</option> - <option value="ReLU">ReLU</option> + <option value="LeakyReLU">Advanced activations -- LeakyReLU</option> + <option value="PReLU">Advanced activations -- PReLU</option> + <option value="ELU">Advanced activations -- ELU</option> + <option value="ThresholdedReLU">Advanced activations -- ThresholdedReLU</option> + <option value="Softmax">Advanced activations -- Softmax</option> + <option value="ReLU">Advanced activations -- ReLU</option> </xml> <xml name="keras_layer_types_normalization"> - <option value="BatchNormalization">BatchNormalization</option> + <option value="BatchNormalization">Normalization -- BatchNormalization</option> </xml> <xml name="keras_layer_types_noise"> - <option value="GaussianNoise">GaussianNoise</option> - <option value="GaussianDropout">GaussianDropout</option> - <option value="AlphaDropout">AlphaDropout</option> + <option value="GaussianNoise">Noise -- GaussianNoise</option> + <option value="GaussianDropout">Noise -- GaussianDropout</option> + <option value="AlphaDropout">Noise -- AlphaDropout</option> </xml> <xml name="keras_layer_types_merge"> - <option value="Add">Add</option> - <option value="Subtract">Subtract</option> - <option value="Multiply">Multiply</option> - <option value="Average">Average</option> - <option value="Maximum">Maximum</option> - <option value="Minimum">Minimum</option> - <option value="Concatenate">Concatenate</option> - <option value="Dot">Dot</option> + <option value="Add">Merge -- Add</option> + <option value="Subtract">Merge -- Subtract</option> + <option value="Multiply">Merge -- Multiply</option> + <option value="Average">Merge -- Average</option> + <option value="Maximum">Merge -- Maximum</option> + <option value="Minimum">Merge -- Minimum</option> + <option value="Concatenate">Merge -- Concatenate</option> + <option value="Dot">Merge -- Dot</option> </xml> <!--Core Layers--> <xml name="layer_Dense"> <param argument="units" type="integer" value="" optional="false" label="units" help="Positive integer, dimensionality of the output space."/> - <section name="layer_options" title="Layer Advanced Options" expanded="false"> - <expand macro="keras_activations"/> - <param argument="use_bias" type="boolean" truevalue="booltrue" falsevalue="boolfalse" optional="true" checked="true" /> - <expand macro="keras_initializers" default_kernel="true"/> - <expand macro="keras_initializers" argument="bias_initializer" default_bias="true"/> - <expand macro="keras_regularizers"/> - <expand macro="keras_regularizers" argument="bias_regularizer"/> - <expand macro="keras_regularizers" argument="activity_regularizer"/> - <expand macro="keras_constraints"/> - <expand macro="keras_constraints" argument="bias_constraint"/> - </section> + <expand macro="keras_activations"/> + <expand macro="simple_kwargs" help="For example: use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None. Leave blank for default."/> <yield/> </xml> <xml name="layer_Dropout"> <param argument="rate" type="float" value="" min="0." max="1.0" help="Fraction of the input units to drop."/> - <param argument="noise_shape" type="text" value="" help="1D integer tensor representing the shape of the - binary dropout mask that will be multiplied with the input."/> - <param argument="seed" type="integer" value="" min="0" optional="true" help="A Python integer to use as random seed."/> + <expand macro="simple_kwargs" help="For example: noise_shape=None, seed=None. Leave blank for default."/> <yield/> </xml> @@ -301,19 +288,13 @@ <xml name="layer_SpatialDropout2D"> <param argument="rate" type="float" value="" min="0." max="1." help="Fraction of the input units to drop."/> - <param argument="data_format" type="select"> - <option value="channels_last" selected="true">channels_last - the channels dimension (the depth) is at index 3</option> - <option value="channels_first">channels_first - the channels dimension (the depth) is at index 1</option> - </param> + <expand macro="simple_kwargs" help="For example: data_format=None. Leave blank for default."/> <yield/> </xml> <xml name="layer_SpatialDropout3D"> <param argument="rate" type="float" value="" min="0." max="1." help="Fraction of the input units to drop."/> - <param argument="data_format" type="select"> - <option value="channels_last" selected="true">channels_last - the channels dimension (the depth) is at index 4</option> - <option value="channels_first">channels_first - the channels dimension (the depth) is at index 1</option> - </param> + <expand macro="simple_kwargs" help="For example: data_format=None. Leave blank for default."/> <yield/> </xml> @@ -322,260 +303,81 @@ <xml name="layer_Conv1D"> <param argument="filters" type="integer" value="" min="0" help="the dimensionality of the output space (i.e. the number of output filters in the convolution)."/> <param argument="kernel_size" type="text" value="" help="An integer or tuple/list of a single integer, specifying the length of the 1D convolution window."/> - <param argument="strides" type="text" value="1" help="An integer or tuple/list of a single integer, specifying the stride length of the convolution."/> - <section name="layer_options" title="Layer Advanced Options" expanded="false"> - <param argument="padding" type="select" help=""> - <option value="valid" selected="true">valid - no padding</option> - <option value="same">same - output has the same length as the original input</option> - <option value="causal">causal - causal (dilated) convolutions</option> - </param> - <param argument="data_format" type="select" help="The ordering of the dimensions in the inputs."> - <option value="channels_last" selected="true">channels_last - inputs with shape (batch, steps, channels)</option> - <option value="channels_first">channels_first - inputs with shape (batch, channels, steps)</option> - </param> - <param argument="dilation_rate" type="text" value="1" help="an integer or tuple/list of a single integer, specifying the dilation rate to use for dilated convolution."/> - <expand macro="keras_activations"/> - <param argument="use_bias" type="boolean" truevalue="booltrue" falsevalue="boolfalse" optional="true" checked="true"/> - <expand macro="keras_initializers" default_kernel="true"/>\ - <expand macro="keras_initializers" argument="bias_initializer" default_bias="true"/> - <expand macro="keras_regularizers"/> - <expand macro="keras_regularizers" argument="bias_regularizer"/> - <expand macro="keras_regularizers" argument="activity_regularizer"/> - <expand macro="keras_constraints"/> - <expand macro="keras_constraints" argument="bias_constraint"/> - </section> + <expand macro="keras_activations"/> + <expand macro="simple_kwargs" help="For example: strides=1, padding='valid', data_format='channels_last', dilation_rate=1, use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None. Leave blank for default."/> <yield/> </xml> <xml name="layer_Conv2D"> <param argument="filters" type="integer" value="" min="0" help="the dimensionality of the output space (i.e. the number of output filters in the convolution)."/> <param argument="kernel_size" type="text" value="" help="An integer or tuple/list of 2 integers, specifying the height and width of the 2D convolution window."/> - <param argument="strides" type="text" value="1" help="An integer or tuple/list of 2 integers, specifying the strides of the convolution along the height and width."/> - <section name="layer_options" title="Layer Advanced Options" expanded="false"> - <param argument="padding" type="select" help=""> - <option value="valid" selected="true">valid - no padding</option> - <option value="same">same - output has the same length as the original input</option> - <!--option value="causal">causal - causal (dilated) convolutions</option--> - </param> - <param argument="data_format" type="select" help="The ordering of the dimensions in the inputs."> - <option value="channels_last" selected="true">channels_last - inputs with shape (batch, height, width, channels)</option> - <option value="channels_first">channels_first - inputs with shape (batch, channels, height, width)</option> - </param> - <param argument="dilation_rate" type="text" value="1" help="an integer or tuple/list of 2 integers, specifying the dilation rate to use for dilated convolution."/> - <expand macro="keras_activations"/> - <param argument="use_bias" type="boolean" truevalue="booltrue" falsevalue="boolfalse" optional="true" checked="true"/> - <expand macro="keras_initializers" default_kernel="true"/>\ - <expand macro="keras_initializers" argument="bias_initializer" default_bias="true"/> - <expand macro="keras_regularizers"/> - <expand macro="keras_regularizers" argument="bias_regularizer"/> - <expand macro="keras_regularizers" argument="activity_regularizer"/> - <expand macro="keras_constraints"/> - <expand macro="keras_constraints" argument="bias_constraint"/> - </section> + <expand macro="keras_activations"/> + <expand macro="simple_kwargs" help="For example: strides=(1, 1), padding='valid', data_format=None, dilation_rate=(1, 1), use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None. Leave blank for default."/> <yield/> </xml> <xml name="layer_SeparableConv1D"> <param argument="filters" type="integer" value="" min="0" help="the dimensionality of the output space (i.e. the number of output filters in the convolution)."/> <param argument="kernel_size" type="text" value="" help="An integer or tuple/list of a single integer, specifying the length of the 1D convolution window."/> - <param argument="strides" type="text" value="1" help="An integer or tuple/list of single integer, specifying the stride length of the convolution. "/> - <section name="layer_options" title="Layer Advanced Options" expanded="false"> - <param argument="padding" type="select" help=""> - <option value="valid" selected="true">valid - no padding</option> - <option value="same">same - output has the same length as the original input</option> - <!--option value="causal">causal - causal (dilated) convolutions</option--> - </param> - <param argument="data_format" type="select" help="The ordering of the dimensions in the inputs."> - <option value="channels_last" selected="true">channels_last - inputs with shape (batch, steps, channels)</option> - <option value="channels_first">channels_first - inputs with shape (batch, channels, steps)</option> - </param> - <param argument="dilation_rate" type="text" value="1" help="an integer or tuple/list of a single integer, specifying the dilation rate to use for dilated convolution. "/> - <param argument="depth_multiplier" type="integer" value="1" help="The number of depthwise convolution output channels for each input channel."/> - <expand macro="keras_activations"/> - <param argument="use_bias" type="boolean" truevalue="booltrue" falsevalue="boolfalse" optional="true" checked="true"/> - <expand macro="keras_initializers" argument="depthwise_initializer" default_kernel="true"/> - <expand macro="keras_initializers" argument="pointwise_initializer" default_kernel="true"/> - <expand macro="keras_initializers" argument="bias_initializer" default_bias="true"/> - <expand macro="keras_regularizers" argument="depthwise_regularizer"/> - <expand macro="keras_regularizers" argument="pointwise_regularizer"/> - <expand macro="keras_regularizers" argument="bias_regularizer"/> - <expand macro="keras_regularizers" argument="activity_regularizer"/> - <expand macro="keras_constraints" argument="depthwise_constraint"/> - <expand macro="keras_constraints" argument="pointwise_constraint"/> - <expand macro="keras_constraints" argument="bias_constraint"/> - </section> + <expand macro="keras_activations"/> + <expand macro="simple_kwargs" help="For example: strides=1, padding='valid', data_format='channels_last', dilation_rate=1, depth_multiplier=1, use_bias=True, depthwise_initializer='glorot_uniform', pointwise_initializer='glorot_uniform', bias_initializer='zeros', depthwise_regularizer=None, pointwise_regularizer=None, bias_regularizer=None, activity_regularizer=None, depthwise_constraint=None, pointwise_constraint=None, bias_constraint=None. Leave blank for default."/> <yield/> </xml> <xml name="layer_SeparableConv2D"> <param argument="filters" type="integer" value="" min="0" help="the dimensionality of the output space (i.e. the number of output filters in the convolution)."/> <param argument="kernel_size" type="text" value="" help="An integer or tuple/list of 2 integers, specifying the height and width of the 2D convolution window."/> - <param argument="strides" type="text" value="1" help="An integer or tuple/list of 2 integers, specifying the strides of the convolution along the height and width."/> - <section name="layer_options" title="Layer Advanced Options" expanded="false"> - <param argument="padding" type="select" help=""> - <option value="valid" selected="true">valid - no padding</option> - <option value="same">same - output has the same length as the original input</option> - <!--option value="causal">causal - causal (dilated) convolutions</option--> - </param> - <param argument="data_format" type="select" help="The ordering of the dimensions in the inputs."> - <option value="channels_last" selected="true">channels_last - inputs with shape (batch, height, width, channels)</option> - <option value="channels_first">channels_first - inputs with shape (batch, channels, height, width)</option> - </param> - <param argument="dilation_rate" type="text" value="1" help="an integer or tuple/list of 2 integers, specifying the dilation rate to use for dilated convolution."/> - <param argument="depth_multiplier" type="integer" value="1" help="The number of depthwise convolution output channels for each input channel."/> - <expand macro="keras_activations"/> - <param argument="use_bias" type="boolean" truevalue="booltrue" falsevalue="boolfalse" optional="true" checked="true"/> - <expand macro="keras_initializers" argument="depthwise_initializer" default_kernel="true"/> - <expand macro="keras_initializers" argument="pointwise_initializer" default_kernel="true"/> - <expand macro="keras_initializers" argument="bias_initializer" default_bias="true"/> - <expand macro="keras_regularizers" argument="depthwise_regularizer"/> - <expand macro="keras_regularizers" argument="pointwise_regularizer"/> - <expand macro="keras_regularizers" argument="bias_regularizer"/> - <expand macro="keras_regularizers" argument="activity_regularizer"/> - <expand macro="keras_constraints" argument="depthwise_constraint"/> - <expand macro="keras_constraints" argument="pointwise_constraint"/> - <expand macro="keras_constraints" argument="bias_constraint"/> - </section> + <expand macro="keras_activations"/> + <expand macro="simple_kwargs" help="For example: strides=(1, 1), padding='valid', data_format=None, dilation_rate=(1, 1), depth_multiplier=1, use_bias=True, depthwise_initializer='glorot_uniform', pointwise_initializer='glorot_uniform', bias_initializer='zeros', depthwise_regularizer=None, pointwise_regularizer=None, bias_regularizer=None, activity_regularizer=None, depthwise_constraint=None, pointwise_constraint=None, bias_constraint=None. Leave blank for default."/> <yield/> </xml> <xml name="layer_DepthwiseConv2D"> - <param argument="filters" type="integer" value="" min="0" help="the dimensionality of the output space (i.e. the number of output filters in the convolution)."/> + <param argument="kernel_size" type="text" value="" help="An integer or tuple/list of 2 integers, specifying the height and width of the 2D convolution window."/> - <param argument="strides" type="text" value="1" help="An integer or tuple/list of 2 integers, specifying the strides of the convolution along the height and width."/> - <section name="layer_options" title="Layer Advanced Options" expanded="false"> - <param argument="padding" type="select" help=""> - <option value="valid" selected="true">valid - no padding</option> - <option value="same">same - output has the same length as the original input</option> - <!--option value="causal">causal - causal (dilated) convolutions</option--> - </param> - <param argument="data_format" type="select" help="The ordering of the dimensions in the inputs."> - <option value="channels_last" selected="true">channels_last - inputs with shape (batch, height, width, channels)</option> - <option value="channels_first">channels_first - inputs with shape (batch, channels, height, width)</option> - </param> - <param argument="dilation_rate" type="text" value="1" help="an integer or tuple/list of 2 integers, specifying the dilation rate to use for dilated convolution."/> - <param argument="depth_multiplier" type="integer" value="1" help="The number of depthwise convolution output channels for each input channel."/> - <expand macro="keras_activations"/> - <param argument="use_bias" type="boolean" truevalue="booltrue" falsevalue="boolfalse" optional="true" checked="true"/> - <expand macro="keras_initializers" argument="depthwise_initializer" default_kernel="true"/> - <expand macro="keras_initializers" argument="bias_initializer" default_bias="true"/> - <expand macro="keras_regularizers" argument="depthwise_regularizer"/> - <expand macro="keras_regularizers" argument="pointwise_regularizer"/> - <expand macro="keras_regularizers" argument="bias_regularizer"/> - <expand macro="keras_regularizers" argument="activity_regularizer"/> - <expand macro="keras_constraints" argument="depthwise_constraint"/> - <expand macro="keras_constraints" argument="bias_constraint"/> - </section> + <expand macro="keras_activations"/> + <expand macro="simple_kwargs" help="For example: strides=(1, 1), padding='valid', depth_multiplier=1, data_format=None, use_bias=True, depthwise_initializer='glorot_uniform', bias_initializer='zeros', depthwise_regularizer=None, bias_regularizer=None, activity_regularizer=None, depthwise_constraint=None, bias_constraint=None. Leave blank for default."/> <yield/> </xml> <xml name="layer_Conv2DTranspose"> <param argument="filters" type="integer" value="" min="0" help="the dimensionality of the output space (i.e. the number of output filters in the convolution)."/> <param argument="kernel_size" type="text" value="" help="An integer or tuple/list of 2 integers, specifying the height and width of the 2D convolution window."/> - <param argument="strides" type="text" value="1" help="An integer or tuple/list of 2 integers, specifying the strides of the convolution along the height and width."/> - <section name="layer_options" title="Layer Advanced Options" expanded="false"> - <param argument="padding" type="select" help=""> - <option value="valid" selected="true">valid - no padding</option> - <option value="same">same - output has the same length as the original input</option> - <!--option value="causal">causal - causal (dilated) convolutions</option--> - </param> - <param argument="output_padding" type="text" value="" help="An integer or tuple/list of 2 integers, specifying the amount of padding along the height and width of the output tensor."/> - <param argument="data_format" type="select" help="The ordering of the dimensions in the inputs."> - <option value="channels_last" selected="true">channels_last - inputs with shape (batch, height, width, channels)</option> - <option value="channels_first">channels_first - inputs with shape (batch, channels, height, width)</option> - </param> - <param argument="dilation_rate" type="text" value="1" help="an integer or tuple/list of 2 integers, specifying the dilation rate to use for dilated convolution."/> - <expand macro="keras_activations"/> - <param argument="use_bias" type="boolean" truevalue="booltrue" falsevalue="boolfalse" optional="true" checked="true"/> - <expand macro="keras_initializers" default_kernel="true"/> - <expand macro="keras_initializers" argument="bias_initializer" default_bias="true"/> - <expand macro="keras_regularizers" /> - <expand macro="keras_regularizers" argument="bias_regularizer"/> - <expand macro="keras_regularizers" argument="activity_regularizer"/> - <expand macro="keras_constraints"/> - <expand macro="keras_constraints" argument="bias_constraint"/> - </section> + <expand macro="keras_activations"/> + <expand macro="simple_kwargs" help="For example: strides=(1, 1), padding='valid', output_padding=None, data_format=None, dilation_rate=(1, 1), use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None. Leave blank for default."/> <yield/> </xml> <xml name="layer_Conv3D"> <param argument="filters" type="integer" value="" min="0" help="the dimensionality of the output space (i.e. the number of output filters in the convolution)."/> <param argument="kernel_size" type="text" value="" help="An integer or tuple/list of 3 integers, specifying the depth, height and width of the 3D convolution window."/> - <param argument="strides" type="text" value="1" help="An integer or tuple/list of 3 integers, specifying the strides of the convolution along each spatial dimension."/> - <section name="layer_options" title="Layer Advanced Options" expanded="false"> - <param argument="padding" type="select" help=""> - <option value="valid" selected="true">valid - no padding</option> - <option value="same">same - output has the same length as the original input</option> - <!--option value="causal">causal - causal (dilated) convolutions</option--> - </param> - <param argument="data_format" type="select" help="The ordering of the dimensions in the inputs."> - <option value="channels_last" selected="true">channels_last - inputs with shape (batch, spatial_dim1, spatial_dim2, spatial_dim3, channels)</option> - <option value="channels_first">channels_first - inputs with shape (batch, channels, spatial_dim1, spatial_dim2, spatial_dim3)</option> - </param> - <param argument="dilation_rate" type="text" value="1" help="an integer or tuple/list of 3 integers, specifying the dilation rate to use for dilated convolution."/> - <expand macro="keras_activations"/> - <param argument="use_bias" type="boolean" truevalue="booltrue" falsevalue="boolfalse" optional="true" checked="true"/> - <expand macro="keras_initializers" default_kernel="true"/> - <expand macro="keras_initializers" argument="bias_initializer" default_bias="true"/> - <expand macro="keras_regularizers" /> - <expand macro="keras_regularizers" argument="bias_regularizer"/> - <expand macro="keras_regularizers" argument="activity_regularizer"/> - <expand macro="keras_constraints"/> - <expand macro="keras_constraints" argument="bias_constraint"/> - </section> + <expand macro="keras_activations"/> + <expand macro="simple_kwargs" help="For example: strides=(1, 1, 1), padding='valid', data_format=None, dilation_rate=(1, 1, 1), use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None. Leave blank for default."/> <yield/> </xml> <xml name="layer_Conv3DTranspose"> <param argument="filters" type="integer" value="" min="0" help="the dimensionality of the output space (i.e. the number of output filters in the convolution)."/> <param argument="kernel_size" type="text" value="" help="An integer or tuple/list of 3 integers, specifying the depth, height and width of the 3D convolution window."/> - <param argument="strides" type="text" value="1" help="An integer or tuple/list of 3 integers, specifying the strides of the convolution along each spatial dimension."/> - <section name="layer_options" title="Layer Advanced Options" expanded="false"> - <param argument="padding" type="select" help=""> - <option value="valid" selected="true">valid - no padding</option> - <option value="same">same - output has the same length as the original input</option> - <!--option value="causal">causal - causal (dilated) convolutions</option--> - </param> - <param argument="output_padding" type="text" value="" help="An integer or tuple/list of 3 integers, specifying the amount of padding along the depth, height, and width. "/> - <param argument="data_format" type="select" help="The ordering of the dimensions in the inputs."> - <option value="channels_last" selected="true">channels_last - inputs with shape (batch, spatial_dim1, spatial_dim2, spatial_dim3, channels)</option> - <option value="channels_first">channels_first - inputs with shape (batch, channels, spatial_dim1, spatial_dim2, spatial_dim3)</option> - </param> - <param argument="dilation_rate" type="text" value="1" help="an integer or tuple/list of 3 integers, specifying the dilation rate to use for dilated convolution."/> - <expand macro="keras_activations"/> - <param argument="use_bias" type="boolean" truevalue="booltrue" falsevalue="boolfalse" optional="true" checked="true"/> - <expand macro="keras_initializers" default_kernel="true"/> - <expand macro="keras_initializers" argument="bias_initializer" default_bias="true"/> - <expand macro="keras_regularizers" /> - <expand macro="keras_regularizers" argument="bias_regularizer"/> - <expand macro="keras_regularizers" argument="activity_regularizer"/> - <expand macro="keras_constraints"/> - <expand macro="keras_constraints" argument="bias_constraint"/> - </section> + <expand macro="keras_activations"/> + <expand macro="simple_kwargs" help="For example: strides=(1, 1, 1), padding='valid', output_padding=None, data_format=None, activation=None, use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None. Leave blank for default."/> <yield/> </xml> <xml name="layer_Cropping1D"> - <param argument="cropping" type="text" value="(1, 1)" help="int or tuple of int (length 2) How many units should be trimmed off at the beginning and end of the cropping dimension (axis 1). - If a single int is provided, the same value will be used for both."/> + <param argument="cropping" type="text" value="(1, 1)" help="int or tuple of int (length 2) How many units should be trimmed off at the beginning and end of the cropping dimension (axis 1). If a single int is provided, the same value will be used for both."/> <yield/> </xml> <xml name="layer_Cropping2D"> <param argument="cropping" type="text" value="((0, 0), (0, 0))" help="int, or tuple of 2 ints, or tuple of 2 tuples of 2 ints."/> - <param argument="data_format" type="select" help="The ordering of the dimensions in the inputs."> - <option value="channels_last" selected="true">channels_last - inputs with shape (batch, height, width, channels)</option> - <option value="channels_first">channels_first - inputs with shape (batch, channels, height, width)</option> - </param> + <expand macro="simple_kwargs" help="For example: data_format=None. Leave blank for default."/> <yield/> </xml> <xml name="layer_Cropping3D"> <param argument="cropping" type="text" value="((1, 1), (1, 1), (1, 1))" help="int, or tuple of 3 ints, or tuple of 3 tuples of 2 ints."/> - <param argument="data_format" type="select" help="The ordering of the dimensions in the inputs."> - <option value="channels_last" selected="true">channels_last - inputs with shape (batch, spatial_dim1, spatial_dim2, spatial_dim3, channels)</option> - <option value="channels_first">channels_first - inputs with shape (batch, channels, spatial_dim1, spatial_dim2, spatial_dim3)</option> - </param> + <expand macro="simple_kwargs" help="For example: data_format=None. Leave blank for default."/> <yield/> </xml> @@ -586,23 +388,13 @@ <xml name="layer_UpSampling2D"> <param argument="size" type="text" value="(2, 2)" help="int, or tuple of 2 integers. The upsampling factors for rows and columns."/> - <param argument="data_format" type="select" help="The ordering of the dimensions in the inputs."> - <option value="channels_last" selected="true">channels_last - inputs with shape (batch, height, width, channels)</option> - <option value="channels_first">channels_first - inputs with shape (batch, channels, height, width)</option> - </param> - <param argument="interpolation" type="select"> - <option value="nearest" selected="true">nearest</option> - <option value="bilinear">bilinear</option> - </param> + <expand macro="simple_kwargs" help="For example: data_format=None, interpolation='nearest'. Leave blank for default."/> <yield/> </xml> <xml name="layer_UpSampling3D"> <param argument="size" type="text" value="(2, 2, 2)" help="int, or tuple of 3 integers. The upsampling factors for dim1, dim2 and dim3."/> - <param argument="data_format" type="select" help="The ordering of the dimensions in the inputs."> - <option value="channels_last" selected="true">channels_last - inputs with shape (batch, spatial_dim1, spatial_dim2, spatial_dim3, channels)</option> - <option value="channels_first">channels_first - inputs with shape (batch, channels, spatial_dim1, spatial_dim2, spatial_dim3)</option> - </param> + <expand macro="simple_kwargs" help="For example: data_format=None, interpolation='nearest'. Leave blank for default."/> <yield/> </xml> @@ -613,19 +405,13 @@ <xml name="layer_ZeroPadding2D"> <param argument="padding" type="text" value="(1, 1)" help="int, or tuple of 2 ints, or tuple of 2 tuples of 2 ints."/> - <param argument="data_format" type="select" help="The ordering of the dimensions in the inputs."> - <option value="channels_last" selected="true">channels_last - inputs with shape (batch, height, width, channels)</option> - <option value="channels_first">channels_first - inputs with shape (batch, channels, height, width)</option> - </param> + <expand macro="simple_kwargs" help="For example: data_format=None. Leave blank for default."/> <yield/> </xml> <xml name="layer_ZeroPadding3D"> <param argument="padding" type="text" value="(1, 1, 1)" help="int, or tuple of 3 ints, or tuple of 3 tuples of 2 ints."/> - <param argument="data_format" type="select" help="The ordering of the dimensions in the inputs."> - <option value="channels_last" selected="true">channels_last - inputs with shape (batch, spatial_dim1, spatial_dim2, spatial_dim3, channels)</option> - <option value="channels_first">channels_first - inputs with shape (batch, channels, spatial_dim1, spatial_dim2, spatial_dim3)</option> - </param> + <expand macro="simple_kwargs" help="For example: data_format=None. Leave blank for default."/> <yield/> </xml> @@ -634,30 +420,14 @@ <xml name="layer_MaxPooling1D"> <param name="pool_size" type="integer" value="2" help="Integer, size of the max pooling windows."/> <param name="strides" type="integer" value="" help="Integer, or None. Factor by which to downscale. E.g. 2 will halve the input. If None, it will default to pool_size."/> - <param argument="padding" type="select" > - <option value="valid" selected="true">valid - no padding</option> - <option value="same">same - output has the same length as the original input</option> - <!--option value="causal">causal - causal (dilated) convolutions</option--> - </param> - <param argument="data_format" type="select" help="The ordering of the dimensions in the inputs."> - <option value="channels_last" selected="true">channels_last - inputs with shape (batch, steps, channels)</option> - <option value="channels_first">channels_first - inputs with shape (batch, channels, steps)</option> - </param> + <expand macro="simple_kwargs" help="For example: padding='valid', data_format='channels_last'. Leave blank for default."/> <yield/> </xml> <xml name="layer_MaxPooling2D"> <param name="pool_size" type="text" value="(2, 2)" help="integer or tuple of 2 integers, factors by which to downscale (vertical, horizontal)"/> <param name="strides" type="text" value="" help="Integer, tuple of 2 integers, or None. Strides values. If None, it will default to pool_size."/> - <param argument="padding" type="select" > - <option value="valid" selected="true">valid - no padding</option> - <option value="same">same - output has the same length as the original input</option> - <!--option value="causal">causal - causal (dilated) convolutions</option--> - </param> - <param argument="data_format" type="select" help="The ordering of the dimensions in the inputs."> - <option value="channels_last" selected="true">channels_last - inputs with shape (batch, height, width, channels)</option> - <option value="channels_first">channels_first - inputs with shape (batch, channels, height, width)</option> - </param> + <expand macro="simple_kwargs" help="For example: padding='valid', data_format='channels_last'. Leave blank for default."/> <yield/> </xml> @@ -665,45 +435,21 @@ <param name="pool_size" type="text" value="(2, 2, 2)" help="tuple of 3 integers, factors by which to downscale (dim1, dim2, dim3). (2, 2, 2) will halve the size of the 3D input in each dimension."/> <param name="strides" type="text" value="" help="tuple of 3 integers, or None. If None, it will default to pool_size."/> - <param argument="padding" type="select" > - <option value="valid" selected="true">valid - no padding</option> - <option value="same">same - output has the same length as the original input</option> - <!--option value="causal">causal - causal (dilated) convolutions</option--> - </param> - <param argument="data_format" type="select" help="The ordering of the dimensions in the inputs."> - <option value="channels_last" selected="true">channels_last - inputs with shape (batch, spatial_dim1, spatial_dim2, spatial_dim3, channels)</option> - <option value="channels_first">channels_first - inputs with shape (batch, channels, spatial_dim1, spatial_dim2, spatial_dim3)</option> - </param> + <expand macro="simple_kwargs" help="For example: padding='valid', data_format='channels_last'. Leave blank for default."/> <yield/> </xml> <xml name="layer_AveragePooling1D"> <param name="pool_size" type="integer" value="2" help="Integer, size of the max pooling windows."/> <param name="strides" type="integer" value="" help="Integer, or None. Factor by which to downscale. E.g. 2 will halve the input. If None, it will default to pool_size."/> - <param argument="padding" type="select" > - <option value="valid" selected="true">valid - no padding</option> - <option value="same">same - output has the same length as the original input</option> - <!--option value="causal">causal - causal (dilated) convolutions</option--> - </param> - <param argument="data_format" type="select" help="The ordering of the dimensions in the inputs."> - <option value="channels_last" selected="true">channels_last - inputs with shape (batch, steps, channels)</option> - <option value="channels_first">channels_first - inputs with shape (batch, channels, steps)</option> - </param> + <expand macro="simple_kwargs" help="For example: padding='valid', data_format='channels_last'. Leave blank for default."/> <yield/> </xml> <xml name="layer_AveragePooling2D"> <param name="pool_size" type="text" value="(2, 2)" help="integer or tuple of 2 integers, factors by which to downscale (vertical, horizontal)"/> <param name="strides" type="text" value="" help=" Integer, tuple of 2 integers, or None. Strides values. If None, it will default to pool_size."/> - <param argument="padding" type="select" > - <option value="valid" selected="true">valid - no padding</option> - <option value="same">same - output has the same length as the original input</option> - <!--option value="causal">causal - causal (dilated) convolutions</option--> - </param> - <param argument="data_format" type="select" help="The ordering of the dimensions in the inputs."> - <option value="channels_last" selected="true">channels_last - inputs with shape (batch, height, width, channels)</option> - <option value="channels_first">channels_first - inputs with shape (batch, channels, height, width)</option> - </param> + <expand macro="simple_kwargs" help="For example: padding='valid', data_format='channels_last'. Leave blank for default."/> <yield/> </xml> @@ -711,15 +457,7 @@ <param name="pool_size" type="text" value="(2, 2, 2)" help="tuple of 3 integers, factors by which to downscale (dim1, dim2, dim3). (2, 2, 2) will halve the size of the 3D input in each dimension."/> <param name="strides" type="text" value="" help="tuple of 3 integers, or None. If None, it will default to pool_size."/> - <param argument="padding" type="select" > - <option value="valid" selected="true">valid - no padding</option> - <option value="same">same - output has the same length as the original input</option> - <!--option value="causal">causal - causal (dilated) convolutions</option--> - </param> - <param argument="data_format" type="select" help="The ordering of the dimensions in the inputs."> - <option value="channels_last" selected="true">channels_last - inputs with shape (batch, spatial_dim1, spatial_dim2, spatial_dim3, channels)</option> - <option value="channels_first">channels_first - inputs with shape (batch, channels, spatial_dim1, spatial_dim2, spatial_dim3)</option> - </param> + <expand macro="simple_kwargs" help="For example: padding='valid', data_format='channels_last'. Leave blank for default."/> <yield/> </xml> @@ -776,92 +514,90 @@ <xml name="layer_LocallyConnected1D"> <param argument="filters" type="integer" value="" min="0" help="the dimensionality of the output space (i.e. the number of output filters in the convolution)."/> <param argument="kernel_size" type="text" value="" help="An integer or tuple/list of a single integer, specifying the length of the 1D convolution window."/> - <param argument="strides" type="text" value="1" help="An integer or tuple/list of a single integer, specifying the stride length of the convolution."/> - <section name="layer_options" title="Layer Advanced Options" expanded="false"> - <param argument="padding" type="select" help=""> - <option value="valid" selected="true">valid - no padding</option> - </param> - <param argument="data_format" type="select" help="The ordering of the dimensions in the inputs."> - <option value="channels_last" selected="true">channels_last - inputs with shape (batch, steps, channels)</option> - <option value="channels_first">channels_first - inputs with shape (batch, channels, steps)</option> - </param> - <expand macro="keras_activations"/> - <param argument="use_bias" type="boolean" truevalue="booltrue" falsevalue="boolfalse" optional="true" checked="true"/> - <expand macro="keras_initializers" default_kernel="true"/>\ - <expand macro="keras_initializers" argument="bias_initializer" default_bias="true"/> - <expand macro="keras_regularizers"/> - <expand macro="keras_regularizers" argument="bias_regularizer"/> - <expand macro="keras_regularizers" argument="activity_regularizer"/> - <expand macro="keras_constraints"/> - <expand macro="keras_constraints" argument="bias_constraint"/> - </section> + <expand macro="keras_activations"/> + <expand macro="simple_kwargs" help="For example: strides=1, padding='valid', data_format=None, use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None. Leave blank for default."/> <yield/> </xml> <xml name="layer_LocallyConnected2D"> <param argument="filters" type="integer" value="" min="0" help="the dimensionality of the output space (i.e. the number of output filters in the convolution)."/> <param argument="kernel_size" type="text" value="" help="An integer or tuple/list of 2 integers, specifying the height and width of the 2D convolution window."/> - <param argument="strides" type="text" value="(1, 1)" help="An integer or tuple/list of 2 integers, specifying the strides of the convolution along the height and width."/> - <section name="layer_options" title="Layer Advanced Options" expanded="false"> - <param argument="padding" type="select" help=""> - <option value="valid" selected="true">valid - no padding</option> - <option value="same">same - output has the same length as the original input</option> - <!--option value="causal">causal - causal (dilated) convolutions</option--> - </param> - <param argument="data_format" type="select" help="The ordering of the dimensions in the inputs."> - <option value="channels_last" selected="true">channels_last - inputs with shape (batch, height, width, channels)</option> - <option value="channels_first">channels_first - inputs with shape (batch, channels, height, width)</option> - </param> - <expand macro="keras_activations"/> - <param argument="use_bias" type="boolean" truevalue="booltrue" falsevalue="boolfalse" optional="true" checked="true"/> - <expand macro="keras_initializers" default_kernel="true"/>\ - <expand macro="keras_initializers" argument="bias_initializer" default_bias="true"/> - <expand macro="keras_regularizers"/> - <expand macro="keras_regularizers" argument="bias_regularizer"/> - <expand macro="keras_regularizers" argument="activity_regularizer"/> - <expand macro="keras_constraints"/> - <expand macro="keras_constraints" argument="bias_constraint"/> - </section> + <expand macro="keras_activations"/> + <expand macro="simple_kwargs" help="For example: strides=(1, 1), padding='valid', data_format=None, use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None. Leave blank for default."/> + <yield/> + </xml> + + <!--Recurrent Layers--> + + <xml name="layer_SimpleRNN"> + <param argument="units" type="integer" value="" min="1" help="Positive integer, dimensionality of the output space."/> + <expand macro="simple_kwargs" help="For example: activation='tanh', use_bias=True, kernel_initializer='glorot_uniform', recurrent_initializer='orthogonal', bias_initializer='zeros', kernel_regularizer=None, recurrent_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, recurrent_constraint=None, bias_constraint=None, dropout=0.0, recurrent_dropout=0.0, return_sequences=False, return_state=False, go_backwards=False, stateful=False, unroll=False. Leave blank for default."/> + <yield/> + </xml> + + <xml name="layer_GRU"> + <param argument="units" type="integer" value="" min="1" help="Positive integer, dimensionality of the output space."/> + <expand macro="simple_kwargs" help="For example: activation='tanh', recurrent_activation='hard_sigmoid', use_bias=True, kernel_initializer='glorot_uniform', recurrent_initializer='orthogonal', bias_initializer='zeros', kernel_regularizer=None, recurrent_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, recurrent_constraint=None, bias_constraint=None, dropout=0.0, recurrent_dropout=0.0, implementation=1, return_sequences=False, return_state=False, go_backwards=False, stateful=False, unroll=False, reset_after=False. Leave blank for default."/> + <yield/> + </xml> + + <xml name="layer_LSTM"> + <param argument="units" type="integer" value="" min="1" help="Positive integer, dimensionality of the output space."/> + <expand macro="simple_kwargs" help="For example: activation='tanh', recurrent_activation='hard_sigmoid', use_bias=True, kernel_initializer='glorot_uniform', recurrent_initializer='orthogonal', bias_initializer='zeros', unit_forget_bias=True, kernel_regularizer=None, recurrent_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, recurrent_constraint=None, bias_constraint=None, dropout=0.0, recurrent_dropout=0.0, implementation=1, return_sequences=False, return_state=False, go_backwards=False, stateful=False, unroll=False. Leave blank for default."/> + <yield/> + </xml> + + <xml name="layer_ConvLSTM2D"> + <param argument="filters" type="integer" value="" min="0" help="the dimensionality of the output space (i.e. the number of output filters in the convolution)."/> + <param argument="kernel_size" type="text" value="" help="An integer or tuple/list of n integers, specifying the dimensions of the convolution window."/> + <expand macro="simple_kwargs" help="For example: strides=(1, 1), padding='valid', data_format=None, dilation_rate=(1, 1), activation='tanh', recurrent_activation='hard_sigmoid', use_bias=True, kernel_initializer='glorot_uniform', recurrent_initializer='orthogonal', bias_initializer='zeros', unit_forget_bias=True, kernel_regularizer=None, recurrent_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, recurrent_constraint=None, bias_constraint=None, return_sequences=False, go_backwards=False, stateful=False, dropout=0.0, recurrent_dropout=0.0. Leave blank for default."/> <yield/> </xml> - <!--Recurrent Layers> + <xml name="layer_ConvLSTM2DCell"> + <param argument="filters" type="integer" value="" min="0" help="the dimensionality of the output space (i.e. the number of output filters in the convolution)."/> + <param argument="kernel_size" type="text" value="" help="An integer or tuple/list of n integers, specifying the dimensions of the convolution window."/> + <expand macro="simple_kwargs" help="For example: strides=(1, 1), padding='valid', data_format=None, dilation_rate=(1, 1), activation='tanh', recurrent_activation='hard_sigmoid', use_bias=True, kernel_initializer='glorot_uniform', recurrent_initializer='orthogonal', bias_initializer='zeros', unit_forget_bias=True, kernel_regularizer=None, recurrent_regularizer=None, bias_regularizer=None, kernel_constraint=None, recurrent_constraint=None, bias_constraint=None, dropout=0.0, recurrent_dropout=0.0. Leave blank for default."/> + <yield/> + </xml> - <xml name="layer_RNN"> - <param argument="cell" > - <section name="layer_options" title="Layer Advanced Options" expanded="false"> - <param argument="return_sequences" type="boolean" truevalue="booltrue" falsevalue="boolfalse" optional="true" checked="false" /> - <param argument="return_state" type="boolean" truevalue="booltrue" falsevalue="boolfalse" optional="true" checked="false" /> - <param argument="go_backwards" type="boolean" truevalue="booltrue" falsevalue="boolfalse" optional="true" checked="false" /> - <param argument="stateful" type="boolean" truevalue="booltrue" falsevalue="boolfalse" optional="true" checked="false" /> - <param argument="unroll" type="boolean" truevalue="booltrue" falsevalue="boolfalse" optional="true" checked="false" /> - <param argument="input_dim" > - <param argument="input_length" > - </section> + <xml name="layer_SimpleRNNCell"> + <param argument="units" type="integer" value="" min="1" help="Positive integer, dimensionality of the output space."/> + <expand macro="simple_kwargs" help="For example: activation='tanh', use_bias=True, kernel_initializer='glorot_uniform', recurrent_initializer='orthogonal', bias_initializer='zeros', kernel_regularizer=None, recurrent_regularizer=None, bias_regularizer=None, kernel_constraint=None, recurrent_constraint=None, bias_constraint=None, dropout=0.0, recurrent_dropout=0.0. Leave blank for default."/> <yield/> - </xml--> + </xml> - <xml name="layer_LSTM"> + <xml name="layer_GRUCell"> <param argument="units" type="integer" value="" min="1" help="Positive integer, dimensionality of the output space."/> - <section name="layer_options" title="Layer Advanced Options" expanded="false"> - <expand macro="keras_activations"/> - </section> + <expand macro="simple_kwargs" help="For example: activation='tanh', recurrent_activation='hard_sigmoid', use_bias=True, kernel_initializer='glorot_uniform', recurrent_initializer='orthogonal', bias_initializer='zeros', kernel_regularizer=None, recurrent_regularizer=None, bias_regularizer=None, kernel_constraint=None, recurrent_constraint=None, bias_constraint=None, dropout=0.0, recurrent_dropout=0.0, implementation=1, reset_after=False. Leave blank for default."/> <yield/> </xml> + <xml name="layer_LSTMCell"> + <param argument="units" type="integer" value="" min="1" help="Positive integer, dimensionality of the output space."/> + <expand macro="simple_kwargs" help="For example: activation='tanh', recurrent_activation='hard_sigmoid', use_bias=True, kernel_initializer='glorot_uniform', recurrent_initializer='orthogonal', bias_initializer='zeros', unit_forget_bias=True, kernel_regularizer=None, recurrent_regularizer=None, bias_regularizer=None, kernel_constraint=None, recurrent_constraint=None, bias_constraint=None, dropout=0.0, recurrent_dropout=0.0, implementation=1. Leave blank for default."/> + <yield/> + </xml> + + <xml name="layer_CuDNNGRU"> + <param argument="units" type="integer" value="" min="1" help="Positive integer, dimensionality of the output space."/> + <expand macro="simple_kwargs" help="For example: kernel_initializer='glorot_uniform', recurrent_initializer='orthogonal', bias_initializer='zeros', kernel_regularizer=None, recurrent_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, recurrent_constraint=None, bias_constraint=None, return_sequences=False, return_state=False, stateful=False. Leave blank for default."/> + <yield/> + </xml> + + <xml name="layer_CuDNNLSTM"> + <param argument="units" type="integer" value="" min="1" help="Positive integer, dimensionality of the output space."/> + <expand macro="simple_kwargs" help="For example: kernel_initializer='glorot_uniform', recurrent_initializer='orthogonal', bias_initializer='zeros', unit_forget_bias=True, kernel_regularizer=None, recurrent_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, recurrent_constraint=None, bias_constraint=None, return_sequences=False, return_state=False, stateful=False. Leave blank for default."/> + <yield/> + </xml> + + <!--Embedding Layers--> <xml name="layer_Embedding"> <param argument="input_dim" type="integer" value="" min="0" help="int > 0. Size of the vocabulary, i.e. maximum integer index + 1."/> <param argument="output_dim" type="integer" value="" min="0" help="int >= 0. Dimension of the dense embedding."/> - <section name="layer_options" title="Layer Advanced Options" expanded="false"> - <expand macro="keras_initializers" argument="embeddings_initializer" default_embeddings="true"/> - <expand macro="keras_regularizers" argument="embeddings_regularizer"/> - <expand macro="keras_regularizers" argument="activity_regularizer"/> - <expand macro="keras_constraints" argument="embeddings_constraint"/> - <param argument="mask_zero" type="boolean" truevalue="booltrue" falsevalue="boolfalse" optional="true" checked="false"/> - <param argument="input_length" type="integer" value="" optional="true" min="0" help="Length of input sequences. Required if connecting Flatten then Dense layers upstream"/> - </section> + <expand macro="simple_kwargs" help="For example: embeddings_initializer='uniform', embeddings_regularizer=None, activity_regularizer=None, embeddings_constraint=None, mask_zero=False, input_length=None. Leave blank for default."/> <yield/> </xml> @@ -901,7 +637,7 @@ </xml> <xml name="layer_PReLU"> - <expand macro="keras_initializers" argument="alpha_initializer" default_bias="true"/> + <expand macro="keras_initializers" argument="alpha_initializer" default_zeros="true"/> <expand macro="keras_regularizers" argument="alpha_regularizer"/> <expand macro="keras_constraints" argument="alpha_constraint"/> <param argument="shared_axes" type="text" value="" help="the axes along which to share learnable parameters for the activation function. E.g. [1, 2]"> @@ -939,13 +675,34 @@ <!--Normalization Layers--> + <xml name="layer_BatchNormalization"> + <expand macro="simple_kwargs" help="For example: axis=-1, momentum=0.99, epsilon=0.001, center=True, scale=True, beta_initializer='zeros', gamma_initializer='ones', moving_mean_initializer='zeros', moving_variance_initializer='ones', beta_regularizer=None, gamma_regularizer=None, beta_constraint=None, gamma_constraint=None. Leave blank for default."/> + </xml> + <!--Noise layers--> + <xml name="layer_GaussianNoise"> + <param argument="stddev" type="float" value="" help="float, standard deviation of the noise distribution."/> + </xml> + + <xml name="layer_GaussianDropout"> + <param argument="rate" type="float" value="" help="drop probability, (as with `Dropout`). The multiplicative noise will have standard deviation `sqrt(rate / (1 - rate))`"/> + </xml> + + <xml name="layer_AlphaDropout"> + <expand macro="layer_Dropout"/> + </xml> + <xml name="inbound_nodes_index"> <param name="inbound_nodes" type="integer" value="" label="Type the index number of input layer" help="Find the index number at the left top corner of layer configuration block"/> </xml> + <!--Simple key words text parameters, conbined to reduce UI latency--> + + <xml name="simple_kwargs" token_help="Leave blank for default."> + <param argument="kwargs" type="text" value="" label="Type in key words arguments if different from the default" help="@HELP@"/> + </xml> <!-- Keras CallBacks -->