| 4 | 1 import re | 
|  | 2 import sys | 
|  | 3 import csv | 
|  | 4 import math | 
|  | 5 import argparse | 
|  | 6 | 
|  | 7 import numpy  as np | 
|  | 8 import pickle as pk | 
|  | 9 import pandas as pd | 
|  | 10 | 
|  | 11 from enum   import Enum | 
|  | 12 from typing import Optional, List, Dict, Tuple | 
|  | 13 | 
|  | 14 import utils.general_utils as utils | 
|  | 15 import utils.reaction_parsing as reactionUtils | 
|  | 16 | 
|  | 17 ########################## argparse ########################################## | 
|  | 18 ARGS :argparse.Namespace | 
|  | 19 def process_args() -> argparse.Namespace: | 
|  | 20     """ | 
|  | 21     Processes command-line arguments. | 
|  | 22 | 
|  | 23     Args: | 
|  | 24         args (list): List of command-line arguments. | 
|  | 25 | 
|  | 26     Returns: | 
|  | 27         Namespace: An object containing parsed arguments. | 
|  | 28     """ | 
|  | 29     parser = argparse.ArgumentParser(usage = '%(prog)s [options]', | 
|  | 30                                      description = 'process some value\'s'+ | 
|  | 31                                      ' abundances and reactions to create RPS scores.') | 
|  | 32     parser.add_argument('-rc', '--reaction_choice', | 
|  | 33                         type = str, | 
|  | 34                         default = 'default', | 
|  | 35                         choices = ['default','custom'], | 
|  | 36                         help = 'chose which type of reaction dataset you want use') | 
|  | 37     parser.add_argument('-cm', '--custom', | 
|  | 38                         type = str, | 
|  | 39                         help='your dataset if you want custom reactions') | 
|  | 40     parser.add_argument('-td', '--tool_dir', | 
|  | 41                         type = str, | 
|  | 42                         required = True, | 
|  | 43                         help = 'your tool directory') | 
|  | 44     parser.add_argument('-ol', '--out_log', | 
|  | 45                         help = "Output log") | 
|  | 46     parser.add_argument('-id', '--input', | 
|  | 47                         type = str, | 
|  | 48                         help = 'input dataset') | 
|  | 49     parser.add_argument('-rp', '--rps_output', | 
|  | 50                         type = str, | 
|  | 51                         required = True, | 
|  | 52                         help = 'rps output') | 
|  | 53 | 
|  | 54     args = parser.parse_args() | 
|  | 55     return args | 
|  | 56 | 
|  | 57 ############################ dataset name ##################################### | 
|  | 58 def name_dataset(name_data :str, count :int) -> str: | 
|  | 59     """ | 
|  | 60     Produces a unique name for a dataset based on what was provided by the user. The default name for any dataset is "Dataset", thus if the user didn't change it this function appends f"_{count}" to make it unique. | 
|  | 61 | 
|  | 62     Args: | 
|  | 63         name_data : name associated with the dataset (from frontend input params) | 
|  | 64         count : counter from 1 to make these names unique (external) | 
|  | 65 | 
|  | 66     Returns: | 
|  | 67         str : the name made unique | 
|  | 68     """ | 
|  | 69     if str(name_data) == 'Dataset': | 
|  | 70         return str(name_data) + '_' + str(count) | 
|  | 71     else: | 
|  | 72         return str(name_data) | 
|  | 73 | 
|  | 74 | 
|  | 75 ############################ get_abund_data #################################### | 
|  | 76 def get_abund_data(dataset: pd.DataFrame, cell_line_index:int) -> Optional[pd.Series]: | 
|  | 77     """ | 
|  | 78     Extracts abundance data and turns it into a series for a specific cell line from the dataset, which rows are | 
|  | 79     metabolites and columns are cell lines. | 
|  | 80 | 
|  | 81     Args: | 
|  | 82         dataset (pandas.DataFrame): The DataFrame containing abundance data for all cell lines and metabolites. | 
|  | 83         cell_line_index (int): The index of the cell line of interest in the dataset. | 
|  | 84 | 
|  | 85     Returns: | 
|  | 86         pd.Series or None: A series containing abundance values for the specified cell line. | 
|  | 87                            The name of the series is the name of the cell line. | 
|  | 88                            Returns None if the cell index is invalid. | 
|  | 89     """ | 
|  | 90     if cell_line_index < 0 or cell_line_index >= len(dataset.index): | 
|  | 91         print(f"Errore: This cell line index: '{cell_line_index}' is not valid.") | 
|  | 92         return None | 
|  | 93 | 
|  | 94     cell_line_name = dataset.columns[cell_line_index] | 
|  | 95     abundances_series = dataset[cell_line_name][1:] | 
|  | 96 | 
|  | 97     return abundances_series | 
|  | 98 | 
|  | 99 | 
|  | 100 ############################ clean_metabolite_name #################################### | 
|  | 101 def clean_metabolite_name(name :str) -> str: | 
|  | 102     """ | 
|  | 103     Removes some characters from a metabolite's name, provided as input, and makes it lowercase in order to simplify | 
|  | 104     the search of a match in the dictionary of synonyms. | 
|  | 105 | 
|  | 106     Args: | 
|  | 107         name : the metabolite's name, as given in the dataset. | 
|  | 108 | 
|  | 109     Returns: | 
|  | 110         str : a new string with the cleaned name. | 
|  | 111     """ | 
|  | 112     return "".join(ch for ch in name if ch not in ",;-_'([{ }])").lower() | 
|  | 113 | 
|  | 114 | 
|  | 115 ############################ get_metabolite_id #################################### | 
|  | 116 def get_metabolite_id(name :str, syn_dict :Dict[str, List[str]]) -> str: | 
|  | 117     """ | 
|  | 118     Looks through a dictionary of synonyms to find a match for a given metabolite's name. | 
|  | 119 | 
|  | 120     Args: | 
|  | 121         name : the metabolite's name, as given in the dataset. | 
|  | 122         syn_dict : the dictionary of synonyms, using unique identifiers as keys and lists of clean synonyms as values. | 
|  | 123 | 
|  | 124     Returns: | 
|  | 125         str : the internal :str unique identifier of that metabolite, used in all other parts of the model in use. | 
|  | 126         An empty string is returned if a match isn't found. | 
|  | 127     """ | 
|  | 128     name = clean_metabolite_name(name) | 
|  | 129     for id, synonyms in syn_dict.items(): | 
|  | 130         if name in synonyms: return id | 
|  | 131 | 
|  | 132     return "" | 
|  | 133 | 
|  | 134 ############################ check_missing_metab #################################### | 
|  | 135 def check_missing_metab(reactions: Dict[str, Dict[str, int]], dataset_by_rows: Dict[str, List[float]], cell_lines_amt :int) -> List[str]: | 
|  | 136     """ | 
|  | 137     Check for missing metabolites in the abundances dictionary compared to the reactions dictionary and update abundances accordingly. | 
|  | 138 | 
|  | 139     Parameters: | 
|  | 140         reactions (dict): A dictionary representing reactions where keys are reaction names and values are dictionaries containing metabolite names as keys and stoichiometric coefficients as values. | 
|  | 141         dataset_by_rows (dict): A dictionary representing abundances where keys are metabolite names and values are their corresponding abundances for all cell lines. | 
|  | 142         cell_lines_amt : amount of cell lines, needed to add a new list of abundances for missing metabolites. | 
|  | 143 | 
|  | 144     Returns: | 
|  | 145         list[str] : list of metabolite names that were missing in the original abundances dictionary and thus their aboundances were set to 1. | 
|  | 146 | 
|  | 147     Side effects: | 
|  | 148         dataset_by_rows : mut | 
|  | 149     """ | 
|  | 150     missing_list = [] | 
|  | 151     for reaction in reactions.values(): | 
|  | 152         for metabolite in reaction.keys(): | 
|  | 153           if metabolite not in dataset_by_rows: | 
|  | 154             dataset_by_rows[metabolite] = [1] * cell_lines_amt | 
|  | 155             missing_list.append(metabolite) | 
|  | 156 | 
|  | 157     return missing_list | 
|  | 158 | 
|  | 159 ############################ calculate_rps #################################### | 
|  | 160 def calculate_rps(reactions: Dict[str, Dict[str, int]], abundances: Dict[str, float], black_list: List[str], missing_list: List[str]) -> Dict[str, float]: | 
|  | 161     """ | 
|  | 162     Calculate the Reaction Propensity scores (RPS) based on the availability of reaction substrates, for (ideally) each input model reaction and for each sample. | 
|  | 163     The score is computed as the product of the concentrations of the reacting substances, with each concentration raised to a power equal to its stoichiometric coefficient | 
|  | 164     for each reaction using the provided coefficient and abundance values. | 
|  | 165 | 
|  | 166     Parameters: | 
|  | 167         reactions (dict): A dictionary representing reactions where keys are reaction names and values are dictionaries containing metabolite names as keys and stoichiometric coefficients as values. | 
|  | 168         abundances (dict): A dictionary representing metabolite abundances where keys are metabolite names and values are their corresponding abundances. | 
|  | 169         black_list (list): A list containing metabolite names that should be excluded from the RPS calculation. | 
|  | 170         missing_list (list): A list containing metabolite names that were missing in the original abundances dictionary and thus their values were set to 1. | 
|  | 171 | 
|  | 172     Returns: | 
|  | 173         dict: A dictionary containing Reaction Propensity Scores (RPS) where keys are reaction names and values are the corresponding RPS scores. | 
|  | 174     """ | 
|  | 175     rps_scores = {} | 
|  | 176 | 
|  | 177     for reaction_name, substrates in reactions.items(): | 
|  | 178         total_contribution = 1 | 
|  | 179         metab_significant = False | 
|  | 180         for metabolite, stoichiometry in substrates.items(): | 
|  | 181             temp = 1 if math.isnan(abundances[metabolite]) else abundances[metabolite] | 
|  | 182             if metabolite not in black_list and metabolite not in missing_list: | 
|  | 183               metab_significant = True | 
|  | 184             total_contribution *= temp ** stoichiometry | 
|  | 185 | 
|  | 186         rps_scores[reaction_name] = total_contribution if metab_significant else math.nan | 
|  | 187 | 
|  | 188     return rps_scores | 
|  | 189 | 
|  | 190 | 
|  | 191 ############################ rps_for_cell_lines #################################### | 
|  | 192 def rps_for_cell_lines(dataset: List[List[str]], reactions: Dict[str, Dict[str, int]], black_list: List[str], syn_dict: Dict[str, List[str]]) -> None: | 
|  | 193     """ | 
|  | 194     Calculate Reaction Propensity Scores (RPS) for each cell line represented in the dataframe and creates an output file. | 
|  | 195 | 
|  | 196     Parameters: | 
|  | 197         dataset : the dataset's data, by rows | 
|  | 198         reactions (dict): A dictionary representing reactions where keys are reaction names and values are dictionaries containing metabolite names as keys and stoichiometric coefficients as values. | 
|  | 199         black_list (list): A list containing metabolite names that should be excluded from the RPS calculation. | 
|  | 200         syn_dict (dict): A dictionary where keys are general metabolite names and values are lists of possible synonyms. | 
|  | 201 | 
|  | 202     Returns: | 
|  | 203         None | 
|  | 204     """ | 
|  | 205     cell_lines = dataset[0][1:] | 
|  | 206     abundances_dict = {} | 
|  | 207 | 
|  | 208     translationIsApplied = ARGS.reaction_choice == "default" | 
|  | 209     for row in dataset[1:]: | 
|  | 210         id = get_metabolite_id(row[0], syn_dict) if translationIsApplied else row[0] | 
|  | 211         if id: abundances_dict[id] = list(map(utils.Float(), row[1:])) | 
|  | 212 | 
|  | 213     missing_list = check_missing_metab(reactions, abundances_dict, len((cell_lines))) | 
|  | 214 | 
|  | 215     rps_scores :Dict[Dict[str, float]] = {} | 
|  | 216     for pos, cell_line_name in enumerate(cell_lines): | 
|  | 217         abundances = { metab : abundances[pos] for metab, abundances in abundances_dict.items() } | 
|  | 218         rps_scores[cell_line_name] = calculate_rps(reactions, abundances, black_list, missing_list) | 
|  | 219 | 
|  | 220     df = pd.DataFrame.from_dict(rps_scores) | 
|  | 221     df.rename(columns={'Unnamed: 0': 'Reactions'}, inplace=True) | 
|  | 222     df.to_csv(ARGS.rps_output, sep = '\t', na_rep = "None", index = False) | 
|  | 223 | 
|  | 224 ############################ main #################################### | 
|  | 225 def main() -> None: | 
|  | 226     """ | 
|  | 227     Initializes everything and sets the program in motion based on the fronted input arguments. | 
|  | 228 | 
|  | 229     Returns: | 
|  | 230         None | 
|  | 231     """ | 
|  | 232     global ARGS | 
|  | 233     ARGS = process_args() | 
|  | 234 | 
|  | 235     # TODO:use utils functions vvv | 
|  | 236     with open(ARGS.tool_dir + '/local/pickle files/black_list.pickle', 'rb') as bl: | 
|  | 237         black_list = pk.load(bl) | 
|  | 238 | 
|  | 239     with open(ARGS.tool_dir + '/local/pickle files/synonyms.pickle', 'rb') as sd: | 
|  | 240         syn_dict = pk.load(sd) | 
|  | 241 | 
|  | 242     dataset = utils.readCsv(utils.FilePath.fromStrPath(ARGS.input), '\t', skipHeader = False) | 
|  | 243 | 
|  | 244     if ARGS.reaction_choice == 'default': | 
|  | 245         reactions = pk.load(open(ARGS.tool_dir + '/local/pickle files/reactions.pickle', 'rb')) | 
|  | 246 | 
|  | 247     elif ARGS.reaction_choice == 'custom': | 
|  | 248         reactions = reactionUtils.parse_custom_reactions(ARGS.custom) | 
|  | 249 | 
|  | 250     rps_for_cell_lines(dataset, reactions, black_list, syn_dict) | 
|  | 251     print('Execution succeded') | 
|  | 252 | 
|  | 253 ############################################################################## | 
|  | 254 if __name__ == "__main__": | 
|  | 255     main() |