| 
406
 | 
     1 import argparse
 | 
| 
 | 
     2 import utils.general_utils as utils
 | 
| 
 | 
     3 from typing import Optional, List
 | 
| 
 | 
     4 import os
 | 
| 
 | 
     5 import numpy as np
 | 
| 
 | 
     6 import pandas as pd
 | 
| 
 | 
     7 import cobra
 | 
| 
 | 
     8 import sys
 | 
| 
 | 
     9 import csv
 | 
| 
 | 
    10 from joblib import Parallel, delayed, cpu_count
 | 
| 
 | 
    11 
 | 
| 
 | 
    12 ################################# process args ###############################
 | 
| 
 | 
    13 def process_args(args :List[str] = None) -> argparse.Namespace:
 | 
| 
 | 
    14     """
 | 
| 
 | 
    15     Processes command-line arguments.
 | 
| 
 | 
    16 
 | 
| 
 | 
    17     Args:
 | 
| 
 | 
    18         args (list): List of command-line arguments.
 | 
| 
 | 
    19 
 | 
| 
 | 
    20     Returns:
 | 
| 
 | 
    21         Namespace: An object containing parsed arguments.
 | 
| 
 | 
    22     """
 | 
| 
 | 
    23     parser = argparse.ArgumentParser(usage = '%(prog)s [options]',
 | 
| 
 | 
    24                                      description = 'process some value\'s')
 | 
| 
 | 
    25     
 | 
| 
 | 
    26     parser.add_argument(
 | 
| 
 | 
    27         '-ms', '--model_selector', 
 | 
| 
 | 
    28         type = utils.Model, default = utils.Model.ENGRO2, choices = [utils.Model.ENGRO2, utils.Model.Custom],
 | 
| 
 | 
    29         help = 'chose which type of model you want use')
 | 
| 
 | 
    30     
 | 
| 
 | 
    31     parser.add_argument("-mo", "--model", type = str,
 | 
| 
 | 
    32         help = "path to input file with custom rules, if provided")
 | 
| 
 | 
    33     
 | 
| 
 | 
    34     parser.add_argument("-mn", "--model_name", type = str, help = "custom mode name")
 | 
| 
 | 
    35 
 | 
| 
 | 
    36     parser.add_argument(
 | 
| 
 | 
    37         '-mes', '--medium_selector', 
 | 
| 
 | 
    38         default = "allOpen",
 | 
| 
 | 
    39         help = 'chose which type of medium you want use')
 | 
| 
 | 
    40     
 | 
| 
 | 
    41     parser.add_argument("-meo", "--medium", type = str,
 | 
| 
 | 
    42         help = "path to input file with custom medium, if provided")
 | 
| 
 | 
    43 
 | 
| 
 | 
    44     parser.add_argument('-ol', '--out_log', 
 | 
| 
 | 
    45                         help = "Output log")
 | 
| 
 | 
    46     
 | 
| 
 | 
    47     parser.add_argument('-td', '--tool_dir',
 | 
| 
 | 
    48                         type = str,
 | 
| 
 | 
    49                         required = True,
 | 
| 
 | 
    50                         help = 'your tool directory')
 | 
| 
 | 
    51     
 | 
| 
 | 
    52     parser.add_argument('-ir', '--input_ras',
 | 
| 
 | 
    53                         type=str,
 | 
| 
 | 
    54                         required = False,
 | 
| 
 | 
    55                         help = 'input ras')
 | 
| 
 | 
    56     
 | 
| 
 | 
    57     parser.add_argument('-rn', '--name',
 | 
| 
 | 
    58                 type=str,
 | 
| 
 | 
    59                 help = 'ras class names')
 | 
| 
 | 
    60     
 | 
| 
 | 
    61     parser.add_argument('-rs', '--ras_selector',
 | 
| 
 | 
    62                         required = True,
 | 
| 
 | 
    63                         type=utils.Bool("using_RAS"),
 | 
| 
 | 
    64                         help = 'ras selector')
 | 
| 
 | 
    65 
 | 
| 
 | 
    66     parser.add_argument('-cc', '--cell_class',
 | 
| 
 | 
    67                     type = str,
 | 
| 
 | 
    68                     help = 'output of cell class')
 | 
| 
 | 
    69     parser.add_argument(
 | 
| 
 | 
    70         '-idop', '--output_path', 
 | 
| 
 | 
    71         type = str,
 | 
| 
 | 
    72         default='ras_to_bounds/',
 | 
| 
 | 
    73         help = 'output path for maps')
 | 
| 
 | 
    74     
 | 
| 
 | 
    75     
 | 
| 
 | 
    76     ARGS = parser.parse_args(args)
 | 
| 
 | 
    77     return ARGS
 | 
| 
 | 
    78 
 | 
| 
 | 
    79 ########################### warning ###########################################
 | 
| 
 | 
    80 def warning(s :str) -> None:
 | 
| 
 | 
    81     """
 | 
| 
 | 
    82     Log a warning message to an output log file and print it to the console.
 | 
| 
 | 
    83 
 | 
| 
 | 
    84     Args:
 | 
| 
 | 
    85         s (str): The warning message to be logged and printed.
 | 
| 
 | 
    86     
 | 
| 
 | 
    87     Returns:
 | 
| 
 | 
    88       None
 | 
| 
 | 
    89     """
 | 
| 
 | 
    90     with open(ARGS.out_log, 'a') as log:
 | 
| 
 | 
    91         log.write(s + "\n\n")
 | 
| 
 | 
    92     print(s)
 | 
| 
 | 
    93 
 | 
| 
 | 
    94 ############################ dataset input ####################################
 | 
| 
 | 
    95 def read_dataset(data :str, name :str) -> pd.DataFrame:
 | 
| 
 | 
    96     """
 | 
| 
 | 
    97     Read a dataset from a CSV file and return it as a pandas DataFrame.
 | 
| 
 | 
    98 
 | 
| 
 | 
    99     Args:
 | 
| 
 | 
   100         data (str): Path to the CSV file containing the dataset.
 | 
| 
 | 
   101         name (str): Name of the dataset, used in error messages.
 | 
| 
 | 
   102 
 | 
| 
 | 
   103     Returns:
 | 
| 
 | 
   104         pandas.DataFrame: DataFrame containing the dataset.
 | 
| 
 | 
   105 
 | 
| 
 | 
   106     Raises:
 | 
| 
 | 
   107         pd.errors.EmptyDataError: If the CSV file is empty.
 | 
| 
 | 
   108         sys.exit: If the CSV file has the wrong format, the execution is aborted.
 | 
| 
 | 
   109     """
 | 
| 
 | 
   110     try:
 | 
| 
 | 
   111         dataset = pd.read_csv(data, sep = '\t', header = 0, engine='python')
 | 
| 
 | 
   112     except pd.errors.EmptyDataError:
 | 
| 
 | 
   113         sys.exit('Execution aborted: wrong format of ' + name + '\n')
 | 
| 
 | 
   114     if len(dataset.columns) < 2:
 | 
| 
 | 
   115         sys.exit('Execution aborted: wrong format of ' + name + '\n')
 | 
| 
 | 
   116     return dataset
 | 
| 
 | 
   117 
 | 
| 
 | 
   118 
 | 
| 
 | 
   119 def apply_ras_bounds(bounds, ras_row):
 | 
| 
 | 
   120     """
 | 
| 
 | 
   121     Adjust the bounds of reactions in the model based on RAS values.
 | 
| 
 | 
   122 
 | 
| 
 | 
   123     Args:
 | 
| 
 | 
   124         bounds (pd.DataFrame): Model bounds.
 | 
| 
 | 
   125         ras_row (pd.Series): A row from a RAS DataFrame containing scaling factors for reaction bounds.
 | 
| 
 | 
   126     Returns:
 | 
| 
 | 
   127         new_bounds (pd.DataFrame): integrated bounds.
 | 
| 
 | 
   128     """
 | 
| 
 | 
   129     new_bounds = bounds.copy()
 | 
| 
 | 
   130     for reaction in ras_row.index:
 | 
| 
 | 
   131         scaling_factor = ras_row[reaction]
 | 
| 
 | 
   132         if not np.isnan(scaling_factor):
 | 
| 
 | 
   133             lower_bound=bounds.loc[reaction, "lower_bound"]
 | 
| 
 | 
   134             upper_bound=bounds.loc[reaction, "upper_bound"]
 | 
| 
 | 
   135             valMax=float((upper_bound)*scaling_factor)
 | 
| 
 | 
   136             valMin=float((lower_bound)*scaling_factor)
 | 
| 
 | 
   137             if upper_bound!=0 and lower_bound==0:
 | 
| 
 | 
   138                 new_bounds.loc[reaction, "upper_bound"] = valMax
 | 
| 
 | 
   139             if upper_bound==0 and lower_bound!=0:
 | 
| 
 | 
   140                 new_bounds.loc[reaction, "lower_bound"] = valMin
 | 
| 
 | 
   141             if upper_bound!=0 and lower_bound!=0:
 | 
| 
 | 
   142                 new_bounds.loc[reaction, "lower_bound"] = valMin
 | 
| 
 | 
   143                 new_bounds.loc[reaction, "upper_bound"] = valMax
 | 
| 
 | 
   144     return new_bounds
 | 
| 
 | 
   145 
 | 
| 
 | 
   146 def process_ras_cell(cellName, ras_row, model, rxns_ids, output_folder):
 | 
| 
 | 
   147     """
 | 
| 
 | 
   148     Process a single RAS cell, apply bounds, and save the bounds to a CSV file.
 | 
| 
 | 
   149 
 | 
| 
 | 
   150     Args:
 | 
| 
 | 
   151         cellName (str): The name of the RAS cell (used for naming the output file).
 | 
| 
 | 
   152         ras_row (pd.Series): A row from a RAS DataFrame containing scaling factors for reaction bounds.
 | 
| 
 | 
   153         model (cobra.Model): The metabolic model to be modified.
 | 
| 
 | 
   154         rxns_ids (list of str): List of reaction IDs to which the scaling factors will be applied.
 | 
| 
 | 
   155         output_folder (str): Folder path where the output CSV file will be saved.
 | 
| 
 | 
   156     
 | 
| 
 | 
   157     Returns:
 | 
| 
 | 
   158         None
 | 
| 
 | 
   159     """
 | 
| 
 | 
   160     bounds = pd.DataFrame([(rxn.lower_bound, rxn.upper_bound) for rxn in model.reactions], index=rxns_ids, columns=["lower_bound", "upper_bound"])
 | 
| 
 | 
   161     new_bounds = apply_ras_bounds(bounds, ras_row)
 | 
| 
 | 
   162     new_bounds.to_csv(output_folder + cellName + ".csv", sep='\t', index=True)
 | 
| 
 | 
   163     pass
 | 
| 
 | 
   164 
 | 
| 
 | 
   165 def generate_bounds(model: cobra.Model, medium: dict, ras=None, output_folder='output/') -> pd.DataFrame:
 | 
| 
 | 
   166     """
 | 
| 
 | 
   167     Generate reaction bounds for a metabolic model based on medium conditions and optional RAS adjustments.
 | 
| 
 | 
   168     
 | 
| 
 | 
   169     Args:
 | 
| 
 | 
   170         model (cobra.Model): The metabolic model for which bounds will be generated.
 | 
| 
 | 
   171         medium (dict): A dictionary where keys are reaction IDs and values are the medium conditions.
 | 
| 
 | 
   172         ras (pd.DataFrame, optional): RAS pandas dataframe. Defaults to None.
 | 
| 
 | 
   173         output_folder (str, optional): Folder path where output CSV files will be saved. Defaults to 'output/'.
 | 
| 
 | 
   174 
 | 
| 
 | 
   175     Returns:
 | 
| 
 | 
   176         pd.DataFrame: DataFrame containing the bounds of reactions in the model.
 | 
| 
 | 
   177     """
 | 
| 
 | 
   178     rxns_ids = [rxn.id for rxn in model.reactions]
 | 
| 
 | 
   179 
 | 
| 
 | 
   180     # Set all reactions to zero in the medium
 | 
| 
 | 
   181     for rxn_id, _ in model.medium.items():
 | 
| 
 | 
   182         model.reactions.get_by_id(rxn_id).lower_bound = float(0.0)
 | 
| 
 | 
   183     
 | 
| 
 | 
   184     # Set medium conditions
 | 
| 
 | 
   185     for reaction, value in medium.items():
 | 
| 
 | 
   186         if value is not None:
 | 
| 
 | 
   187             model.reactions.get_by_id(reaction).lower_bound = -float(value)
 | 
| 
 | 
   188             
 | 
| 
 | 
   189             
 | 
| 
 | 
   190     # Perform Flux Variability Analysis (FVA) on this medium
 | 
| 
 | 
   191     df_FVA = cobra.flux_analysis.flux_variability_analysis(model, fraction_of_optimum=0, processes=1).round(8)
 | 
| 
 | 
   192     
 | 
| 
 | 
   193     # Set FVA bounds
 | 
| 
 | 
   194     for reaction in rxns_ids:
 | 
| 
 | 
   195         model.reactions.get_by_id(reaction).lower_bound = float(df_FVA.loc[reaction, "minimum"])
 | 
| 
 | 
   196         model.reactions.get_by_id(reaction).upper_bound = float(df_FVA.loc[reaction, "maximum"])
 | 
| 
 | 
   197 
 | 
| 
 | 
   198     if ras is not None:
 | 
| 
 | 
   199         Parallel(n_jobs=cpu_count())(delayed(process_ras_cell)(cellName, ras_row, model, rxns_ids, output_folder) for cellName, ras_row in ras.iterrows())
 | 
| 
 | 
   200     else:
 | 
| 
 | 
   201         bounds = pd.DataFrame([(rxn.lower_bound, rxn.upper_bound) for rxn in model.reactions], index=rxns_ids, columns=["lower_bound", "upper_bound"])
 | 
| 
 | 
   202         newBounds = apply_ras_bounds(bounds, pd.Series([1]*len(rxns_ids), index=rxns_ids))
 | 
| 
 | 
   203         newBounds.to_csv(output_folder + "bounds.csv", sep='\t', index=True)
 | 
| 
 | 
   204     pass
 | 
| 
 | 
   205 
 | 
| 
 | 
   206 
 | 
| 
 | 
   207 
 | 
| 
 | 
   208 ############################# main ###########################################
 | 
| 
 | 
   209 def main(args:List[str] = None) -> None:
 | 
| 
 | 
   210     """
 | 
| 
 | 
   211     Initializes everything and sets the program in motion based on the fronted input arguments.
 | 
| 
 | 
   212 
 | 
| 
 | 
   213     Returns:
 | 
| 
 | 
   214         None
 | 
| 
 | 
   215     """
 | 
| 
 | 
   216     if not os.path.exists('ras_to_bounds'):
 | 
| 
 | 
   217         os.makedirs('ras_to_bounds')
 | 
| 
 | 
   218 
 | 
| 
 | 
   219 
 | 
| 
 | 
   220     global ARGS
 | 
| 
 | 
   221     ARGS = process_args(args)
 | 
| 
 | 
   222 
 | 
| 
 | 
   223     if(ARGS.ras_selector == True):
 | 
| 
 | 
   224         ras_file_list = ARGS.input_ras.split(",")
 | 
| 
 | 
   225         ras_file_names = ARGS.name.split(",")
 | 
| 
 | 
   226         if len(ras_file_names) != len(set(ras_file_names)):
 | 
| 
 | 
   227             error_message = "Duplicated file names in the uploaded RAS matrices."
 | 
| 
 | 
   228             warning(error_message)
 | 
| 
 | 
   229             raise ValueError(error_message)
 | 
| 
 | 
   230             pass
 | 
| 
 | 
   231         ras_class_names = []
 | 
| 
 | 
   232         for file in ras_file_names:
 | 
| 
 | 
   233             ras_class_names.append(file.rsplit(".", 1)[0])
 | 
| 
 | 
   234         ras_list = []
 | 
| 
 | 
   235         class_assignments = pd.DataFrame(columns=["Patient_ID", "Class"])
 | 
| 
 | 
   236         for ras_matrix, ras_class_name in zip(ras_file_list, ras_class_names):
 | 
| 
 | 
   237             ras = read_dataset(ras_matrix, "ras dataset")
 | 
| 
 | 
   238             ras.replace("None", None, inplace=True)
 | 
| 
 | 
   239             ras.set_index("Reactions", drop=True, inplace=True)
 | 
| 
 | 
   240             ras = ras.T
 | 
| 
 | 
   241             ras = ras.astype(float)
 | 
| 
 | 
   242             if(len(ras_file_list)>1):
 | 
| 
 | 
   243                 #append class name to patient id (dataframe index)
 | 
| 
 | 
   244                 ras.index = [f"{idx}_{ras_class_name}" for idx in ras.index]
 | 
| 
 | 
   245             else:
 | 
| 
 | 
   246                 ras.index = [f"{idx}" for idx in ras.index]
 | 
| 
 | 
   247             ras_list.append(ras)
 | 
| 
 | 
   248             for patient_id in ras.index:
 | 
| 
 | 
   249                 class_assignments.loc[class_assignments.shape[0]] = [patient_id, ras_class_name]
 | 
| 
 | 
   250         
 | 
| 
 | 
   251         
 | 
| 
 | 
   252         # Concatenate all ras DataFrames into a single DataFrame
 | 
| 
 | 
   253         ras_combined = pd.concat(ras_list, axis=0)
 | 
| 
 | 
   254         # Normalize the RAS values by max RAS
 | 
| 
 | 
   255         ras_combined = ras_combined.div(ras_combined.max(axis=0))
 | 
| 
 | 
   256         ras_combined.dropna(axis=1, how='all', inplace=True)
 | 
| 
 | 
   257 
 | 
| 
 | 
   258 
 | 
| 
 | 
   259     
 | 
| 
 | 
   260     model_type :utils.Model = ARGS.model_selector
 | 
| 
 | 
   261     if model_type is utils.Model.Custom:
 | 
| 
 | 
   262         model = model_type.getCOBRAmodel(customPath = utils.FilePath.fromStrPath(ARGS.model), customExtension = utils.FilePath.fromStrPath(ARGS.model_name).ext)
 | 
| 
 | 
   263     else:
 | 
| 
 | 
   264         model = model_type.getCOBRAmodel(toolDir=ARGS.tool_dir)
 | 
| 
 | 
   265 
 | 
| 
 | 
   266     if(ARGS.medium_selector == "Custom"):
 | 
| 
 | 
   267         medium = read_dataset(ARGS.medium, "medium dataset")
 | 
| 
 | 
   268         medium.set_index(medium.columns[0], inplace=True)
 | 
| 
 | 
   269         medium = medium.astype(float)
 | 
| 
 | 
   270         medium = medium[medium.columns[0]].to_dict()
 | 
| 
 | 
   271     else:
 | 
| 
 | 
   272         df_mediums = pd.read_csv(ARGS.tool_dir + "/local/medium/medium.csv", index_col = 0)
 | 
| 
 | 
   273         ARGS.medium_selector = ARGS.medium_selector.replace("_", " ")
 | 
| 
 | 
   274         medium = df_mediums[[ARGS.medium_selector]]
 | 
| 
 | 
   275         medium = medium[ARGS.medium_selector].to_dict()
 | 
| 
 | 
   276 
 | 
| 
 | 
   277     if(ARGS.ras_selector == True):
 | 
| 
 | 
   278         generate_bounds(model, medium, ras = ras_combined, output_folder=ARGS.output_path)
 | 
| 
 | 
   279         class_assignments.to_csv(ARGS.cell_class, sep = '\t', index = False)
 | 
| 
 | 
   280     else:
 | 
| 
 | 
   281         generate_bounds(model, medium, output_folder=ARGS.output_path)
 | 
| 
 | 
   282 
 | 
| 
 | 
   283     pass
 | 
| 
 | 
   284         
 | 
| 
 | 
   285 ##############################################################################
 | 
| 
 | 
   286 if __name__ == "__main__":
 | 
| 
 | 
   287     main() |