Mercurial > repos > bgruening > sklearn_stacking_ensemble_models
diff model_prediction.py @ 2:22560cf810b8 draft
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 60f0fbc0eafd7c11bc60fb6c77f2937782efd8a9-dirty
author | bgruening |
---|---|
date | Fri, 09 Aug 2019 08:08:15 -0400 |
parents | |
children | 0e20520a63ee |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/model_prediction.py Fri Aug 09 08:08:15 2019 -0400 @@ -0,0 +1,205 @@ +import argparse +import json +import numpy as np +import pandas as pd +import warnings + +from scipy.io import mmread +from sklearn.pipeline import Pipeline + +from galaxy_ml.utils import (load_model, read_columns, + get_module, try_get_attr) + + +N_JOBS = int(__import__('os').environ.get('GALAXY_SLOTS', 1)) + + +def main(inputs, infile_estimator, outfile_predict, + infile_weights=None, infile1=None, + fasta_path=None, ref_seq=None, + vcf_path=None): + """ + Parameter + --------- + inputs : str + File path to galaxy tool parameter + + infile_estimator : strgit + File path to trained estimator input + + outfile_predict : str + File path to save the prediction results, tabular + + infile_weights : str + File path to weights input + + infile1 : str + File path to dataset containing features + + fasta_path : str + File path to dataset containing fasta file + + ref_seq : str + File path to dataset containing the reference genome sequence. + + vcf_path : str + File path to dataset containing variants info. + """ + warnings.filterwarnings('ignore') + + with open(inputs, 'r') as param_handler: + params = json.load(param_handler) + + # load model + with open(infile_estimator, 'rb') as est_handler: + estimator = load_model(est_handler) + + main_est = estimator + if isinstance(estimator, Pipeline): + main_est = estimator.steps[-1][-1] + if hasattr(main_est, 'config') and hasattr(main_est, 'load_weights'): + if not infile_weights or infile_weights == 'None': + raise ValueError("The selected model skeleton asks for weights, " + "but dataset for weights wan not selected!") + main_est.load_weights(infile_weights) + + # handle data input + input_type = params['input_options']['selected_input'] + # tabular input + if input_type == 'tabular': + header = 'infer' if params['input_options']['header1'] else None + column_option = (params['input_options'] + ['column_selector_options_1'] + ['selected_column_selector_option']) + if column_option in ['by_index_number', 'all_but_by_index_number', + 'by_header_name', 'all_but_by_header_name']: + c = params['input_options']['column_selector_options_1']['col1'] + else: + c = None + + df = pd.read_csv(infile1, sep='\t', header=header, parse_dates=True) + + X = read_columns(df, c=c, c_option=column_option).astype(float) + + if params['method'] == 'predict': + preds = estimator.predict(X) + else: + preds = estimator.predict_proba(X) + + # sparse input + elif input_type == 'sparse': + X = mmread(open(infile1, 'r')) + if params['method'] == 'predict': + preds = estimator.predict(X) + else: + preds = estimator.predict_proba(X) + + # fasta input + elif input_type == 'seq_fasta': + if not hasattr(estimator, 'data_batch_generator'): + raise ValueError( + "To do prediction on sequences in fasta input, " + "the estimator must be a `KerasGBatchClassifier`" + "equipped with data_batch_generator!") + pyfaidx = get_module('pyfaidx') + sequences = pyfaidx.Fasta(fasta_path) + n_seqs = len(sequences.keys()) + X = np.arange(n_seqs)[:, np.newaxis] + seq_length = estimator.data_batch_generator.seq_length + batch_size = getattr(estimator, 'batch_size', 32) + steps = (n_seqs + batch_size - 1) // batch_size + + seq_type = params['input_options']['seq_type'] + klass = try_get_attr( + 'galaxy_ml.preprocessors', seq_type) + + pred_data_generator = klass( + fasta_path, seq_length=seq_length) + + if params['method'] == 'predict': + preds = estimator.predict( + X, data_generator=pred_data_generator, steps=steps) + else: + preds = estimator.predict_proba( + X, data_generator=pred_data_generator, steps=steps) + + # vcf input + elif input_type == 'variant_effect': + klass = try_get_attr('galaxy_ml.preprocessors', + 'GenomicVariantBatchGenerator') + + options = params['input_options'] + options.pop('selected_input') + if options['blacklist_regions'] == 'none': + options['blacklist_regions'] = None + + pred_data_generator = klass( + ref_genome_path=ref_seq, vcf_path=vcf_path, **options) + + pred_data_generator.fit() + + preds = estimator.model_.predict_generator( + pred_data_generator.flow(batch_size=32), + workers=N_JOBS, + use_multiprocessing=True) + + if preds.min() < 0. or preds.max() > 1.: + warnings.warn('Network returning invalid probability values. ' + 'The last layer might not normalize predictions ' + 'into probabilities ' + '(like softmax or sigmoid would).') + + if params['method'] == 'predict_proba' and preds.shape[1] == 1: + # first column is probability of class 0 and second is of class 1 + preds = np.hstack([1 - preds, preds]) + + elif params['method'] == 'predict': + if preds.shape[-1] > 1: + # if the last activation is `softmax`, the sum of all + # probibilities will 1, the classification is considered as + # multi-class problem, otherwise, we take it as multi-label. + act = getattr(estimator.model_.layers[-1], 'activation', None) + if act and act.__name__ == 'softmax': + classes = preds.argmax(axis=-1) + else: + preds = (preds > 0.5).astype('int32') + else: + classes = (preds > 0.5).astype('int32') + + preds = estimator.classes_[classes] + # end input + + # output + if input_type == 'variant_effect': # TODO: save in batchs + rval = pd.DataFrame(preds) + meta = pd.DataFrame( + pred_data_generator.variants, + columns=['chrom', 'pos', 'name', 'ref', 'alt', 'strand']) + + rval = pd.concat([meta, rval], axis=1) + + elif len(preds.shape) == 1: + rval = pd.DataFrame(preds, columns=['Predicted']) + else: + rval = pd.DataFrame(preds) + + rval.to_csv(outfile_predict, sep='\t', + header=True, index=False) + + +if __name__ == '__main__': + aparser = argparse.ArgumentParser() + aparser.add_argument("-i", "--inputs", dest="inputs", required=True) + aparser.add_argument("-e", "--infile_estimator", dest="infile_estimator") + aparser.add_argument("-w", "--infile_weights", dest="infile_weights") + aparser.add_argument("-X", "--infile1", dest="infile1") + aparser.add_argument("-O", "--outfile_predict", dest="outfile_predict") + aparser.add_argument("-f", "--fasta_path", dest="fasta_path") + aparser.add_argument("-r", "--ref_seq", dest="ref_seq") + aparser.add_argument("-v", "--vcf_path", dest="vcf_path") + args = aparser.parse_args() + + main(args.inputs, args.infile_estimator, args.outfile_predict, + infile_weights=args.infile_weights, infile1=args.infile1, + fasta_path=args.fasta_path, ref_seq=args.ref_seq, + vcf_path=args.vcf_path)