| 
406
 | 
     1 from __future__ import division
 | 
| 
 | 
     2 # galaxy complains this ^^^ needs to be at the very beginning of the file, for some reason.
 | 
| 
 | 
     3 import sys
 | 
| 
 | 
     4 import argparse
 | 
| 
 | 
     5 import collections
 | 
| 
 | 
     6 import pandas as pd
 | 
| 
 | 
     7 import pickle as pk
 | 
| 
 | 
     8 import utils.general_utils as utils
 | 
| 
 | 
     9 import utils.rule_parsing as ruleUtils
 | 
| 
 | 
    10 from typing import Union, Optional, List, Dict, Tuple, TypeVar
 | 
| 
 | 
    11 import os
 | 
| 
 | 
    12 
 | 
| 
 | 
    13 ERRORS = []
 | 
| 
 | 
    14 ########################## argparse ##########################################
 | 
| 
 | 
    15 ARGS :argparse.Namespace
 | 
| 
 | 
    16 def process_args(args:List[str] = None) -> argparse.Namespace:
 | 
| 
 | 
    17     """
 | 
| 
 | 
    18     Processes command-line arguments.
 | 
| 
 | 
    19 
 | 
| 
 | 
    20     Args:
 | 
| 
 | 
    21         args (list): List of command-line arguments.
 | 
| 
 | 
    22 
 | 
| 
 | 
    23     Returns:
 | 
| 
 | 
    24         Namespace: An object containing parsed arguments.
 | 
| 
 | 
    25     """
 | 
| 
 | 
    26     parser = argparse.ArgumentParser(
 | 
| 
 | 
    27         usage = '%(prog)s [options]',
 | 
| 
 | 
    28         description = "process some value's genes to create a comparison's map.")
 | 
| 
 | 
    29     
 | 
| 
 | 
    30     parser.add_argument("-rl", "--model_upload", type = str,
 | 
| 
 | 
    31         help = "path to input file containing the rules")
 | 
| 
 | 
    32 
 | 
| 
 | 
    33     parser.add_argument("-rn", "--model_upload_name", type = str, help = "custom rules name")
 | 
| 
 | 
    34     # ^ I need this because galaxy converts my files into .dat but I need to know what extension they were in
 | 
| 
 | 
    35     
 | 
| 
 | 
    36     parser.add_argument(
 | 
| 
 | 
    37         '-n', '--none',
 | 
| 
 | 
    38         type = utils.Bool("none"), default = True,
 | 
| 
 | 
    39         help = 'compute Nan values')
 | 
| 
 | 
    40     
 | 
| 
 | 
    41     parser.add_argument(
 | 
| 
 | 
    42         '-td', '--tool_dir',
 | 
| 
 | 
    43         type = str,
 | 
| 
 | 
    44         required = True, help = 'your tool directory')
 | 
| 
 | 
    45     
 | 
| 
 | 
    46     parser.add_argument(
 | 
| 
 | 
    47         '-ol', '--out_log',
 | 
| 
 | 
    48         type = str,
 | 
| 
 | 
    49         help = "Output log")    
 | 
| 
 | 
    50     
 | 
| 
 | 
    51     parser.add_argument(
 | 
| 
 | 
    52         '-in', '--input', #id รจ diventato in
 | 
| 
 | 
    53         type = str,
 | 
| 
 | 
    54         help = 'input dataset')
 | 
| 
 | 
    55     
 | 
| 
 | 
    56     parser.add_argument(
 | 
| 
 | 
    57         '-ra', '--ras_output',
 | 
| 
 | 
    58         type = str,
 | 
| 
 | 
    59         required = True, help = 'ras output')
 | 
| 
 | 
    60 
 | 
| 
 | 
    61     
 | 
| 
 | 
    62     return parser.parse_args(args)
 | 
| 
 | 
    63 
 | 
| 
 | 
    64 ############################ dataset input ####################################
 | 
| 
 | 
    65 def read_dataset(data :str, name :str) -> pd.DataFrame:
 | 
| 
 | 
    66     """
 | 
| 
 | 
    67     Read a dataset from a CSV file and return it as a pandas DataFrame.
 | 
| 
 | 
    68 
 | 
| 
 | 
    69     Args:
 | 
| 
 | 
    70         data (str): Path to the CSV file containing the dataset.
 | 
| 
 | 
    71         name (str): Name of the dataset, used in error messages.
 | 
| 
 | 
    72 
 | 
| 
 | 
    73     Returns:
 | 
| 
 | 
    74         pandas.DataFrame: DataFrame containing the dataset.
 | 
| 
 | 
    75 
 | 
| 
 | 
    76     Raises:
 | 
| 
 | 
    77         pd.errors.EmptyDataError: If the CSV file is empty.
 | 
| 
 | 
    78         sys.exit: If the CSV file has the wrong format, the execution is aborted.
 | 
| 
 | 
    79     """
 | 
| 
 | 
    80     try:
 | 
| 
 | 
    81         dataset = pd.read_csv(data, sep = '\t', header = 0, engine='python')
 | 
| 
 | 
    82     except pd.errors.EmptyDataError:
 | 
| 
 | 
    83         sys.exit('Execution aborted: wrong format of ' + name + '\n')
 | 
| 
 | 
    84     if len(dataset.columns) < 2:
 | 
| 
 | 
    85         sys.exit('Execution aborted: wrong format of ' + name + '\n')
 | 
| 
 | 
    86     return dataset
 | 
| 
 | 
    87 
 | 
| 
 | 
    88 ############################ load id e rules ##################################
 | 
| 
 | 
    89 def load_id_rules(reactions :Dict[str, Dict[str, List[str]]]) -> Tuple[List[str], List[Dict[str, List[str]]]]:
 | 
| 
 | 
    90     """
 | 
| 
 | 
    91     Load IDs and rules from a dictionary of reactions.
 | 
| 
 | 
    92 
 | 
| 
 | 
    93     Args:
 | 
| 
 | 
    94         reactions (dict): A dictionary where keys are IDs and values are rules.
 | 
| 
 | 
    95 
 | 
| 
 | 
    96     Returns:
 | 
| 
 | 
    97         tuple: A tuple containing two lists, the first list containing IDs and the second list containing rules.
 | 
| 
 | 
    98     """
 | 
| 
 | 
    99     ids, rules = [], []
 | 
| 
 | 
   100     for key, value in reactions.items():
 | 
| 
 | 
   101             ids.append(key)
 | 
| 
 | 
   102             rules.append(value)
 | 
| 
 | 
   103     return (ids, rules)
 | 
| 
 | 
   104 
 | 
| 
 | 
   105 ############################ check_methods ####################################
 | 
| 
 | 
   106 def gene_type(l :str, name :str) -> str:
 | 
| 
 | 
   107     """
 | 
| 
 | 
   108     Determine the type of gene ID.
 | 
| 
 | 
   109 
 | 
| 
 | 
   110     Args:
 | 
| 
 | 
   111         l (str): The gene identifier to check.
 | 
| 
 | 
   112         name (str): The name of the dataset, used in error messages.
 | 
| 
 | 
   113 
 | 
| 
 | 
   114     Returns:
 | 
| 
 | 
   115         str: The type of gene ID ('hugo_id', 'ensembl_gene_id', 'symbol', or 'entrez_id').
 | 
| 
 | 
   116 
 | 
| 
 | 
   117     Raises:
 | 
| 
 | 
   118         sys.exit: If the gene ID type is not supported, the execution is aborted.
 | 
| 
 | 
   119     """
 | 
| 
 | 
   120     if check_hgnc(l):
 | 
| 
 | 
   121         return 'hugo_id'
 | 
| 
 | 
   122     elif check_ensembl(l):
 | 
| 
 | 
   123         return 'ensembl_gene_id'
 | 
| 
 | 
   124     elif check_symbol(l):
 | 
| 
 | 
   125         return 'symbol'
 | 
| 
 | 
   126     elif check_entrez(l):
 | 
| 
 | 
   127         return 'entrez_id'
 | 
| 
 | 
   128     else:
 | 
| 
 | 
   129         sys.exit('Execution aborted:\n' +
 | 
| 
 | 
   130                  'gene ID type in ' + name + ' not supported. Supported ID'+
 | 
| 
 | 
   131                  'types are: HUGO ID, Ensemble ID, HUGO symbol, Entrez ID\n')
 | 
| 
 | 
   132 
 | 
| 
 | 
   133 def check_hgnc(l :str) -> bool:
 | 
| 
 | 
   134     """
 | 
| 
 | 
   135     Check if a gene identifier follows the HGNC format.
 | 
| 
 | 
   136 
 | 
| 
 | 
   137     Args:
 | 
| 
 | 
   138         l (str): The gene identifier to check.
 | 
| 
 | 
   139 
 | 
| 
 | 
   140     Returns:
 | 
| 
 | 
   141         bool: True if the gene identifier follows the HGNC format, False otherwise.
 | 
| 
 | 
   142     """
 | 
| 
 | 
   143     if len(l) > 5:
 | 
| 
 | 
   144         if (l.upper()).startswith('HGNC:'):
 | 
| 
 | 
   145             return l[5:].isdigit()
 | 
| 
 | 
   146         else:
 | 
| 
 | 
   147             return False
 | 
| 
 | 
   148     else:
 | 
| 
 | 
   149         return False
 | 
| 
 | 
   150 
 | 
| 
 | 
   151 def check_ensembl(l :str) -> bool:
 | 
| 
 | 
   152     """
 | 
| 
 | 
   153     Check if a gene identifier follows the Ensembl format.
 | 
| 
 | 
   154 
 | 
| 
 | 
   155     Args:
 | 
| 
 | 
   156         l (str): The gene identifier to check.
 | 
| 
 | 
   157 
 | 
| 
 | 
   158     Returns:
 | 
| 
 | 
   159         bool: True if the gene identifier follows the Ensembl format, False otherwise.
 | 
| 
 | 
   160     """
 | 
| 
 | 
   161     return l.upper().startswith('ENS')
 | 
| 
 | 
   162  
 | 
| 
 | 
   163 
 | 
| 
 | 
   164 def check_symbol(l :str) -> bool:
 | 
| 
 | 
   165     """
 | 
| 
 | 
   166     Check if a gene identifier follows the symbol format.
 | 
| 
 | 
   167 
 | 
| 
 | 
   168     Args:
 | 
| 
 | 
   169         l (str): The gene identifier to check.
 | 
| 
 | 
   170 
 | 
| 
 | 
   171     Returns:
 | 
| 
 | 
   172         bool: True if the gene identifier follows the symbol format, False otherwise.
 | 
| 
 | 
   173     """
 | 
| 
 | 
   174     if len(l) > 0:
 | 
| 
 | 
   175         if l[0].isalpha() and l[1:].isalnum():
 | 
| 
 | 
   176             return True
 | 
| 
 | 
   177         else:
 | 
| 
 | 
   178             return False
 | 
| 
 | 
   179     else:
 | 
| 
 | 
   180         return False
 | 
| 
 | 
   181 
 | 
| 
 | 
   182 def check_entrez(l :str) -> bool:
 | 
| 
 | 
   183     """
 | 
| 
 | 
   184     Check if a gene identifier follows the Entrez ID format.
 | 
| 
 | 
   185 
 | 
| 
 | 
   186     Args:
 | 
| 
 | 
   187         l (str): The gene identifier to check.
 | 
| 
 | 
   188 
 | 
| 
 | 
   189     Returns:
 | 
| 
 | 
   190         bool: True if the gene identifier follows the Entrez ID format, False otherwise.
 | 
| 
 | 
   191     """ 
 | 
| 
 | 
   192     if len(l) > 0:
 | 
| 
 | 
   193         return l.isdigit()
 | 
| 
 | 
   194     else: 
 | 
| 
 | 
   195         return False
 | 
| 
 | 
   196 
 | 
| 
 | 
   197 ############################ gene #############################################
 | 
| 
 | 
   198 def data_gene(gene: pd.DataFrame, type_gene: str, name: str, gene_custom: Optional[Dict[str, str]]) -> Dict[str, str]:
 | 
| 
 | 
   199     """
 | 
| 
 | 
   200     Process gene data to ensure correct formatting and handle duplicates.
 | 
| 
 | 
   201 
 | 
| 
 | 
   202     Args:
 | 
| 
 | 
   203         gene (DataFrame): DataFrame containing gene data.
 | 
| 
 | 
   204         type_gene (str): Type of gene data (e.g., 'hugo_id', 'ensembl_gene_id', 'symbol', 'entrez_id').
 | 
| 
 | 
   205         name (str): Name of the dataset.
 | 
| 
 | 
   206         gene_custom (dict or None): Custom gene data dictionary if provided.
 | 
| 
 | 
   207 
 | 
| 
 | 
   208     Returns:
 | 
| 
 | 
   209         dict: A dictionary containing gene data with gene IDs as keys and corresponding values.
 | 
| 
 | 
   210     """
 | 
| 
 | 
   211  
 | 
| 
 | 
   212     for i in range(len(gene)):
 | 
| 
 | 
   213         tmp = gene.iloc[i, 0]
 | 
| 
 | 
   214         gene.iloc[i, 0] = tmp.strip().split('.')[0]
 | 
| 
 | 
   215 
 | 
| 
 | 
   216     gene_dup = [item for item, count in 
 | 
| 
 | 
   217                collections.Counter(gene[gene.columns[0]]).items() if count > 1]
 | 
| 
 | 
   218     pat_dup = [item for item, count in 
 | 
| 
 | 
   219                collections.Counter(list(gene.columns)).items() if count > 1]
 | 
| 
 | 
   220     
 | 
| 
 | 
   221     gene_in_rule = None
 | 
| 
 | 
   222 
 | 
| 
 | 
   223     if gene_dup:
 | 
| 
 | 
   224         if gene_custom == None:
 | 
| 
 | 
   225 
 | 
| 
 | 
   226             if str(ARGS.rules_selector) == 'HMRcore':
 | 
| 
 | 
   227                 gene_in_rule = pk.load(open(ARGS.tool_dir + '/local/pickle files/HMRcore_genes.p', 'rb'))
 | 
| 
 | 
   228             
 | 
| 
 | 
   229             elif str(ARGS.rules_selector) == 'Recon':
 | 
| 
 | 
   230                 gene_in_rule = pk.load(open(ARGS.tool_dir + '/local/pickle files/Recon_genes.p', 'rb'))
 | 
| 
 | 
   231             
 | 
| 
 | 
   232             elif str(ARGS.rules_selector) == 'ENGRO2':
 | 
| 
 | 
   233                 gene_in_rule = pk.load(open(ARGS.tool_dir + '/local/pickle files/ENGRO2_genes.p', 'rb'))
 | 
| 
 | 
   234 
 | 
| 
 | 
   235             utils.logWarning(f"{ARGS.tool_dir}'/local/pickle files/ENGRO2_genes.p'", ARGS.out_log)
 | 
| 
 | 
   236 
 | 
| 
 | 
   237             gene_in_rule = gene_in_rule.get(type_gene)
 | 
| 
 | 
   238         
 | 
| 
 | 
   239         else:
 | 
| 
 | 
   240             gene_in_rule = gene_custom
 | 
| 
 | 
   241 
 | 
| 
 | 
   242         tmp = []
 | 
| 
 | 
   243         for i in gene_dup:
 | 
| 
 | 
   244             if gene_in_rule.get(i) == 'ok':
 | 
| 
 | 
   245                 tmp.append(i)
 | 
| 
 | 
   246         if tmp:
 | 
| 
 | 
   247             sys.exit('Execution aborted because gene ID '
 | 
| 
 | 
   248                      +str(tmp)+' in '+name+' is duplicated\n')
 | 
| 
 | 
   249     
 | 
| 
 | 
   250     if pat_dup: utils.logWarning(f"Warning: duplicated label\n{pat_dup} in {name}", ARGS.out_log)
 | 
| 
 | 
   251     return (gene.set_index(gene.columns[0])).to_dict()
 | 
| 
 | 
   252 
 | 
| 
 | 
   253 ############################ resolve ##########################################
 | 
| 
 | 
   254 def replace_gene_value(l :str, d :str) -> Tuple[Union[int, float], list]:
 | 
| 
 | 
   255     """
 | 
| 
 | 
   256     Replace gene identifiers with corresponding values from a dictionary.
 | 
| 
 | 
   257 
 | 
| 
 | 
   258     Args:
 | 
| 
 | 
   259         l (str): String of gene identifier.
 | 
| 
 | 
   260         d (str): String corresponding to its value.
 | 
| 
 | 
   261 
 | 
| 
 | 
   262     Returns:
 | 
| 
 | 
   263         tuple: A tuple containing two lists: the first list contains replaced values, and the second list contains any errors encountered during replacement.
 | 
| 
 | 
   264     """
 | 
| 
 | 
   265     tmp = []
 | 
| 
 | 
   266     err = []
 | 
| 
 | 
   267     while l:
 | 
| 
 | 
   268         if isinstance(l[0], list):
 | 
| 
 | 
   269             tmp_rules, tmp_err = replace_gene_value(l[0], d)
 | 
| 
 | 
   270             tmp.append(tmp_rules)
 | 
| 
 | 
   271             err.extend(tmp_err)
 | 
| 
 | 
   272         else:
 | 
| 
 | 
   273             value = replace_gene(l[0], d)
 | 
| 
 | 
   274             tmp.append(value)
 | 
| 
 | 
   275             if value == None:
 | 
| 
 | 
   276                 err.append(l[0])
 | 
| 
 | 
   277         l = l[1:]
 | 
| 
 | 
   278     return (tmp, err)
 | 
| 
 | 
   279 
 | 
| 
 | 
   280 def replace_gene(l :str, d :str) -> Union[int, float]:
 | 
| 
 | 
   281     """
 | 
| 
 | 
   282     Replace a single gene identifier with its corresponding value from a dictionary.
 | 
| 
 | 
   283 
 | 
| 
 | 
   284     Args:
 | 
| 
 | 
   285         l (str): Gene identifier to replace.
 | 
| 
 | 
   286         d (str): String corresponding to its value.
 | 
| 
 | 
   287 
 | 
| 
 | 
   288     Returns:
 | 
| 
 | 
   289         float/int: Corresponding value from the dictionary if found, None otherwise.
 | 
| 
 | 
   290 
 | 
| 
 | 
   291     Raises:
 | 
| 
 | 
   292         sys.exit: If the value associated with the gene identifier is not valid.
 | 
| 
 | 
   293     """
 | 
| 
 | 
   294     if l =='and' or l == 'or':
 | 
| 
 | 
   295         return l
 | 
| 
 | 
   296     else:
 | 
| 
 | 
   297         value = d.get(l, None)
 | 
| 
 | 
   298         if not(value == None or isinstance(value, (int, float))):
 | 
| 
 | 
   299             sys.exit('Execution aborted: ' + value + ' value not valid\n')
 | 
| 
 | 
   300         return value
 | 
| 
 | 
   301 
 | 
| 
 | 
   302 T = TypeVar("T", bound = Optional[Union[int, float]])
 | 
| 
 | 
   303 def computes(val1 :T, op :str, val2 :T, cn :bool) -> T:
 | 
| 
 | 
   304     """
 | 
| 
 | 
   305     Compute the RAS value between two value and an operator ('and' or 'or').
 | 
| 
 | 
   306 
 | 
| 
 | 
   307     Args:
 | 
| 
 | 
   308         val1(Optional(Union[float, int])): First value.
 | 
| 
 | 
   309         op (str): Operator ('and' or 'or').
 | 
| 
 | 
   310         val2(Optional(Union[float, int])): Second value.
 | 
| 
 | 
   311         cn (bool): Control boolean value.
 | 
| 
 | 
   312 
 | 
| 
 | 
   313     Returns:
 | 
| 
 | 
   314         Optional(Union[float, int]): Result of the computation.
 | 
| 
 | 
   315     """
 | 
| 
 | 
   316     if val1 != None and val2 != None:
 | 
| 
 | 
   317         if op == 'and':
 | 
| 
 | 
   318             return min(val1, val2)
 | 
| 
 | 
   319         else:
 | 
| 
 | 
   320             return val1 + val2
 | 
| 
 | 
   321     elif op == 'and':
 | 
| 
 | 
   322         if cn is True:
 | 
| 
 | 
   323             if val1 != None:
 | 
| 
 | 
   324                 return val1
 | 
| 
 | 
   325             elif val2 != None:
 | 
| 
 | 
   326                 return val2
 | 
| 
 | 
   327             else:
 | 
| 
 | 
   328                 return None
 | 
| 
 | 
   329         else:
 | 
| 
 | 
   330             return None
 | 
| 
 | 
   331     else:
 | 
| 
 | 
   332         if val1 != None:
 | 
| 
 | 
   333             return val1
 | 
| 
 | 
   334         elif val2 != None:
 | 
| 
 | 
   335             return val2
 | 
| 
 | 
   336         else:
 | 
| 
 | 
   337             return None
 | 
| 
 | 
   338 
 | 
| 
 | 
   339 # ris should be Literal[None] but Literal is not supported in Python 3.7
 | 
| 
 | 
   340 def control(ris, l :List[Union[int, float, list]], cn :bool) -> Union[bool, int, float]: #Union[Literal[False], int, float]:
 | 
| 
 | 
   341     """
 | 
| 
 | 
   342     Control the format of the expression.
 | 
| 
 | 
   343 
 | 
| 
 | 
   344     Args:
 | 
| 
 | 
   345         ris: Intermediate result.
 | 
| 
 | 
   346         l (list): Expression to control.
 | 
| 
 | 
   347         cn (bool): Control boolean value.
 | 
| 
 | 
   348 
 | 
| 
 | 
   349     Returns:
 | 
| 
 | 
   350         Union[Literal[False], int, float]: Result of the control.
 | 
| 
 | 
   351     """
 | 
| 
 | 
   352     if len(l) == 1:
 | 
| 
 | 
   353         if isinstance(l[0], (float, int)) or l[0] == None:
 | 
| 
 | 
   354             return l[0]
 | 
| 
 | 
   355         elif isinstance(l[0], list):
 | 
| 
 | 
   356             return control(None, l[0], cn)
 | 
| 
 | 
   357         else:
 | 
| 
 | 
   358             return False
 | 
| 
 | 
   359     elif len(l) > 2:
 | 
| 
 | 
   360         return control_list(ris, l, cn)
 | 
| 
 | 
   361     else:
 | 
| 
 | 
   362         return False
 | 
| 
 | 
   363 
 | 
| 
 | 
   364 def control_list(ris, l :List[Optional[Union[float, int, list]]], cn :bool) -> Optional[bool]: #Optional[Literal[False]]:
 | 
| 
 | 
   365     """
 | 
| 
 | 
   366     Control the format of a list of expressions.
 | 
| 
 | 
   367 
 | 
| 
 | 
   368     Args:
 | 
| 
 | 
   369         ris: Intermediate result.
 | 
| 
 | 
   370         l (list): List of expressions to control.
 | 
| 
 | 
   371         cn (bool): Control boolean value.
 | 
| 
 | 
   372 
 | 
| 
 | 
   373     Returns:
 | 
| 
 | 
   374         Optional[Literal[False]]: Result of the control.
 | 
| 
 | 
   375     """
 | 
| 
 | 
   376     while l:
 | 
| 
 | 
   377         if len(l) == 1:
 | 
| 
 | 
   378             return False
 | 
| 
 | 
   379         elif (isinstance(l[0], (float, int)) or
 | 
| 
 | 
   380               l[0] == None) and l[1] in ['and', 'or']:
 | 
| 
 | 
   381             if isinstance(l[2], (float, int)) or l[2] == None:
 | 
| 
 | 
   382                 ris = computes(l[0], l[1], l[2], cn)            
 | 
| 
 | 
   383             elif isinstance(l[2], list):
 | 
| 
 | 
   384                 tmp = control(None, l[2], cn)
 | 
| 
 | 
   385                 if tmp is False:
 | 
| 
 | 
   386                     return False
 | 
| 
 | 
   387                 else:
 | 
| 
 | 
   388                     ris = computes(l[0], l[1], tmp, cn)
 | 
| 
 | 
   389             else:
 | 
| 
 | 
   390                 return False
 | 
| 
 | 
   391             l = l[3:]
 | 
| 
 | 
   392         elif l[0] in ['and', 'or']:
 | 
| 
 | 
   393             if isinstance(l[1], (float, int)) or l[1] == None:
 | 
| 
 | 
   394                 ris = computes(ris, l[0], l[1], cn)
 | 
| 
 | 
   395             elif isinstance(l[1], list):
 | 
| 
 | 
   396                 tmp = control(None,l[1], cn)
 | 
| 
 | 
   397                 if tmp is False:
 | 
| 
 | 
   398                     return False
 | 
| 
 | 
   399                 else:
 | 
| 
 | 
   400                     ris = computes(ris, l[0], tmp, cn)
 | 
| 
 | 
   401             else:
 | 
| 
 | 
   402                 return False
 | 
| 
 | 
   403             l = l[2:]
 | 
| 
 | 
   404         elif isinstance(l[0], list) and l[1] in ['and', 'or']:
 | 
| 
 | 
   405             if isinstance(l[2], (float, int)) or l[2] == None:
 | 
| 
 | 
   406                 tmp = control(None, l[0], cn)
 | 
| 
 | 
   407                 if tmp is False:
 | 
| 
 | 
   408                     return False
 | 
| 
 | 
   409                 else:
 | 
| 
 | 
   410                     ris = computes(tmp, l[1], l[2], cn)
 | 
| 
 | 
   411             elif isinstance(l[2], list):
 | 
| 
 | 
   412                 tmp = control(None, l[0], cn)
 | 
| 
 | 
   413                 tmp2 = control(None, l[2], cn)
 | 
| 
 | 
   414                 if tmp is False or tmp2 is False:
 | 
| 
 | 
   415                     return False
 | 
| 
 | 
   416                 else:
 | 
| 
 | 
   417                     ris = computes(tmp, l[1], tmp2, cn)
 | 
| 
 | 
   418             else:
 | 
| 
 | 
   419                 return False
 | 
| 
 | 
   420             l = l[3:]
 | 
| 
 | 
   421         else:
 | 
| 
 | 
   422             return False
 | 
| 
 | 
   423     return ris
 | 
| 
 | 
   424 
 | 
| 
 | 
   425 ResolvedRules = Dict[str, List[Optional[Union[float, int]]]]
 | 
| 
 | 
   426 def resolve(genes: Dict[str, str], rules: List[str], ids: List[str], resolve_none: bool, name: str) -> Tuple[Optional[ResolvedRules], Optional[list]]:
 | 
| 
 | 
   427     """
 | 
| 
 | 
   428     Resolve rules using gene data to compute scores for each rule.
 | 
| 
 | 
   429 
 | 
| 
 | 
   430     Args:
 | 
| 
 | 
   431         genes (dict): Dictionary containing gene data with gene IDs as keys and corresponding values.
 | 
| 
 | 
   432         rules (list): List of rules to resolve.
 | 
| 
 | 
   433         ids (list): List of IDs corresponding to the rules.
 | 
| 
 | 
   434         resolve_none (bool): Flag indicating whether to resolve None values in the rules.
 | 
| 
 | 
   435         name (str): Name of the dataset.
 | 
| 
 | 
   436 
 | 
| 
 | 
   437     Returns:
 | 
| 
 | 
   438         tuple: A tuple containing resolved rules as a dictionary and a list of gene IDs not found in the data.
 | 
| 
 | 
   439     """
 | 
| 
 | 
   440     resolve_rules = {}
 | 
| 
 | 
   441     not_found = []
 | 
| 
 | 
   442     flag = False
 | 
| 
 | 
   443     for key, value in genes.items():
 | 
| 
 | 
   444         tmp_resolve = []
 | 
| 
 | 
   445         for i in range(len(rules)):
 | 
| 
 | 
   446             tmp = rules[i]
 | 
| 
 | 
   447             if tmp:
 | 
| 
 | 
   448                 tmp, err = replace_gene_value(tmp, value)
 | 
| 
 | 
   449                 if err:
 | 
| 
 | 
   450                     not_found.extend(err)
 | 
| 
 | 
   451                 ris = control(None, tmp, resolve_none)
 | 
| 
 | 
   452                 if ris is False or ris == None:
 | 
| 
 | 
   453                     tmp_resolve.append(None)
 | 
| 
 | 
   454                 else:
 | 
| 
 | 
   455                     tmp_resolve.append(ris)
 | 
| 
 | 
   456                     flag = True
 | 
| 
 | 
   457             else:
 | 
| 
 | 
   458                 tmp_resolve.append(None)    
 | 
| 
 | 
   459         resolve_rules[key] = tmp_resolve
 | 
| 
 | 
   460     
 | 
| 
 | 
   461     if flag is False:
 | 
| 
 | 
   462         utils.logWarning(
 | 
| 
 | 
   463             f"Warning: no computable score (due to missing gene values) for class {name}, the class has been disregarded",
 | 
| 
 | 
   464             ARGS.out_log)
 | 
| 
 | 
   465         
 | 
| 
 | 
   466         return (None, None)
 | 
| 
 | 
   467     
 | 
| 
 | 
   468     return (resolve_rules, list(set(not_found)))
 | 
| 
 | 
   469 ############################ create_ras #######################################
 | 
| 
 | 
   470 def create_ras(resolve_rules: Optional[ResolvedRules], dataset_name: str, rules: List[str], ids: List[str], file: str) -> None:
 | 
| 
 | 
   471     """
 | 
| 
 | 
   472     Create a RAS (Reaction Activity Score) file from resolved rules.
 | 
| 
 | 
   473 
 | 
| 
 | 
   474     Args:
 | 
| 
 | 
   475         resolve_rules (dict): Dictionary containing resolved rules.
 | 
| 
 | 
   476         dataset_name (str): Name of the dataset.
 | 
| 
 | 
   477         rules (list): List of rules.
 | 
| 
 | 
   478         file (str): Path to the output RAS file.
 | 
| 
 | 
   479 
 | 
| 
 | 
   480     Returns:
 | 
| 
 | 
   481         None
 | 
| 
 | 
   482     """
 | 
| 
 | 
   483     if resolve_rules is None:
 | 
| 
 | 
   484         utils.logWarning(f"Couldn't generate RAS for current dataset: {dataset_name}", ARGS.out_log)
 | 
| 
 | 
   485 
 | 
| 
 | 
   486     for geni in resolve_rules.values():
 | 
| 
 | 
   487         for i, valori in enumerate(geni):
 | 
| 
 | 
   488             if valori == None:
 | 
| 
 | 
   489                 geni[i] = 'None'
 | 
| 
 | 
   490                 
 | 
| 
 | 
   491     output_ras = pd.DataFrame.from_dict(resolve_rules)
 | 
| 
 | 
   492     
 | 
| 
 | 
   493     output_ras.insert(0, 'Reactions', ids)
 | 
| 
 | 
   494     output_to_csv = pd.DataFrame.to_csv(output_ras, sep = '\t', index = False)
 | 
| 
 | 
   495     
 | 
| 
 | 
   496     text_file = open(file, "w")
 | 
| 
 | 
   497     
 | 
| 
 | 
   498     text_file.write(output_to_csv)
 | 
| 
 | 
   499     text_file.close()
 | 
| 
 | 
   500 
 | 
| 
 | 
   501 ################################- NEW RAS COMPUTATION -################################
 | 
| 
 | 
   502 Expr = Optional[Union[int, float]]
 | 
| 
 | 
   503 Ras  = Expr
 | 
| 
 | 
   504 def ras_for_cell_lines(dataset: pd.DataFrame, rules: Dict[str, ruleUtils.OpList]) -> Dict[str, Dict[str, Ras]]:
 | 
| 
 | 
   505     """
 | 
| 
 | 
   506     Generates the RAS scores for each cell line found in the dataset.
 | 
| 
 | 
   507 
 | 
| 
 | 
   508     Args:
 | 
| 
 | 
   509         dataset (pd.DataFrame): Dataset containing gene values.
 | 
| 
 | 
   510         rules (dict): The dict containing reaction ids as keys and rules as values.
 | 
| 
 | 
   511 
 | 
| 
 | 
   512     Side effects:
 | 
| 
 | 
   513         dataset : mut
 | 
| 
 | 
   514     
 | 
| 
 | 
   515     Returns:
 | 
| 
 | 
   516         dict: A dictionary where each key corresponds to a cell line name and each value is a dictionary
 | 
| 
 | 
   517         where each key corresponds to a reaction ID and each value is its computed RAS score.
 | 
| 
 | 
   518     """
 | 
| 
 | 
   519     ras_values_by_cell_line = {}
 | 
| 
 | 
   520     dataset.set_index(dataset.columns[0], inplace=True)
 | 
| 
 | 
   521     
 | 
| 
 | 
   522     for cell_line_name in dataset.columns: #[1:]:
 | 
| 
 | 
   523         cell_line = dataset[cell_line_name].to_dict()
 | 
| 
 | 
   524         ras_values_by_cell_line[cell_line_name]= get_ras_values(rules, cell_line)
 | 
| 
 | 
   525     return ras_values_by_cell_line
 | 
| 
 | 
   526 
 | 
| 
 | 
   527 def get_ras_values(value_rules: Dict[str, ruleUtils.OpList], dataset: Dict[str, Expr]) -> Dict[str, Ras]:
 | 
| 
 | 
   528     """
 | 
| 
 | 
   529     Computes the RAS (Reaction Activity Score) values for each rule in the given dict.
 | 
| 
 | 
   530 
 | 
| 
 | 
   531     Args:
 | 
| 
 | 
   532         value_rules (dict): A dictionary where keys are reaction ids and values are OpLists.
 | 
| 
 | 
   533         dataset : gene expression data of one cell line.
 | 
| 
 | 
   534 
 | 
| 
 | 
   535     Returns:
 | 
| 
 | 
   536         dict: A dictionary where keys are reaction ids and values are the computed RAS values for each rule.
 | 
| 
 | 
   537     """
 | 
| 
 | 
   538     return {key: ras_op_list(op_list, dataset) for key, op_list in value_rules.items()}
 | 
| 
 | 
   539 
 | 
| 
 | 
   540 def get_gene_expr(dataset :Dict[str, Expr], name :str) -> Expr:
 | 
| 
 | 
   541     """
 | 
| 
 | 
   542     Extracts the gene expression of the given gene from a cell line dataset.
 | 
| 
 | 
   543 
 | 
| 
 | 
   544     Args:
 | 
| 
 | 
   545         dataset : gene expression data of one cell line.
 | 
| 
 | 
   546         name : gene name.
 | 
| 
 | 
   547     
 | 
| 
 | 
   548     Returns:
 | 
| 
 | 
   549         Expr : the gene's expression value.
 | 
| 
 | 
   550     """
 | 
| 
 | 
   551     expr = dataset.get(name, None)
 | 
| 
 | 
   552     if expr is None: ERRORS.append(name)
 | 
| 
 | 
   553   
 | 
| 
 | 
   554     return expr
 | 
| 
 | 
   555 
 | 
| 
 | 
   556 def ras_op_list(op_list: ruleUtils.OpList, dataset: Dict[str, Expr]) -> Ras:
 | 
| 
 | 
   557     """
 | 
| 
 | 
   558     Computes recursively the RAS (Reaction Activity Score) value for the given OpList, considering the specified flag to control None behavior.
 | 
| 
 | 
   559 
 | 
| 
 | 
   560     Args:
 | 
| 
 | 
   561         op_list (OpList): The OpList representing a rule with gene values.
 | 
| 
 | 
   562         dataset : gene expression data of one cell line.
 | 
| 
 | 
   563 
 | 
| 
 | 
   564     Returns:
 | 
| 
 | 
   565         Ras: The computed RAS value for the given OpList.
 | 
| 
 | 
   566     """
 | 
| 
 | 
   567     op = op_list.op
 | 
| 
 | 
   568     ras_value :Ras = None
 | 
| 
 | 
   569     if not op: return get_gene_expr(dataset, op_list[0])
 | 
| 
 | 
   570     if op is ruleUtils.RuleOp.AND and not ARGS.none and None in op_list: return None
 | 
| 
 | 
   571 
 | 
| 
 | 
   572     for i in range(len(op_list)):
 | 
| 
 | 
   573         item = op_list[i]
 | 
| 
 | 
   574         if isinstance(item, ruleUtils.OpList):
 | 
| 
 | 
   575             item = ras_op_list(item, dataset)
 | 
| 
 | 
   576 
 | 
| 
 | 
   577         else:
 | 
| 
 | 
   578           item = get_gene_expr(dataset, item)
 | 
| 
 | 
   579 
 | 
| 
 | 
   580         if item is None:
 | 
| 
 | 
   581           if op is ruleUtils.RuleOp.AND and not ARGS.none: return None
 | 
| 
 | 
   582           continue
 | 
| 
 | 
   583 
 | 
| 
 | 
   584         if ras_value is None:
 | 
| 
 | 
   585           ras_value = item
 | 
| 
 | 
   586         else:
 | 
| 
 | 
   587           ras_value = ras_value + item if op is ruleUtils.RuleOp.OR else min(ras_value, item)
 | 
| 
 | 
   588 
 | 
| 
 | 
   589     return ras_value
 | 
| 
 | 
   590 
 | 
| 
 | 
   591 def save_as_tsv(rasScores: Dict[str, Dict[str, Ras]], reactions :List[str]) -> None:
 | 
| 
 | 
   592     """
 | 
| 
 | 
   593     Save computed ras scores to the given path, as a tsv file.
 | 
| 
 | 
   594 
 | 
| 
 | 
   595     Args:
 | 
| 
 | 
   596         rasScores : the computed ras scores.
 | 
| 
 | 
   597         path : the output tsv file's path.
 | 
| 
 | 
   598     
 | 
| 
 | 
   599     Returns:
 | 
| 
 | 
   600         None
 | 
| 
 | 
   601     """
 | 
| 
 | 
   602     for scores in rasScores.values(): # this is actually a lot faster than using the ootb dataframe metod, sadly
 | 
| 
 | 
   603         for reactId, score in scores.items():
 | 
| 
 | 
   604             if score is None: scores[reactId] = "None"
 | 
| 
 | 
   605 
 | 
| 
 | 
   606     output_ras = pd.DataFrame.from_dict(rasScores)
 | 
| 
 | 
   607     output_ras.insert(0, 'Reactions', reactions)
 | 
| 
 | 
   608     output_ras.to_csv(ARGS.ras_output, sep = '\t', index = False)
 | 
| 
 | 
   609 
 | 
| 
 | 
   610 ############################ MAIN #############################################
 | 
| 
 | 
   611 #TODO: not used but keep, it will be when the new translator dicts will be used.
 | 
| 
 | 
   612 def translateGene(geneName :str, encoding :str, geneTranslator :Dict[str, Dict[str, str]]) -> str:
 | 
| 
 | 
   613     """
 | 
| 
 | 
   614     Translate gene from any supported encoding to HugoID.
 | 
| 
 | 
   615 
 | 
| 
 | 
   616     Args:
 | 
| 
 | 
   617         geneName (str): the name of the gene in its current encoding.
 | 
| 
 | 
   618         encoding (str): the encoding.
 | 
| 
 | 
   619         geneTranslator (Dict[str, Dict[str, str]]): the dict containing all supported gene names
 | 
| 
 | 
   620         and encodings in the current model, mapping each to the corresponding HugoID encoding.
 | 
| 
 | 
   621 
 | 
| 
 | 
   622     Raises:
 | 
| 
 | 
   623         ValueError: When the gene isn't supported in the model.
 | 
| 
 | 
   624 
 | 
| 
 | 
   625     Returns:
 | 
| 
 | 
   626         str: the gene in HugoID encoding.
 | 
| 
 | 
   627     """
 | 
| 
 | 
   628     supportedGenesInEncoding = geneTranslator[encoding]
 | 
| 
 | 
   629     if geneName in supportedGenesInEncoding: return supportedGenesInEncoding[geneName]
 | 
| 
 | 
   630     raise ValueError(f"Gene \"{geneName}\" non trovato, verifica di star utilizzando il modello corretto!")
 | 
| 
 | 
   631 
 | 
| 
 | 
   632 def load_custom_rules() -> Dict[str, ruleUtils.OpList]:
 | 
| 
 | 
   633     """
 | 
| 
 | 
   634     Opens custom rules file and extracts the rules. If the file is in .csv format an additional parsing step will be
 | 
| 
 | 
   635     performed, significantly impacting the runtime.
 | 
| 
 | 
   636 
 | 
| 
 | 
   637     Returns:
 | 
| 
 | 
   638         Dict[str, ruleUtils.OpList] : dict mapping reaction IDs to rules.
 | 
| 
 | 
   639     """
 | 
| 
 | 
   640     datFilePath = utils.FilePath.fromStrPath(ARGS.model_upload) # actual file, stored in galaxy as a .dat
 | 
| 
 | 
   641 
 | 
| 
 | 
   642     #try: filenamePath = utils.FilePath.fromStrPath(ARGS.model_upload_name) # file's name in input, to determine its original ext
 | 
| 
 | 
   643     #except utils.PathErr as err:      
 | 
| 
 | 
   644     #    utils.logWarning(f"Cannot determine file extension from filename '{ARGS.model_upload_name}'. Assuming tabular format.", ARGS.out_log)
 | 
| 
 | 
   645     #    filenamePath = None
 | 
| 
 | 
   646      
 | 
| 
 | 
   647     #if filenamePath.ext is utils.FileFormat.PICKLE: return utils.readPickle(datFilePath)
 | 
| 
 | 
   648 
 | 
| 
 | 
   649     dict_rule = {}
 | 
| 
 | 
   650 
 | 
| 
 | 
   651     try:
 | 
| 
 | 
   652         # Proviamo prima con delimitatore tab
 | 
| 
 | 
   653         for line in utils.readCsv(datFilePath, delimiter = "\t"):
 | 
| 
 | 
   654             if len(line) < 3:  # Controlliamo che ci siano almeno 3 colonne
 | 
| 
 | 
   655                 utils.logWarning(f"Skipping malformed line: {line}", ARGS.out_log)
 | 
| 
 | 
   656                 continue
 | 
| 
 | 
   657             
 | 
| 
 | 
   658             if line[2] == "":
 | 
| 
 | 
   659                 dict_rule[line[0]] = ruleUtils.OpList([""])
 | 
| 
 | 
   660             else:
 | 
| 
 | 
   661                 dict_rule[line[0]] = ruleUtils.parseRuleToNestedList(line[2])
 | 
| 
 | 
   662                 
 | 
| 
 | 
   663     except Exception as e:
 | 
| 
 | 
   664         # Se fallisce con tab, proviamo con virgola
 | 
| 
 | 
   665         try:
 | 
| 
 | 
   666             dict_rule = {}
 | 
| 
 | 
   667             for line in utils.readCsv(datFilePath, delimiter = ","):
 | 
| 
 | 
   668                 if len(line) < 3:
 | 
| 
 | 
   669                     utils.logWarning(f"Skipping malformed line: {line}", ARGS.out_log)
 | 
| 
 | 
   670                     continue
 | 
| 
 | 
   671                 
 | 
| 
 | 
   672                 if line[2] == "":
 | 
| 
 | 
   673                     dict_rule[line[0]] = ruleUtils.OpList([""])
 | 
| 
 | 
   674                 else:
 | 
| 
 | 
   675                     dict_rule[line[0]] = ruleUtils.parseRuleToNestedList(line[2])
 | 
| 
 | 
   676         except Exception as e2:
 | 
| 
 | 
   677             raise ValueError(f"Unable to parse rules file. Tried both tab and comma delimiters. Original errors: Tab: {e}, Comma: {e2}")
 | 
| 
 | 
   678 
 | 
| 
 | 
   679     if not dict_rule:
 | 
| 
 | 
   680             raise ValueError("No valid rules found in the uploaded file. Please check the file format.")
 | 
| 
 | 
   681     # csv rules need to be parsed, those in a pickle format are taken to be pre-parsed.
 | 
| 
 | 
   682     return dict_rule
 | 
| 
 | 
   683 
 | 
| 
 | 
   684 
 | 
| 
 | 
   685 def main(args:List[str] = None) -> None:
 | 
| 
 | 
   686     """
 | 
| 
 | 
   687     Initializes everything and sets the program in motion based on the fronted input arguments.
 | 
| 
 | 
   688     
 | 
| 
 | 
   689     Returns:
 | 
| 
 | 
   690         None
 | 
| 
 | 
   691     """
 | 
| 
 | 
   692     # get args from frontend (related xml)
 | 
| 
 | 
   693     global ARGS
 | 
| 
 | 
   694     ARGS = process_args(args)
 | 
| 
 | 
   695 
 | 
| 
 | 
   696     # read dataset
 | 
| 
 | 
   697     dataset = read_dataset(ARGS.input, "dataset")
 | 
| 
 | 
   698     dataset.iloc[:, 0] = (dataset.iloc[:, 0]).astype(str)
 | 
| 
 | 
   699 
 | 
| 
 | 
   700     # remove versioning from gene names
 | 
| 
 | 
   701     dataset.iloc[:, 0] = dataset.iloc[:, 0].str.split('.').str[0]
 | 
| 
 | 
   702 
 | 
| 
 | 
   703     rules = load_custom_rules()
 | 
| 
 | 
   704     reactions = list(rules.keys())
 | 
| 
 | 
   705 
 | 
| 
 | 
   706     save_as_tsv(ras_for_cell_lines(dataset, rules), reactions)
 | 
| 
 | 
   707     if ERRORS: utils.logWarning(
 | 
| 
 | 
   708         f"The following genes are mentioned in the rules but don't appear in the dataset: {ERRORS}",
 | 
| 
 | 
   709         ARGS.out_log)  
 | 
| 
 | 
   710 
 | 
| 
 | 
   711 
 | 
| 
 | 
   712     ############
 | 
| 
 | 
   713 
 | 
| 
 | 
   714     # handle custom models
 | 
| 
 | 
   715     #model :utils.Model = ARGS.rules_selector
 | 
| 
 | 
   716 
 | 
| 
 | 
   717     #if model is utils.Model.Custom:
 | 
| 
 | 
   718     #    rules = load_custom_rules()
 | 
| 
 | 
   719     #    reactions = list(rules.keys())
 | 
| 
 | 
   720 
 | 
| 
 | 
   721     #    save_as_tsv(ras_for_cell_lines(dataset, rules), reactions)
 | 
| 
 | 
   722     #    if ERRORS: utils.logWarning(
 | 
| 
 | 
   723     #        f"The following genes are mentioned in the rules but don't appear in the dataset: {ERRORS}",
 | 
| 
 | 
   724     #        ARGS.out_log)
 | 
| 
 | 
   725         
 | 
| 
 | 
   726     #    return
 | 
| 
 | 
   727     
 | 
| 
 | 
   728     # This is the standard flow of the ras_generator program, for non-custom models.
 | 
| 
 | 
   729     #name = "RAS Dataset"
 | 
| 
 | 
   730     #type_gene = gene_type(dataset.iloc[0, 0], name)
 | 
| 
 | 
   731 
 | 
| 
 | 
   732     #rules      = model.getRules(ARGS.tool_dir)
 | 
| 
 | 
   733     #genes      = data_gene(dataset, type_gene, name, None)
 | 
| 
 | 
   734     #ids, rules = load_id_rules(rules.get(type_gene))
 | 
| 
 | 
   735 
 | 
| 
 | 
   736     #resolve_rules, err = resolve(genes, rules, ids, ARGS.none, name)
 | 
| 
 | 
   737     #create_ras(resolve_rules, name, rules, ids, ARGS.ras_output)
 | 
| 
 | 
   738     
 | 
| 
 | 
   739     #if err: utils.logWarning(
 | 
| 
 | 
   740     #    f"Warning: gene(s) {err} not found in class \"{name}\", " +
 | 
| 
 | 
   741     #    "the expression level for this gene will be considered NaN",
 | 
| 
 | 
   742     #    ARGS.out_log)
 | 
| 
 | 
   743     
 | 
| 
 | 
   744     print("Execution succeded")
 | 
| 
 | 
   745 
 | 
| 
 | 
   746 ###############################################################################
 | 
| 
 | 
   747 if __name__ == "__main__":
 | 
| 
 | 
   748     main()
 |