Mercurial > repos > bgruening > sklearn_stacking_ensemble_models
view stacking_ensembles.xml @ 0:fcc5eaaec401 draft
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit ab963ec9498bd05d2fb2f24f75adb2fccae7958c
author | bgruening |
---|---|
date | Wed, 15 May 2019 07:25:29 -0400 |
parents | |
children | 22560cf810b8 |
line wrap: on
line source
<tool id="sklearn_stacking_ensemble_models" name="Stacking Ensemble Models" version="0.1.0"> <description>builds a strong model by stacking multiple algorithms</description> <macros> <import>main_macros.xml</import> </macros> <expand macro="python_requirements"/> <expand macro="macro_stdio"/> <version_command>echo "$version"</version_command> <command> <![CDATA[ #for $i, $base in enumerate($base_est_builder) #if $i == 0 #if $base.estimator_selector.selected_module == 'custom_estimator' bases='${base.estimator_selector.c_estimator}'; #else bases='None'; #end if #elif $base.estimator_selector.selected_module == 'custom_estimator' bases="\$bases,${base.estimator_selector.c_estimator}"; #else bases="\$bases,None"; #end if #end for python '$__tool_directory__/stacking_ensembles.py' --inputs '$inputs' --outfile '$outfile' --bases "\$bases" #if $meta_estimator.estimator_selector.selected_module == 'custom_estimator' --meta '${meta_estimator.estimator_selector.c_estimator}' #end if #if $get_params --outfile_params '$outfile_params' #end if ]]> </command> <configfiles> <inputs name="inputs" /> </configfiles> <inputs> <conditional name="algo_selection"> <param name="estimator_type" type="select" label="Choose the stacking ensemble type"> <option value="StackingCVClassifier" selected="true">classification -- StackingCVClassifier</option> <option value="StackingClassifier">classification -- StackingClassifier</option> <option value="StackingCVRegressor">regression -- StackingCVRegressor</option> <option value="StackingRegressor">regression -- StackingRegressor</option> </param> <when value="StackingCVClassifier"> <expand macro="stacking_ensemble_inputs"> <expand macro="cv_reduced"/> <expand macro="shuffle" label="shuffle"/> <expand macro="random_state" default_value="" help_text="Integer number. The seed of the pseudo random number generator to use when shuffling the data."/> <param argument="use_probas" type="boolean" truevalue="booltrue" falsevalue="boolfalse" checked="false"/> </expand> </when> <when value="StackingClassifier"> <expand macro="stacking_ensemble_inputs"> <param argument="use_probas" type="boolean" truevalue="booltrue" falsevalue="boolfalse" checked="false"/> <param argument="average_probas" type="boolean" truevalue="booltrue" falsevalue="boolfalse" checked="false"/> </expand> </when> <when value="StackingCVRegressor"> <expand macro="stacking_ensemble_inputs"> <expand macro="cv_reduced"/> <!--TODO support group splitters. Hint: `groups` is a fit_param--> <expand macro="shuffle" label="shuffle"/> <expand macro="random_state" default_value="" help_text="Integer number. The seed of the pseudo random number generator to use when shuffling the data."/> <param argument="refit" type="boolean" truevalue="booltrue" falsevalue="boolfalse" checked="true"/> </expand> </when> <when value="StackingRegressor"> <expand macro="stacking_ensemble_inputs"> <param argument="refit" type="boolean" truevalue="booltrue" falsevalue="boolfalse" checked="true"/> </expand> </when> </conditional> <repeat name="base_est_builder" min="1" max="20" title="Base Estimator"> <expand macro="stacking_base_estimator"/> <!--param name="base_estimator" type="data" format="zip,json" label="Select the dataset containing base estimator" help="One estimator at a time."/--> </repeat> <!--param name="meta_estimator" type="data" format="zip,json" label="Select the dataset containing the Meta estimator"/--> <section name="meta_estimator" title="Meta Estimator" expanded="true"> <expand macro="stacking_base_estimator"/> </section> <param name="get_params" type="boolean" truevalue="booltrue" falsevalue="boolfalse" checked="true" label="Output parameters for searchCV?" help="Optional. Tunable parameters could be obtained through `estimator_attributes` tool."/> </inputs> <outputs> <data format="zip" name="outfile" label="${algo_selection.estimator_type} on ${on_string}"/> <data format="tabular" name="outfile_params" label="get_params for ${algo_selection.estimator_type}"> <filter>get_params</filter> </data> </outputs> <tests> <test> <conditional name="algo_selection"> <param name="estimator_type" value="StackingCVRegressor"/> </conditional> <repeat name="base_est_builder"> <conditional name="estimator_selector"> <param name="selected_module" value="custom_estimator"/> <param name="c_estimator" value="RandomForestRegressor01.zip" ftype="zip"/> </conditional> </repeat> <repeat name="base_est_builder"> <conditional name="estimator_selector"> <param name="selected_module" value="custom_estimator"/> <param name="c_estimator" value="XGBRegressor01.zip" ftype="zip"/> </conditional> </repeat> <section name="meta_estimator"> <conditional name="estimator_selector"> <param name="selected_module" value="custom_estimator"/> <param name="c_estimator" value="LinearRegression01.zip" ftype="zip"/> </conditional> </section> <param name="get_params" value="false"/> <output name="outfile" file="StackingCVRegressor01.zip" compare="sim_size" delta="5"/> </test> <test> <conditional name="algo_selection"> <param name="estimator_type" value="StackingCVRegressor"/> </conditional> <repeat name="base_est_builder"> <conditional name="estimator_selector"> <param name="selected_module" value="custom_estimator"/> <param name="c_estimator" value="RandomForestRegressor01.zip" ftype="zip"/> </conditional> </repeat> <repeat name="base_est_builder"> <conditional name="estimator_selector"> <param name="selected_module" value="xgboost"/> <param name="selected_estimator" value="XGBRegressor"/> </conditional> </repeat> <section name="meta_estimator"> <conditional name="estimator_selector"> <param name="selected_module" value="svm"/> <param name="selected_estimator" value="SVR"/> </conditional> </section> <param name="get_params" value="false"/> <output name="outfile" file="StackingCVRegressor02.zip" compare="sim_size" delta="5"/> </test> </tests> <help> <![CDATA[ This tool wrapps Stacking Regression, also called Super Learning, in which different base algorithms train on the original dataset and predict results respectively, a second level of `metalearner` fits on the previous prediction results to ensemble a strong learner. Refer to `http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/stacked-ensembles.html#introduction`_. .. _`http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/stacked-ensembles.html#introduction`: http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/stacked-ensembles.html#introduction ]]> </help> <expand macro="sklearn_citation"> <expand macro="skrebate_citation"/> <expand macro="xgboost_citation"/> <expand macro="imblearn_citation"/> <citation type="bibtex"> @article{raschkas_2018_mlxtend, author = {Sebastian Raschka}, title = {MLxtend: Providing machine learning and data science utilities and extensions to Python’s scientific computing stack}, journal = {The Journal of Open Source Software}, volume = {3}, number = {24}, month = apr, year = 2018, publisher = {The Open Journal}, doi = {10.21105/joss.00638}, url = {http://joss.theoj.org/papers/10.21105/joss.00638} } </citation> </expand> </tool>