Mercurial > repos > bgruening > sklearn_stacking_ensemble_models
diff fitted_model_eval.py @ 5:3dc6734056e6 draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit eb703290e2589561ea215c84aa9f71bcfe1712c6"
author | bgruening |
---|---|
date | Fri, 01 Nov 2019 17:36:17 -0400 |
parents | |
children | ac40a2fe5750 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/fitted_model_eval.py Fri Nov 01 17:36:17 2019 -0400 @@ -0,0 +1,160 @@ +import argparse +import json +import pandas as pd +import warnings + +from scipy.io import mmread +from sklearn.pipeline import Pipeline +from sklearn.metrics.scorer import _check_multimetric_scoring +from sklearn.model_selection._validation import _score +from galaxy_ml.utils import get_scoring, load_model, read_columns + + +def _get_X_y(params, infile1, infile2): + """ read from inputs and output X and y + + Parameters + ---------- + params : dict + Tool inputs parameter + infile1 : str + File path to dataset containing features + infile2 : str + File path to dataset containing target values + + """ + # store read dataframe object + loaded_df = {} + + input_type = params['input_options']['selected_input'] + # tabular input + if input_type == 'tabular': + header = 'infer' if params['input_options']['header1'] else None + column_option = (params['input_options']['column_selector_options_1'] + ['selected_column_selector_option']) + if column_option in ['by_index_number', 'all_but_by_index_number', + 'by_header_name', 'all_but_by_header_name']: + c = params['input_options']['column_selector_options_1']['col1'] + else: + c = None + + df_key = infile1 + repr(header) + df = pd.read_csv(infile1, sep='\t', header=header, + parse_dates=True) + loaded_df[df_key] = df + + X = read_columns(df, c=c, c_option=column_option).astype(float) + # sparse input + elif input_type == 'sparse': + X = mmread(open(infile1, 'r')) + + # Get target y + header = 'infer' if params['input_options']['header2'] else None + column_option = (params['input_options']['column_selector_options_2'] + ['selected_column_selector_option2']) + if column_option in ['by_index_number', 'all_but_by_index_number', + 'by_header_name', 'all_but_by_header_name']: + c = params['input_options']['column_selector_options_2']['col2'] + else: + c = None + + df_key = infile2 + repr(header) + if df_key in loaded_df: + infile2 = loaded_df[df_key] + else: + infile2 = pd.read_csv(infile2, sep='\t', + header=header, parse_dates=True) + loaded_df[df_key] = infile2 + + y = read_columns( + infile2, + c=c, + c_option=column_option, + sep='\t', + header=header, + parse_dates=True) + if len(y.shape) == 2 and y.shape[1] == 1: + y = y.ravel() + + return X, y + + +def main(inputs, infile_estimator, outfile_eval, + infile_weights=None, infile1=None, + infile2=None): + """ + Parameter + --------- + inputs : str + File path to galaxy tool parameter + + infile_estimator : strgit + File path to trained estimator input + + outfile_eval : str + File path to save the evalulation results, tabular + + infile_weights : str + File path to weights input + + infile1 : str + File path to dataset containing features + + infile2 : str + File path to dataset containing target values + """ + warnings.filterwarnings('ignore') + + with open(inputs, 'r') as param_handler: + params = json.load(param_handler) + + X_test, y_test = _get_X_y(params, infile1, infile2) + + # load model + with open(infile_estimator, 'rb') as est_handler: + estimator = load_model(est_handler) + + main_est = estimator + if isinstance(estimator, Pipeline): + main_est = estimator.steps[-1][-1] + if hasattr(main_est, 'config') and hasattr(main_est, 'load_weights'): + if not infile_weights or infile_weights == 'None': + raise ValueError("The selected model skeleton asks for weights, " + "but no dataset for weights was provided!") + main_est.load_weights(infile_weights) + + # handle scorer, convert to scorer dict + scoring = params['scoring'] + scorer = get_scoring(scoring) + scorer, _ = _check_multimetric_scoring(estimator, scoring=scorer) + + if hasattr(estimator, 'evaluate'): + scores = estimator.evaluate(X_test, y_test=y_test, + scorer=scorer, + is_multimetric=True) + else: + scores = _score(estimator, X_test, y_test, scorer, + is_multimetric=True) + + # handle output + for name, score in scores.items(): + scores[name] = [score] + df = pd.DataFrame(scores) + df = df[sorted(df.columns)] + df.to_csv(path_or_buf=outfile_eval, sep='\t', + header=True, index=False) + + +if __name__ == '__main__': + aparser = argparse.ArgumentParser() + aparser.add_argument("-i", "--inputs", dest="inputs", required=True) + aparser.add_argument("-e", "--infile_estimator", dest="infile_estimator") + aparser.add_argument("-w", "--infile_weights", dest="infile_weights") + aparser.add_argument("-X", "--infile1", dest="infile1") + aparser.add_argument("-y", "--infile2", dest="infile2") + aparser.add_argument("-O", "--outfile_eval", dest="outfile_eval") + args = aparser.parse_args() + + main(args.inputs, args.infile_estimator, args.outfile_eval, + infile_weights=args.infile_weights, infile1=args.infile1, + infile2=args.infile2)