| 
4
 | 
     1 from __future__ import division
 | 
| 
 | 
     2 import csv
 | 
| 
 | 
     3 from enum import Enum
 | 
| 
 | 
     4 import re
 | 
| 
 | 
     5 import sys
 | 
| 
 | 
     6 import numpy as np
 | 
| 
 | 
     7 import pandas as pd
 | 
| 
 | 
     8 import itertools as it
 | 
| 
 | 
     9 import scipy.stats as st
 | 
| 
 | 
    10 import lxml.etree as ET
 | 
| 
 | 
    11 import math
 | 
| 
 | 
    12 import utils.general_utils as utils
 | 
| 
 | 
    13 from PIL import Image
 | 
| 
 | 
    14 import os
 | 
| 
 | 
    15 import copy
 | 
| 
 | 
    16 import argparse
 | 
| 
 | 
    17 import pyvips
 | 
| 
 | 
    18 from PIL import Image, ImageDraw, ImageFont
 | 
| 
 | 
    19 from typing import Tuple, Union, Optional, List, Dict
 | 
| 
 | 
    20 import matplotlib.pyplot as plt
 | 
| 
 | 
    21 
 | 
| 
 | 
    22 ERRORS = []
 | 
| 
 | 
    23 ########################## argparse ##########################################
 | 
| 
 | 
    24 ARGS :argparse.Namespace
 | 
| 
147
 | 
    25 def process_args(args:List[str] = None) -> argparse.Namespace:
 | 
| 
4
 | 
    26     """
 | 
| 
 | 
    27     Interfaces the script of a module with its frontend, making the user's choices for various parameters available as values in code.
 | 
| 
 | 
    28 
 | 
| 
 | 
    29     Args:
 | 
| 
 | 
    30         args : Always obtained (in file) from sys.argv
 | 
| 
 | 
    31 
 | 
| 
 | 
    32     Returns:
 | 
| 
 | 
    33         Namespace : An object containing the parsed arguments
 | 
| 
 | 
    34     """
 | 
| 
 | 
    35     parser = argparse.ArgumentParser(
 | 
| 
 | 
    36         usage = "%(prog)s [options]",
 | 
| 
 | 
    37         description = "process some value's genes to create a comparison's map.")
 | 
| 
 | 
    38     
 | 
| 
 | 
    39     #General:
 | 
| 
 | 
    40     parser.add_argument(
 | 
| 
 | 
    41         '-td', '--tool_dir',
 | 
| 
 | 
    42         type = str,
 | 
| 
 | 
    43         required = True,
 | 
| 
 | 
    44         help = 'your tool directory')
 | 
| 
 | 
    45     
 | 
| 
 | 
    46     parser.add_argument('-on', '--control', type = str)
 | 
| 
 | 
    47     parser.add_argument('-ol', '--out_log', help = "Output log")
 | 
| 
 | 
    48 
 | 
| 
 | 
    49     #Computation details:
 | 
| 
 | 
    50     parser.add_argument(
 | 
| 
 | 
    51         '-co', '--comparison',
 | 
| 
 | 
    52         type = str, 
 | 
| 
 | 
    53         default = '1vs1',
 | 
| 
 | 
    54         choices = ['manyvsmany', 'onevsrest', 'onevsmany'])
 | 
| 
 | 
    55     
 | 
| 
 | 
    56     parser.add_argument(
 | 
| 
 | 
    57         '-pv' ,'--pValue',
 | 
| 
 | 
    58         type = float, 
 | 
| 
 | 
    59         default = 0.1, 
 | 
| 
 | 
    60         help = 'P-Value threshold (default: %(default)s)')
 | 
| 
 | 
    61     
 | 
| 
 | 
    62     parser.add_argument(
 | 
| 
 | 
    63         '-fc', '--fChange',
 | 
| 
 | 
    64         type = float, 
 | 
| 
 | 
    65         default = 1.5, 
 | 
| 
 | 
    66         help = 'Fold-Change threshold (default: %(default)s)')
 | 
| 
 | 
    67     
 | 
| 
 | 
    68 
 | 
| 
 | 
    69     parser.add_argument(
 | 
| 
 | 
    70         '-op', '--option',
 | 
| 
 | 
    71         type = str, 
 | 
| 
 | 
    72         choices = ['datasets', 'dataset_class'],
 | 
| 
 | 
    73         help='dataset or dataset and class')
 | 
| 
 | 
    74 
 | 
| 
 | 
    75     parser.add_argument(
 | 
| 
 | 
    76         '-idf', '--input_data_fluxes',
 | 
| 
 | 
    77         type = str,
 | 
| 
 | 
    78         help = 'input dataset fluxes')
 | 
| 
 | 
    79     
 | 
| 
 | 
    80     parser.add_argument(
 | 
| 
 | 
    81         '-icf', '--input_class_fluxes', 
 | 
| 
 | 
    82         type = str,
 | 
| 
 | 
    83         help = 'sample group specification fluxes')
 | 
| 
 | 
    84     
 | 
| 
 | 
    85     parser.add_argument(
 | 
| 
 | 
    86         '-idsf', '--input_datas_fluxes', 
 | 
| 
 | 
    87         type = str,
 | 
| 
 | 
    88         nargs = '+', 
 | 
| 
 | 
    89         help = 'input datasets fluxes')
 | 
| 
 | 
    90     
 | 
| 
 | 
    91     parser.add_argument(
 | 
| 
 | 
    92         '-naf', '--names_fluxes', 
 | 
| 
 | 
    93         type = str,
 | 
| 
 | 
    94         nargs = '+', 
 | 
| 
 | 
    95         help = 'input names fluxes')
 | 
| 
 | 
    96     
 | 
| 
 | 
    97     #Output:
 | 
| 
 | 
    98     parser.add_argument(
 | 
| 
 | 
    99         "-gs", "--generate_svg",
 | 
| 
 | 
   100         type = utils.Bool("generate_svg"), default = True,
 | 
| 
 | 
   101         help = "choose whether to generate svg")
 | 
| 
 | 
   102     
 | 
| 
 | 
   103     parser.add_argument(
 | 
| 
 | 
   104         "-gp", "--generate_pdf",
 | 
| 
 | 
   105         type = utils.Bool("generate_pdf"), default = True,
 | 
| 
 | 
   106         help = "choose whether to generate pdf")
 | 
| 
 | 
   107     
 | 
| 
 | 
   108     parser.add_argument(
 | 
| 
 | 
   109         '-cm', '--custom_map',
 | 
| 
 | 
   110         type = str,
 | 
| 
 | 
   111         help='custom map to use')
 | 
| 
 | 
   112     
 | 
| 
 | 
   113     parser.add_argument(
 | 
| 
 | 
   114         '-mc',  '--choice_map',
 | 
| 
 | 
   115         type = utils.Model, default = utils.Model.HMRcore,
 | 
| 
 | 
   116         choices = [utils.Model.HMRcore, utils.Model.ENGRO2, utils.Model.Custom])
 | 
| 
 | 
   117     
 | 
| 
 | 
   118     parser.add_argument(
 | 
| 
 | 
   119         '-colorm',  '--color_map',
 | 
| 
 | 
   120         type = str,
 | 
| 
 | 
   121         choices = ["jet", "viridis"])
 | 
| 
147
 | 
   122     
 | 
| 
 | 
   123     parser.add_argument(
 | 
| 
 | 
   124         '-idop', '--output_path', 
 | 
| 
 | 
   125         type = str,
 | 
| 
 | 
   126         default='result',
 | 
| 
 | 
   127         help = 'output path for maps')
 | 
| 
4
 | 
   128 
 | 
| 
147
 | 
   129     args :argparse.Namespace = parser.parse_args(args)
 | 
| 
185
 | 
   130     args.net = True # TODO SICCOME I FLUSSI POSSONO ESSERE ANCHE NEGATIVI SONO SEMPRE CONSIDERATI NETTI
 | 
| 
4
 | 
   131 
 | 
| 
 | 
   132     return args
 | 
| 
 | 
   133           
 | 
| 
 | 
   134 ############################ dataset input ####################################
 | 
| 
 | 
   135 def read_dataset(data :str, name :str) -> pd.DataFrame:
 | 
| 
 | 
   136     """
 | 
| 
 | 
   137     Tries to read the dataset from its path (data) as a tsv and turns it into a DataFrame.
 | 
| 
 | 
   138 
 | 
| 
 | 
   139     Args:
 | 
| 
 | 
   140         data : filepath of a dataset (from frontend input params or literals upon calling)
 | 
| 
 | 
   141         name : name associated with the dataset (from frontend input params or literals upon calling)
 | 
| 
 | 
   142 
 | 
| 
 | 
   143     Returns:
 | 
| 
 | 
   144         pd.DataFrame : dataset in a runtime operable shape
 | 
| 
 | 
   145     
 | 
| 
 | 
   146     Raises:
 | 
| 
 | 
   147         sys.exit : if there's no data (pd.errors.EmptyDataError) or if the dataset has less than 2 columns
 | 
| 
 | 
   148     """
 | 
| 
 | 
   149     try:
 | 
| 
 | 
   150         dataset = pd.read_csv(data, sep = '\t', header = 0, engine='python')
 | 
| 
 | 
   151     except pd.errors.EmptyDataError:
 | 
| 
 | 
   152         sys.exit('Execution aborted: wrong format of ' + name + '\n')
 | 
| 
 | 
   153     if len(dataset.columns) < 2:
 | 
| 
 | 
   154         sys.exit('Execution aborted: wrong format of ' + name + '\n')
 | 
| 
 | 
   155     return dataset
 | 
| 
 | 
   156 
 | 
| 
 | 
   157 ############################ dataset name #####################################
 | 
| 
 | 
   158 def name_dataset(name_data :str, count :int) -> str:
 | 
| 
 | 
   159     """
 | 
| 
 | 
   160     Produces a unique name for a dataset based on what was provided by the user. The default name for any dataset is "Dataset", thus if the user didn't change it this function appends f"_{count}" to make it unique.
 | 
| 
 | 
   161 
 | 
| 
 | 
   162     Args:
 | 
| 
 | 
   163         name_data : name associated with the dataset (from frontend input params)
 | 
| 
 | 
   164         count : counter from 1 to make these names unique (external)
 | 
| 
 | 
   165 
 | 
| 
 | 
   166     Returns:
 | 
| 
 | 
   167         str : the name made unique
 | 
| 
 | 
   168     """
 | 
| 
 | 
   169     if str(name_data) == 'Dataset':
 | 
| 
 | 
   170         return str(name_data) + '_' + str(count)
 | 
| 
 | 
   171     else:
 | 
| 
 | 
   172         return str(name_data)
 | 
| 
 | 
   173 
 | 
| 
 | 
   174 ############################ map_methods ######################################
 | 
| 
 | 
   175 FoldChange = Union[float, int, str] # Union[float, Literal[0, "-INF", "INF"]]
 | 
| 
 | 
   176 def fold_change(avg1 :float, avg2 :float) -> FoldChange:
 | 
| 
 | 
   177     """
 | 
| 
 | 
   178     Calculates the fold change between two gene expression values.
 | 
| 
 | 
   179 
 | 
| 
 | 
   180     Args:
 | 
| 
 | 
   181         avg1 : average expression value from one dataset avg2 : average expression value from the other dataset
 | 
| 
 | 
   182 
 | 
| 
 | 
   183     Returns:
 | 
| 
 | 
   184         FoldChange :
 | 
| 
 | 
   185             0 : when both input values are 0
 | 
| 
 | 
   186             "-INF" : when avg1 is 0
 | 
| 
 | 
   187             "INF" : when avg2 is 0
 | 
| 
 | 
   188             float : for any other combination of values
 | 
| 
 | 
   189     """
 | 
| 
 | 
   190     if avg1 == 0 and avg2 == 0:
 | 
| 
 | 
   191         return 0
 | 
| 
 | 
   192     elif avg1 == 0:
 | 
| 
 | 
   193         return '-INF'
 | 
| 
 | 
   194     elif avg2 == 0:
 | 
| 
 | 
   195         return 'INF'
 | 
| 
 | 
   196     else: # (threshold_F_C - 1) / (abs(threshold_F_C) + 1) con threshold_F_C > 1
 | 
| 
 | 
   197         return (avg1 - avg2) / (abs(avg1) + abs(avg2))
 | 
| 
 | 
   198     
 | 
| 
 | 
   199 def fix_style(l :str, col :Optional[str], width :str, dash :str) -> str:
 | 
| 
 | 
   200     """
 | 
| 
 | 
   201     Produces a "fixed" style string to assign to a reaction arrow in the SVG map, assigning style properties to the corresponding values passed as input params.
 | 
| 
 | 
   202 
 | 
| 
 | 
   203     Args:
 | 
| 
 | 
   204         l : current style string of an SVG element
 | 
| 
 | 
   205         col : new value for the "stroke" style property
 | 
| 
 | 
   206         width : new value for the "stroke-width" style property
 | 
| 
 | 
   207         dash : new value for the "stroke-dasharray" style property
 | 
| 
 | 
   208 
 | 
| 
 | 
   209     Returns:
 | 
| 
 | 
   210         str : the fixed style string
 | 
| 
 | 
   211     """
 | 
| 
 | 
   212     tmp = l.split(';')
 | 
| 
 | 
   213     flag_col = False
 | 
| 
 | 
   214     flag_width = False
 | 
| 
 | 
   215     flag_dash = False
 | 
| 
 | 
   216     for i in range(len(tmp)):
 | 
| 
 | 
   217         if tmp[i].startswith('stroke:'):
 | 
| 
 | 
   218             tmp[i] = 'stroke:' + col
 | 
| 
 | 
   219             flag_col = True
 | 
| 
 | 
   220         if tmp[i].startswith('stroke-width:'):
 | 
| 
 | 
   221             tmp[i] = 'stroke-width:' + width
 | 
| 
 | 
   222             flag_width = True
 | 
| 
 | 
   223         if tmp[i].startswith('stroke-dasharray:'):
 | 
| 
 | 
   224             tmp[i] = 'stroke-dasharray:' + dash
 | 
| 
 | 
   225             flag_dash = True
 | 
| 
 | 
   226     if not flag_col:
 | 
| 
 | 
   227         tmp.append('stroke:' + col)
 | 
| 
 | 
   228     if not flag_width:
 | 
| 
 | 
   229         tmp.append('stroke-width:' + width)
 | 
| 
 | 
   230     if not flag_dash:
 | 
| 
 | 
   231         tmp.append('stroke-dasharray:' + dash)
 | 
| 
 | 
   232     return ';'.join(tmp)
 | 
| 
 | 
   233 
 | 
| 
 | 
   234 # The type of d values is collapsed, losing precision, because the dict containst lists instead of tuples, please fix!
 | 
| 
 | 
   235 def fix_map(d :Dict[str, List[Union[float, FoldChange]]], core_map :ET.ElementTree, threshold_P_V :float, threshold_F_C :float, max_z_score :float) -> ET.ElementTree:
 | 
| 
 | 
   236     """
 | 
| 
 | 
   237     Edits the selected SVG map based on the p-value and fold change data (d) and some significance thresholds also passed as inputs.
 | 
| 
 | 
   238 
 | 
| 
 | 
   239     Args:
 | 
| 
 | 
   240         d : dictionary mapping a p-value and a fold-change value (values) to each reaction ID as encoded in the SVG map (keys)
 | 
| 
 | 
   241         core_map : SVG map to modify
 | 
| 
 | 
   242         threshold_P_V : threshold for a p-value to be considered significant
 | 
| 
 | 
   243         threshold_F_C : threshold for a fold change value to be considered significant
 | 
| 
 | 
   244         max_z_score : highest z-score (absolute value)
 | 
| 
 | 
   245     
 | 
| 
 | 
   246     Returns:
 | 
| 
 | 
   247         ET.ElementTree : the modified core_map
 | 
| 
 | 
   248 
 | 
| 
 | 
   249     Side effects:
 | 
| 
 | 
   250         core_map : mut
 | 
| 
 | 
   251     """
 | 
| 
 | 
   252     maxT = 12
 | 
| 
 | 
   253     minT = 2
 | 
| 
 | 
   254     grey = '#BEBEBE'
 | 
| 
185
 | 
   255     blue = '#6495ed' # azzurrino
 | 
| 
 | 
   256     red = '#ecac68' # arancione
 | 
| 
4
 | 
   257     for el in core_map.iter():
 | 
| 
 | 
   258         el_id = str(el.get('id'))
 | 
| 
 | 
   259         if el_id.startswith('R_'):
 | 
| 
 | 
   260             tmp = d.get(el_id[2:])
 | 
| 
 | 
   261             if tmp != None:
 | 
| 
 | 
   262                 p_val :float = tmp[0]
 | 
| 
 | 
   263                 f_c = tmp[1]
 | 
| 
 | 
   264                 z_score = tmp[2]
 | 
| 
275
 | 
   265 
 | 
| 
 | 
   266                 if math.isnan(p_val) or (isinstance(f_c, float) and math.isnan(f_c)): continue
 | 
| 
 | 
   267                 
 | 
| 
4
 | 
   268                 if p_val < threshold_P_V:
 | 
| 
 | 
   269                     if not isinstance(f_c, str):
 | 
| 
 | 
   270                         if abs(f_c) < ((threshold_F_C - 1) / (abs(threshold_F_C) + 1)): # 
 | 
| 
 | 
   271                             col = grey
 | 
| 
 | 
   272                             width = str(minT)
 | 
| 
 | 
   273                         else:
 | 
| 
 | 
   274                             if f_c < 0:
 | 
| 
 | 
   275                                 col = blue
 | 
| 
 | 
   276                             elif f_c > 0:
 | 
| 
 | 
   277                                 col = red
 | 
| 
 | 
   278                             width = str(max((abs(z_score) * maxT) / max_z_score, minT))
 | 
| 
 | 
   279                     else:
 | 
| 
 | 
   280                         if f_c == '-INF':
 | 
| 
 | 
   281                             col = blue
 | 
| 
 | 
   282                         elif f_c == 'INF':
 | 
| 
 | 
   283                             col = red
 | 
| 
 | 
   284                         width = str(maxT)
 | 
| 
 | 
   285                     dash = 'none'
 | 
| 
 | 
   286                 else:
 | 
| 
 | 
   287                     dash = '5,5'
 | 
| 
 | 
   288                     col = grey
 | 
| 
 | 
   289                     width = str(minT)
 | 
| 
 | 
   290                 el.set('style', fix_style(el.get('style', ""), col, width, dash))
 | 
| 
 | 
   291     return core_map
 | 
| 
 | 
   292 
 | 
| 
 | 
   293 def getElementById(reactionId :str, metabMap :ET.ElementTree) -> utils.Result[ET.Element, utils.Result.ResultErr]:
 | 
| 
 | 
   294     """
 | 
| 
 | 
   295     Finds any element in the given map with the given ID. ID uniqueness in an svg file is recommended but
 | 
| 
 | 
   296     not enforced, if more than one element with the exact ID is found only the first will be returned.
 | 
| 
 | 
   297 
 | 
| 
 | 
   298     Args:
 | 
| 
 | 
   299         reactionId (str): exact ID of the requested element.
 | 
| 
 | 
   300         metabMap (ET.ElementTree): metabolic map containing the element.
 | 
| 
 | 
   301 
 | 
| 
 | 
   302     Returns:
 | 
| 
 | 
   303         utils.Result[ET.Element, ResultErr]: result of the search, either the first match found or a ResultErr.
 | 
| 
 | 
   304     """
 | 
| 
 | 
   305     return utils.Result.Ok(
 | 
| 
 | 
   306         f"//*[@id=\"{reactionId}\"]").map(
 | 
| 
 | 
   307         lambda xPath : metabMap.xpath(xPath)[0]).mapErr(
 | 
| 
 | 
   308         lambda _ : utils.Result.ResultErr(f"No elements with ID \"{reactionId}\" found in map"))
 | 
| 
 | 
   309         # ^^^ we shamelessly ignore the contents of the IndexError, it offers nothing to the user.
 | 
| 
 | 
   310 
 | 
| 
 | 
   311 def styleMapElement(element :ET.Element, styleStr :str) -> None:
 | 
| 
 | 
   312     currentStyles :str = element.get("style", "")
 | 
| 
 | 
   313     if re.search(r";stroke:[^;]+;stroke-width:[^;]+;stroke-dasharray:[^;]+$", currentStyles):
 | 
| 
 | 
   314         currentStyles = ';'.join(currentStyles.split(';')[:-3])
 | 
| 
 | 
   315 
 | 
| 
 | 
   316     element.set("style", currentStyles + styleStr)
 | 
| 
 | 
   317 
 | 
| 
 | 
   318 class ReactionDirection(Enum):
 | 
| 
 | 
   319     Unknown = ""
 | 
| 
 | 
   320     Direct  = "_F"
 | 
| 
 | 
   321     Inverse = "_B"
 | 
| 
 | 
   322 
 | 
| 
 | 
   323     @classmethod
 | 
| 
 | 
   324     def fromDir(cls, s :str) -> "ReactionDirection":
 | 
| 
 | 
   325         # vvv as long as there's so few variants I actually condone the if spam:
 | 
| 
 | 
   326         if s == ReactionDirection.Direct.value:  return ReactionDirection.Direct
 | 
| 
 | 
   327         if s == ReactionDirection.Inverse.value: return ReactionDirection.Inverse
 | 
| 
 | 
   328         return ReactionDirection.Unknown
 | 
| 
 | 
   329 
 | 
| 
 | 
   330     @classmethod
 | 
| 
 | 
   331     def fromReactionId(cls, reactionId :str) -> "ReactionDirection":
 | 
| 
 | 
   332         return ReactionDirection.fromDir(reactionId[-2:])
 | 
| 
 | 
   333 
 | 
| 
 | 
   334 def getArrowBodyElementId(reactionId :str) -> str:
 | 
| 
 | 
   335     if reactionId.endswith("_RV"): reactionId = reactionId[:-3] #TODO: standardize _RV
 | 
| 
 | 
   336     elif ReactionDirection.fromReactionId(reactionId) is not ReactionDirection.Unknown: reactionId = reactionId[:-2]
 | 
| 
 | 
   337     return f"R_{reactionId}"
 | 
| 
 | 
   338 
 | 
| 
 | 
   339 def getArrowHeadElementId(reactionId :str) -> Tuple[str, str]:
 | 
| 
 | 
   340     """
 | 
| 
 | 
   341     We attempt extracting the direction information from the provided reaction ID, if unsuccessful we provide the IDs of both directions.
 | 
| 
 | 
   342 
 | 
| 
 | 
   343     Args:
 | 
| 
 | 
   344         reactionId : the provided reaction ID.
 | 
| 
 | 
   345 
 | 
| 
 | 
   346     Returns:
 | 
| 
 | 
   347         Tuple[str, str]: either a single str ID for the correct arrow head followed by an empty string or both options to try.
 | 
| 
 | 
   348     """
 | 
| 
 | 
   349     if reactionId.endswith("_RV"): reactionId = reactionId[:-3] #TODO: standardize _RV
 | 
| 
 | 
   350     elif ReactionDirection.fromReactionId(reactionId) is not ReactionDirection.Unknown: return reactionId[:-3:-1] + reactionId[:-2], ""
 | 
| 
 | 
   351     return f"F_{reactionId}", f"B_{reactionId}"
 | 
| 
 | 
   352 
 | 
| 
 | 
   353 class ArrowColor(Enum):
 | 
| 
 | 
   354     """
 | 
| 
 | 
   355     Encodes possible arrow colors based on their meaning in the enrichment process.
 | 
| 
 | 
   356     """
 | 
| 
 | 
   357     Invalid       = "#BEBEBE" # gray, fold-change under treshold
 | 
| 
 | 
   358     Transparent   = "#ffffff00" # white, not significant p-value
 | 
| 
 | 
   359     UpRegulated   = "#ecac68" # red, up-regulated reaction
 | 
| 
 | 
   360     DownRegulated = "#6495ed" # blue, down-regulated reaction
 | 
| 
 | 
   361 
 | 
| 
 | 
   362     UpRegulatedInv = "#FF0000"
 | 
| 
 | 
   363     # ^^^ different shade of red (actually orange), up-regulated net value for a reversible reaction with
 | 
| 
 | 
   364     # conflicting enrichment in the two directions.
 | 
| 
 | 
   365 
 | 
| 
 | 
   366     DownRegulatedInv = "#0000FF"
 | 
| 
 | 
   367     # ^^^ different shade of blue (actually purple), down-regulated net value for a reversible reaction with
 | 
| 
 | 
   368     # conflicting enrichment in the two directions.
 | 
| 
 | 
   369 
 | 
| 
 | 
   370     @classmethod
 | 
| 
 | 
   371     def fromFoldChangeSign(cls, foldChange :float, *, useAltColor = False) -> "ArrowColor":
 | 
| 
 | 
   372         colors = (cls.DownRegulated, cls.DownRegulatedInv) if foldChange < 0 else (cls.UpRegulated, cls.UpRegulatedInv)
 | 
| 
 | 
   373         return colors[useAltColor]
 | 
| 
 | 
   374 
 | 
| 
 | 
   375     def __str__(self) -> str: return self.value
 | 
| 
 | 
   376 
 | 
| 
 | 
   377 class Arrow:
 | 
| 
 | 
   378     """
 | 
| 
 | 
   379     Models the properties of a reaction arrow that change based on enrichment.
 | 
| 
 | 
   380     """
 | 
| 
 | 
   381     MIN_W = 2
 | 
| 
 | 
   382     MAX_W = 12
 | 
| 
 | 
   383 
 | 
| 
 | 
   384     def __init__(self, width :int, col: ArrowColor, *, isDashed = False) -> None:
 | 
| 
 | 
   385         """
 | 
| 
 | 
   386         (Private) Initializes an instance of Arrow.
 | 
| 
 | 
   387 
 | 
| 
 | 
   388         Args:
 | 
| 
 | 
   389             width : width of the arrow, ideally to be kept within Arrow.MIN_W and Arrow.MAX_W (not enforced).
 | 
| 
 | 
   390             col : color of the arrow.
 | 
| 
 | 
   391             isDashed : whether the arrow should be dashed, meaning the associated pValue resulted not significant.
 | 
| 
 | 
   392         
 | 
| 
 | 
   393         Returns:
 | 
| 
 | 
   394             None : practically, a Arrow instance.
 | 
| 
 | 
   395         """
 | 
| 
 | 
   396         self.w    = width
 | 
| 
 | 
   397         self.col  = col
 | 
| 
 | 
   398         self.dash = isDashed
 | 
| 
 | 
   399     
 | 
| 
 | 
   400     def applyTo(self, reactionId :str, metabMap :ET.ElementTree, styleStr :str) -> None:
 | 
| 
 | 
   401         if getElementById(reactionId, metabMap).map(lambda el : styleMapElement(el, styleStr)).isErr:
 | 
| 
 | 
   402             ERRORS.append(reactionId)
 | 
| 
 | 
   403 
 | 
| 
 | 
   404     def styleReactionElements(self, metabMap :ET.ElementTree, reactionId :str, *, mindReactionDir = True) -> None:
 | 
| 
 | 
   405         if not mindReactionDir:
 | 
| 
 | 
   406             return self.applyTo(getArrowBodyElementId(reactionId), metabMap, self.toStyleStr())
 | 
| 
 | 
   407         
 | 
| 
 | 
   408         # Now we style the arrow head(s):
 | 
| 
 | 
   409         idOpt1, idOpt2 = getArrowHeadElementId(reactionId)
 | 
| 
 | 
   410         self.applyTo(idOpt1, metabMap, self.toStyleStr(downSizedForTips = True))
 | 
| 
 | 
   411         if idOpt2: self.applyTo(idOpt2, metabMap, self.toStyleStr(downSizedForTips = True))
 | 
| 
 | 
   412 
 | 
| 
 | 
   413     def styleReactionElementsMeanMedian(self, metabMap :ET.ElementTree, reactionId :str, isNegative:bool) -> None:
 | 
| 
 | 
   414 
 | 
| 
 | 
   415         self.applyTo(getArrowBodyElementId(reactionId), metabMap, self.toStyleStr())
 | 
| 
 | 
   416         idOpt1, idOpt2 = getArrowHeadElementId(reactionId)
 | 
| 
 | 
   417 
 | 
| 
 | 
   418         if(isNegative):
 | 
| 
 | 
   419             self.applyTo(idOpt2, metabMap, self.toStyleStr(downSizedForTips = True))
 | 
| 
 | 
   420             self.col = ArrowColor.Transparent
 | 
| 
 | 
   421             self.applyTo(idOpt1, metabMap, self.toStyleStr(downSizedForTips = True)) #trasp
 | 
| 
 | 
   422         else:
 | 
| 
 | 
   423             self.applyTo(idOpt1, metabMap, self.toStyleStr(downSizedForTips = True))
 | 
| 
 | 
   424             self.col = ArrowColor.Transparent
 | 
| 
 | 
   425             self.applyTo(idOpt2, metabMap, self.toStyleStr(downSizedForTips = True)) #trasp
 | 
| 
 | 
   426 
 | 
| 
 | 
   427 
 | 
| 
 | 
   428     
 | 
| 
 | 
   429     def getMapReactionId(self, reactionId :str, mindReactionDir :bool) -> str:
 | 
| 
 | 
   430         """
 | 
| 
 | 
   431         Computes the reaction ID as encoded in the map for a given reaction ID from the dataset.
 | 
| 
 | 
   432 
 | 
| 
 | 
   433         Args:
 | 
| 
 | 
   434             reactionId: the reaction ID, as encoded in the dataset.
 | 
| 
 | 
   435             mindReactionDir: if True forward (F_) and backward (B_) directions will be encoded in the result.
 | 
| 
 | 
   436     
 | 
| 
 | 
   437         Returns:
 | 
| 
 | 
   438             str : the ID of an arrow's body or tips in the map.
 | 
| 
 | 
   439         """
 | 
| 
 | 
   440         # we assume the reactionIds also don't encode reaction dir if they don't mind it when styling the map.
 | 
| 
 | 
   441         if not mindReactionDir: return "R_" + reactionId
 | 
| 
 | 
   442 
 | 
| 
 | 
   443         #TODO: this is clearly something we need to make consistent in fluxes
 | 
| 
 | 
   444         return (reactionId[:-3:-1] + reactionId[:-2]) if reactionId[:-2] in ["_F", "_B"] else f"F_{reactionId}" # "Pyr_F" --> "F_Pyr"
 | 
| 
 | 
   445 
 | 
| 
 | 
   446     def toStyleStr(self, *, downSizedForTips = False) -> str:
 | 
| 
 | 
   447         """
 | 
| 
 | 
   448         Collapses the styles of this Arrow into a str, ready to be applied as part of the "style" property on an svg element.
 | 
| 
 | 
   449 
 | 
| 
 | 
   450         Returns:
 | 
| 
 | 
   451             str : the styles string.
 | 
| 
 | 
   452         """
 | 
| 
 | 
   453         width = self.w
 | 
| 
 | 
   454         if downSizedForTips: width *= 0.8
 | 
| 
 | 
   455         return f";stroke:{self.col};stroke-width:{width};stroke-dasharray:{'5,5' if self.dash else 'none'}"
 | 
| 
 | 
   456 
 | 
| 
 | 
   457 # vvv These constants could be inside the class itself a static properties, but python
 | 
| 
 | 
   458 # was built by brainless organisms so here we are!
 | 
| 
 | 
   459 INVALID_ARROW = Arrow(Arrow.MIN_W, ArrowColor.Invalid)
 | 
| 
 | 
   460 INSIGNIFICANT_ARROW = Arrow(Arrow.MIN_W, ArrowColor.Invalid, isDashed = True)
 | 
| 
 | 
   461 
 | 
| 
 | 
   462 def applyFluxesEnrichmentToMap(fluxesEnrichmentRes :Dict[str, Union[Tuple[float, FoldChange], Tuple[float, FoldChange, float, float]]], metabMap :ET.ElementTree, maxNumericZScore :float) -> None:
 | 
| 
 | 
   463     """
 | 
| 
 | 
   464     Applies fluxes enrichment results to the provided metabolic map.
 | 
| 
 | 
   465 
 | 
| 
 | 
   466     Args:
 | 
| 
 | 
   467         fluxesEnrichmentRes : fluxes enrichment results.
 | 
| 
 | 
   468         metabMap : the metabolic map to edit.
 | 
| 
 | 
   469         maxNumericZScore : biggest finite z-score value found.
 | 
| 
 | 
   470     
 | 
| 
 | 
   471     Side effects:
 | 
| 
 | 
   472         metabMap : mut
 | 
| 
 | 
   473     
 | 
| 
 | 
   474     Returns:
 | 
| 
 | 
   475         None
 | 
| 
 | 
   476     """
 | 
| 
 | 
   477     for reactionId, values in fluxesEnrichmentRes.items():
 | 
| 
 | 
   478         pValue = values[0]
 | 
| 
 | 
   479         foldChange = values[1]
 | 
| 
 | 
   480         z_score = values[2]
 | 
| 
 | 
   481 
 | 
| 
275
 | 
   482         if math.isnan(pValue) or (isinstance(foldChange, float) and math.isnan(foldChange)):
 | 
| 
 | 
   483             continue
 | 
| 
 | 
   484 
 | 
| 
4
 | 
   485         if isinstance(foldChange, str): foldChange = float(foldChange)
 | 
| 
 | 
   486         if pValue >= ARGS.pValue: # pValue above tresh: dashed arrow
 | 
| 
 | 
   487             INSIGNIFICANT_ARROW.styleReactionElements(metabMap, reactionId)
 | 
| 
 | 
   488             INSIGNIFICANT_ARROW.styleReactionElements(metabMap, reactionId, mindReactionDir = False)
 | 
| 
 | 
   489 
 | 
| 
 | 
   490             continue
 | 
| 
 | 
   491 
 | 
| 
 | 
   492         if abs(foldChange) <  (ARGS.fChange - 1) / (abs(ARGS.fChange) + 1):
 | 
| 
 | 
   493             INVALID_ARROW.styleReactionElements(metabMap, reactionId)
 | 
| 
 | 
   494             INVALID_ARROW.styleReactionElements(metabMap, reactionId, mindReactionDir = False)
 | 
| 
 | 
   495 
 | 
| 
 | 
   496             continue
 | 
| 
 | 
   497         
 | 
| 
 | 
   498         width = Arrow.MAX_W
 | 
| 
 | 
   499         if not math.isinf(foldChange):
 | 
| 
 | 
   500             try: 
 | 
| 
 | 
   501                 width = max(abs(z_score * Arrow.MAX_W) / maxNumericZScore, Arrow.MIN_W) 
 | 
| 
 | 
   502 
 | 
| 
 | 
   503             except ZeroDivisionError: pass
 | 
| 
185
 | 
   504         # TODO CHECK RV
 | 
| 
4
 | 
   505         #if not reactionId.endswith("_RV"): # RV stands for reversible reactions
 | 
| 
197
 | 
   506         #   Arrow(width, ArrowColor.fromFoldChangeSign(foldChange)).styleReactionElements(metabMap, reactionId)
 | 
| 
 | 
   507         #   continue
 | 
| 
4
 | 
   508         
 | 
| 
 | 
   509         #reactionId = reactionId[:-3] # Remove "_RV"
 | 
| 
 | 
   510         
 | 
| 
 | 
   511         inversionScore = (values[3] < 0) + (values[4] < 0) # Compacts the signs of averages into 1 easy to check score
 | 
| 
 | 
   512         if inversionScore == 2: foldChange *= -1
 | 
| 
 | 
   513         # ^^^ Style the inverse direction with the opposite sign netValue
 | 
| 
 | 
   514         
 | 
| 
 | 
   515         # If the score is 1 (opposite signs) we use alternative colors vvv
 | 
| 
 | 
   516         arrow = Arrow(width, ArrowColor.fromFoldChangeSign(foldChange, useAltColor = inversionScore == 1))
 | 
| 
 | 
   517         
 | 
| 
 | 
   518         # vvv These 2 if statements can both be true and can both happen
 | 
| 
 | 
   519         if ARGS.net: # style arrow head(s):
 | 
| 
 | 
   520             arrow.styleReactionElements(metabMap, reactionId + ("_B" if inversionScore == 2 else "_F"))
 | 
| 
 | 
   521             arrow.applyTo(("F_" if inversionScore == 2 else "B_") + reactionId, metabMap, f";stroke:{ArrowColor.Transparent};stroke-width:0;stroke-dasharray:None")
 | 
| 
 | 
   522 
 | 
| 
186
 | 
   523         arrow.styleReactionElements(metabMap, reactionId, mindReactionDir = False)
 | 
| 
4
 | 
   524 
 | 
| 
 | 
   525 
 | 
| 
 | 
   526 ############################ split class ######################################
 | 
| 
 | 
   527 def split_class(classes :pd.DataFrame, resolve_rules :Dict[str, List[float]]) -> Dict[str, List[List[float]]]:
 | 
| 
 | 
   528     """
 | 
| 
 | 
   529     Generates a :dict that groups together data from a :DataFrame based on classes the data is related to.
 | 
| 
 | 
   530 
 | 
| 
 | 
   531     Args:
 | 
| 
 | 
   532         classes : a :DataFrame of only string values, containing class information (rows) and keys to query the resolve_rules :dict
 | 
| 
 | 
   533         resolve_rules : a :dict containing :float data
 | 
| 
 | 
   534 
 | 
| 
 | 
   535     Returns:
 | 
| 
 | 
   536         dict : the dict with data grouped by class
 | 
| 
 | 
   537 
 | 
| 
 | 
   538     Side effects:
 | 
| 
 | 
   539         classes : mut
 | 
| 
 | 
   540     """
 | 
| 
 | 
   541     class_pat :Dict[str, List[List[float]]] = {}
 | 
| 
 | 
   542     for i in range(len(classes)):
 | 
| 
 | 
   543         classe :str = classes.iloc[i, 1]
 | 
| 
 | 
   544         if pd.isnull(classe): continue
 | 
| 
 | 
   545 
 | 
| 
 | 
   546         l :List[List[float]] = []
 | 
| 
 | 
   547         for j in range(i, len(classes)):
 | 
| 
 | 
   548             if classes.iloc[j, 1] == classe:
 | 
| 
 | 
   549                 pat_id :str = classes.iloc[j, 0]
 | 
| 
 | 
   550                 tmp = resolve_rules.get(pat_id, None)
 | 
| 
 | 
   551                 if tmp != None:
 | 
| 
 | 
   552                     l.append(tmp)
 | 
| 
 | 
   553                 classes.iloc[j, 1] = None
 | 
| 
 | 
   554         
 | 
| 
 | 
   555         if l:
 | 
| 
 | 
   556             class_pat[classe] = list(map(list, zip(*l)))
 | 
| 
 | 
   557             continue
 | 
| 
 | 
   558         
 | 
| 
 | 
   559         utils.logWarning(
 | 
| 
 | 
   560             f"Warning: no sample found in class \"{classe}\", the class has been disregarded", ARGS.out_log)
 | 
| 
 | 
   561     
 | 
| 
 | 
   562     return class_pat
 | 
| 
 | 
   563 
 | 
| 
 | 
   564 ############################ conversion ##############################################
 | 
| 
 | 
   565 #conversion from svg to png 
 | 
| 
 | 
   566 def svg_to_png_with_background(svg_path :utils.FilePath, png_path :utils.FilePath, dpi :int = 72, scale :int = 1, size :Optional[float] = None) -> None:
 | 
| 
 | 
   567     """
 | 
| 
 | 
   568     Internal utility to convert an SVG to PNG (forced opaque) to aid in PDF conversion.
 | 
| 
 | 
   569 
 | 
| 
 | 
   570     Args:
 | 
| 
 | 
   571         svg_path : path to SVG file
 | 
| 
 | 
   572         png_path : path for new PNG file
 | 
| 
 | 
   573         dpi : dots per inch of the generated PNG
 | 
| 
 | 
   574         scale : scaling factor for the generated PNG, computed internally when a size is provided
 | 
| 
 | 
   575         size : final effective width of the generated PNG
 | 
| 
 | 
   576 
 | 
| 
 | 
   577     Returns:
 | 
| 
 | 
   578         None
 | 
| 
 | 
   579     """
 | 
| 
 | 
   580     if size:
 | 
| 
 | 
   581         image = pyvips.Image.new_from_file(svg_path.show(), dpi=dpi, scale=1)
 | 
| 
 | 
   582         scale = size / image.width
 | 
| 
 | 
   583         image = image.resize(scale)
 | 
| 
 | 
   584     else:
 | 
| 
 | 
   585         image = pyvips.Image.new_from_file(svg_path.show(), dpi=dpi, scale=scale)
 | 
| 
 | 
   586 
 | 
| 
 | 
   587     white_background = pyvips.Image.black(image.width, image.height).new_from_image([255, 255, 255])
 | 
| 
 | 
   588     white_background = white_background.affine([scale, 0, 0, scale])
 | 
| 
 | 
   589 
 | 
| 
 | 
   590     if white_background.bands != image.bands:
 | 
| 
 | 
   591         white_background = white_background.extract_band(0)
 | 
| 
 | 
   592 
 | 
| 
 | 
   593     composite_image = white_background.composite2(image, 'over')
 | 
| 
 | 
   594     composite_image.write_to_file(png_path.show())
 | 
| 
 | 
   595 
 | 
| 
 | 
   596 #funzione unica, lascio fuori i file e li passo in input
 | 
| 
 | 
   597 #conversion from png to pdf
 | 
| 
 | 
   598 def convert_png_to_pdf(png_file :utils.FilePath, pdf_file :utils.FilePath) -> None:
 | 
| 
 | 
   599     """
 | 
| 
 | 
   600     Internal utility to convert a PNG to PDF to aid from SVG conversion.
 | 
| 
 | 
   601 
 | 
| 
 | 
   602     Args:
 | 
| 
 | 
   603         png_file : path to PNG file
 | 
| 
 | 
   604         pdf_file : path to new PDF file
 | 
| 
 | 
   605 
 | 
| 
 | 
   606     Returns:
 | 
| 
 | 
   607         None
 | 
| 
 | 
   608     """
 | 
| 
 | 
   609     image = Image.open(png_file.show())
 | 
| 
 | 
   610     image = image.convert("RGB")
 | 
| 
 | 
   611     image.save(pdf_file.show(), "PDF", resolution=100.0)
 | 
| 
 | 
   612 
 | 
| 
 | 
   613 #function called to reduce redundancy in the code
 | 
| 
 | 
   614 def convert_to_pdf(file_svg :utils.FilePath, file_png :utils.FilePath, file_pdf :utils.FilePath) -> None:
 | 
| 
 | 
   615     """
 | 
| 
 | 
   616     Converts the SVG map at the provided path to PDF.
 | 
| 
 | 
   617 
 | 
| 
 | 
   618     Args:
 | 
| 
 | 
   619         file_svg : path to SVG file
 | 
| 
 | 
   620         file_png : path to PNG file
 | 
| 
 | 
   621         file_pdf : path to new PDF file
 | 
| 
 | 
   622 
 | 
| 
 | 
   623     Returns:
 | 
| 
 | 
   624         None
 | 
| 
 | 
   625     """
 | 
| 
 | 
   626     svg_to_png_with_background(file_svg, file_png)
 | 
| 
 | 
   627     try:
 | 
| 
 | 
   628         convert_png_to_pdf(file_png, file_pdf)
 | 
| 
 | 
   629         print(f'PDF file {file_pdf.filePath} successfully generated.')
 | 
| 
 | 
   630     
 | 
| 
 | 
   631     except Exception as e:
 | 
| 
 | 
   632         raise utils.DataErr(file_pdf.show(), f'Error generating PDF file: {e}')
 | 
| 
 | 
   633 
 | 
| 
 | 
   634 ############################ map ##############################################
 | 
| 
 | 
   635 def buildOutputPath(dataset1Name :str, dataset2Name = "rest", *, details = "", ext :utils.FileFormat) -> utils.FilePath:
 | 
| 
 | 
   636     """
 | 
| 
 | 
   637     Builds a FilePath instance from the names of confronted datasets ready to point to a location in the
 | 
| 
 | 
   638     "result/" folder, used by this tool for output files in collections.
 | 
| 
 | 
   639 
 | 
| 
 | 
   640     Args:
 | 
| 
 | 
   641         dataset1Name : _description_
 | 
| 
 | 
   642         dataset2Name : _description_. Defaults to "rest".
 | 
| 
 | 
   643         details : _description_
 | 
| 
 | 
   644         ext : _description_
 | 
| 
 | 
   645 
 | 
| 
 | 
   646     Returns:
 | 
| 
 | 
   647         utils.FilePath : _description_
 | 
| 
 | 
   648     """
 | 
| 
 | 
   649     # This function returns a util data structure but is extremely specific to this module.
 | 
| 
 | 
   650     # RAS also uses collections as output and as such might benefit from a method like this, but I'd wait
 | 
| 
 | 
   651     # TODO: until a third tool with multiple outputs appears before porting this to utils.
 | 
| 
 | 
   652     return utils.FilePath(
 | 
| 
 | 
   653         f"{dataset1Name}_vs_{dataset2Name}" + (f" ({details})" if details else ""),
 | 
| 
 | 
   654         # ^^^ yes this string is built every time even if the form is the same for the same 2 datasets in
 | 
| 
 | 
   655         # all output files: I don't care, this was never the performance bottleneck of the tool and
 | 
| 
 | 
   656         # there is no other net gain in saving and re-using the built string.
 | 
| 
 | 
   657         ext,
 | 
| 
147
 | 
   658         prefix = ARGS.output_path)
 | 
| 
4
 | 
   659 
 | 
| 
 | 
   660 FIELD_NOT_AVAILABLE = '/'
 | 
| 
 | 
   661 def writeToCsv(rows: List[list], fieldNames :List[str], outPath :utils.FilePath) -> None:
 | 
| 
 | 
   662     fieldsAmt = len(fieldNames)
 | 
| 
 | 
   663     with open(outPath.show(), "w", newline = "") as fd:
 | 
| 
 | 
   664         writer = csv.DictWriter(fd, fieldnames = fieldNames, delimiter = '\t')
 | 
| 
 | 
   665         writer.writeheader()
 | 
| 
 | 
   666         
 | 
| 
 | 
   667         for row in rows:
 | 
| 
 | 
   668             sizeMismatch = fieldsAmt - len(row)
 | 
| 
 | 
   669             if sizeMismatch > 0: row.extend([FIELD_NOT_AVAILABLE] * sizeMismatch)
 | 
| 
 | 
   670             writer.writerow({ field : data for field, data in zip(fieldNames, row) })
 | 
| 
 | 
   671 
 | 
| 
 | 
   672 OldEnrichedScores = Dict[str, List[Union[float, FoldChange]]] #TODO: try to use Tuple whenever possible
 | 
| 
 | 
   673 def writeTabularResult(enrichedScores : OldEnrichedScores, outPath :utils.FilePath) -> None:
 | 
| 
199
 | 
   674     fieldNames = ["ids", "P_Value", "fold change", "z-score"]
 | 
| 
4
 | 
   675     fieldNames.extend(["average_1", "average_2"])
 | 
| 
 | 
   676 
 | 
| 
 | 
   677     writeToCsv([ [reactId] + values for reactId, values in enrichedScores.items() ], fieldNames, outPath)
 | 
| 
 | 
   678 
 | 
| 
 | 
   679 def temp_thingsInCommon(tmp :Dict[str, List[Union[float, FoldChange]]], core_map :ET.ElementTree, max_z_score :float, dataset1Name :str, dataset2Name = "rest") -> None:
 | 
| 
 | 
   680     # this function compiles the things always in common between comparison modes after enrichment.
 | 
| 
 | 
   681     # TODO: organize, name better.
 | 
| 
 | 
   682     writeTabularResult(tmp, buildOutputPath(dataset1Name, dataset2Name, details = "Tabular Result", ext = utils.FileFormat.TSV))
 | 
| 
 | 
   683     for reactId, enrichData in tmp.items(): tmp[reactId] = tuple(enrichData)
 | 
| 
 | 
   684     applyFluxesEnrichmentToMap(tmp, core_map, max_z_score)
 | 
| 
 | 
   685 
 | 
| 
 | 
   686 def computePValue(dataset1Data: List[float], dataset2Data: List[float]) -> Tuple[float, float]:
 | 
| 
 | 
   687     """
 | 
| 
 | 
   688     Computes the statistical significance score (P-value) of the comparison between coherent data
 | 
| 
 | 
   689     from two datasets. The data is supposed to, in both datasets:
 | 
| 
 | 
   690     - be related to the same reaction ID;
 | 
| 
 | 
   691     - be ordered by sample, such that the item at position i in both lists is related to the
 | 
| 
 | 
   692       same sample or cell line.
 | 
| 
 | 
   693 
 | 
| 
 | 
   694     Args:
 | 
| 
 | 
   695         dataset1Data : data from the 1st dataset.
 | 
| 
 | 
   696         dataset2Data : data from the 2nd dataset.
 | 
| 
 | 
   697 
 | 
| 
 | 
   698     Returns:
 | 
| 
 | 
   699         tuple: (P-value, Z-score)
 | 
| 
 | 
   700             - P-value from a Kolmogorov-Smirnov test on the provided data.
 | 
| 
 | 
   701             - Z-score of the difference between means of the two datasets.
 | 
| 
 | 
   702     """
 | 
| 
 | 
   703     # Perform Kolmogorov-Smirnov test
 | 
| 
 | 
   704     ks_statistic, p_value = st.ks_2samp(dataset1Data, dataset2Data)
 | 
| 
 | 
   705     
 | 
| 
 | 
   706     # Calculate means and standard deviations
 | 
| 
242
 | 
   707     mean1 = np.nanmean(dataset1Data)
 | 
| 
 | 
   708     mean2 = np.nanmean(dataset2Data)
 | 
| 
244
 | 
   709     std1 = np.nanstd(dataset1Data, ddof=1)
 | 
| 
 | 
   710     std2 = np.nanstd(dataset2Data, ddof=1)
 | 
| 
4
 | 
   711     
 | 
| 
 | 
   712     n1 = len(dataset1Data)
 | 
| 
 | 
   713     n2 = len(dataset2Data)
 | 
| 
 | 
   714     
 | 
| 
 | 
   715     # Calculate Z-score
 | 
| 
 | 
   716     z_score = (mean1 - mean2) / np.sqrt((std1**2 / n1) + (std2**2 / n2))
 | 
| 
 | 
   717     
 | 
| 
 | 
   718     return p_value, z_score
 | 
| 
 | 
   719 
 | 
| 
 | 
   720 def compareDatasetPair(dataset1Data :List[List[float]], dataset2Data :List[List[float]], ids :List[str]) -> Tuple[Dict[str, List[Union[float, FoldChange]]], float]:
 | 
| 
 | 
   721     #TODO: the following code still suffers from "dumbvarnames-osis"
 | 
| 
 | 
   722     tmp :Dict[str, List[Union[float, FoldChange]]] = {}
 | 
| 
 | 
   723     count   = 0
 | 
| 
 | 
   724     max_z_score = 0
 | 
| 
 | 
   725     for l1, l2 in zip(dataset1Data, dataset2Data):
 | 
| 
 | 
   726         reactId = ids[count]
 | 
| 
 | 
   727         count += 1
 | 
| 
 | 
   728         if not reactId: continue # we skip ids that have already been processed
 | 
| 
 | 
   729 
 | 
| 
 | 
   730         try: 
 | 
| 
 | 
   731             p_value, z_score = computePValue(l1, l2)
 | 
| 
 | 
   732             avg1 = sum(l1) / len(l1)
 | 
| 
 | 
   733             avg2 = sum(l2) / len(l2)
 | 
| 
197
 | 
   734             f_c = fold_change(avg1, avg2)
 | 
| 
4
 | 
   735             if not isinstance(z_score, str) and max_z_score < abs(z_score): max_z_score = abs(z_score)
 | 
| 
211
 | 
   736             
 | 
| 
197
 | 
   737             tmp[reactId] = [float(p_value), f_c, z_score, avg1, avg2]
 | 
| 
4
 | 
   738         except (TypeError, ZeroDivisionError): continue
 | 
| 
 | 
   739     
 | 
| 
 | 
   740     return tmp, max_z_score
 | 
| 
 | 
   741 
 | 
| 
151
 | 
   742 def computeEnrichment(class_pat :Dict[str, List[List[float]]], ids :List[str]) -> List[Tuple[str, str, dict, float]]:
 | 
| 
4
 | 
   743     """
 | 
| 
 | 
   744     Compares clustered data based on a given comparison mode and applies enrichment-based styling on the
 | 
| 
 | 
   745     provided metabolic map.
 | 
| 
 | 
   746 
 | 
| 
 | 
   747     Args:
 | 
| 
 | 
   748         class_pat : the clustered data.
 | 
| 
 | 
   749         ids : ids for data association.
 | 
| 
 | 
   750         
 | 
| 
 | 
   751 
 | 
| 
 | 
   752     Returns:
 | 
| 
148
 | 
   753         List[Tuple[str, str, dict, float]]: List of tuples with pairs of dataset names, comparison dictionary, and max z-score.
 | 
| 
4
 | 
   754 
 | 
| 
 | 
   755     Raises:
 | 
| 
 | 
   756         sys.exit : if there are less than 2 classes for comparison
 | 
| 
151
 | 
   757 
 | 
| 
4
 | 
   758     """
 | 
| 
 | 
   759     class_pat = { k.strip() : v for k, v in class_pat.items() }
 | 
| 
 | 
   760     #TODO: simplfy this stuff vvv and stop using sys.exit (raise the correct utils error)
 | 
| 
 | 
   761     if (not class_pat) or (len(class_pat.keys()) < 2): sys.exit('Execution aborted: classes provided for comparisons are less than two\n')
 | 
| 
 | 
   762 
 | 
| 
148
 | 
   763     enrichment_results = []
 | 
| 
 | 
   764 
 | 
| 
 | 
   765     
 | 
| 
4
 | 
   766     if ARGS.comparison == "manyvsmany":
 | 
| 
 | 
   767         for i, j in it.combinations(class_pat.keys(), 2):
 | 
| 
 | 
   768             comparisonDict, max_z_score = compareDatasetPair(class_pat.get(i), class_pat.get(j), ids)
 | 
| 
148
 | 
   769             enrichment_results.append((i, j, comparisonDict, max_z_score))
 | 
| 
4
 | 
   770     
 | 
| 
 | 
   771     elif ARGS.comparison == "onevsrest":
 | 
| 
 | 
   772         for single_cluster in class_pat.keys():
 | 
| 
148
 | 
   773             rest = [item for k, v in class_pat.items() if k != single_cluster for item in v]
 | 
| 
211
 | 
   774 
 | 
| 
4
 | 
   775             comparisonDict, max_z_score = compareDatasetPair(class_pat.get(single_cluster), rest, ids)
 | 
| 
148
 | 
   776             enrichment_results.append((single_cluster, "rest", comparisonDict, max_z_score))
 | 
| 
4
 | 
   777     
 | 
| 
 | 
   778     elif ARGS.comparison == "onevsmany":
 | 
| 
 | 
   779         controlItems = class_pat.get(ARGS.control)
 | 
| 
 | 
   780         for otherDataset in class_pat.keys():
 | 
| 
148
 | 
   781             if otherDataset == ARGS.control:
 | 
| 
 | 
   782                 continue
 | 
| 
4
 | 
   783             comparisonDict, max_z_score = compareDatasetPair(controlItems, class_pat.get(otherDataset), ids)
 | 
| 
148
 | 
   784             enrichment_results.append((ARGS.control, otherDataset, comparisonDict, max_z_score))
 | 
| 
 | 
   785     return enrichment_results
 | 
| 
4
 | 
   786 
 | 
| 
 | 
   787 def createOutputMaps(dataset1Name :str, dataset2Name :str, core_map :ET.ElementTree) -> None:
 | 
| 
148
 | 
   788     svgFilePath = buildOutputPath(dataset1Name, dataset2Name, details="SVG Map", ext=utils.FileFormat.SVG)
 | 
| 
4
 | 
   789     utils.writeSvg(svgFilePath, core_map)
 | 
| 
 | 
   790 
 | 
| 
 | 
   791     if ARGS.generate_pdf:
 | 
| 
148
 | 
   792         pngPath = buildOutputPath(dataset1Name, dataset2Name, details="PNG Map", ext=utils.FileFormat.PNG)
 | 
| 
 | 
   793         pdfPath = buildOutputPath(dataset1Name, dataset2Name, details="PDF Map", ext=utils.FileFormat.PDF)
 | 
| 
 | 
   794         convert_to_pdf(svgFilePath, pngPath, pdfPath)
 | 
| 
4
 | 
   795 
 | 
| 
148
 | 
   796     if not ARGS.generate_svg:
 | 
| 
 | 
   797         os.remove(svgFilePath.show())
 | 
| 
4
 | 
   798 
 | 
| 
 | 
   799 ClassPat = Dict[str, List[List[float]]]
 | 
| 
 | 
   800 def getClassesAndIdsFromDatasets(datasetsPaths :List[str], datasetPath :str, classPath :str, names :List[str]) -> Tuple[List[str], ClassPat]:
 | 
| 
 | 
   801     # TODO: I suggest creating dicts with ids as keys instead of keeping class_pat and ids separate,
 | 
| 
 | 
   802     # for the sake of everyone's sanity.
 | 
| 
 | 
   803     class_pat :ClassPat = {}
 | 
| 
 | 
   804     if ARGS.option == 'datasets':
 | 
| 
 | 
   805         num = 1 #TODO: the dataset naming function could be a generator
 | 
| 
 | 
   806         for path, name in zip(datasetsPaths, names):
 | 
| 
 | 
   807             name = name_dataset(name, num)
 | 
| 
 | 
   808             resolve_rules_float, ids = getDatasetValues(path, name)
 | 
| 
 | 
   809             if resolve_rules_float != None:
 | 
| 
 | 
   810                 class_pat[name] = list(map(list, zip(*resolve_rules_float.values())))
 | 
| 
 | 
   811         
 | 
| 
 | 
   812             num += 1
 | 
| 
 | 
   813     
 | 
| 
 | 
   814     elif ARGS.option == "dataset_class":
 | 
| 
 | 
   815         classes = read_dataset(classPath, "class")
 | 
| 
 | 
   816         classes = classes.astype(str)
 | 
| 
235
 | 
   817         resolve_rules_float, ids = getDatasetValues(datasetPath, "Dataset Class (not actual name)")
 | 
| 
234
 | 
   818         #check if classes have mathc on ids
 | 
| 
 | 
   819         if not all(classes.iloc[:, 0].isin(ids)):
 | 
| 
 | 
   820             utils.logWarning(
 | 
| 
 | 
   821             "No match between classes and sample IDs", ARGS.out_log)
 | 
| 
4
 | 
   822         if resolve_rules_float != None: class_pat = split_class(classes, resolve_rules_float)
 | 
| 
 | 
   823     
 | 
| 
 | 
   824     return ids, class_pat
 | 
| 
 | 
   825     #^^^ TODO: this could be a match statement over an enum, make it happen future marea dev with python 3.12! (it's why I kept the ifs)
 | 
| 
 | 
   826 
 | 
| 
 | 
   827 #TODO: create these damn args as FilePath objects
 | 
| 
 | 
   828 def getDatasetValues(datasetPath :str, datasetName :str) -> Tuple[ClassPat, List[str]]:
 | 
| 
 | 
   829     """
 | 
| 
 | 
   830     Opens the dataset at the given path and extracts the values (expected nullable numerics) and the IDs.
 | 
| 
 | 
   831 
 | 
| 
 | 
   832     Args:
 | 
| 
 | 
   833         datasetPath : path to the dataset
 | 
| 
 | 
   834         datasetName (str): dataset name, used in error reporting
 | 
| 
 | 
   835 
 | 
| 
 | 
   836     Returns:
 | 
| 
 | 
   837         Tuple[ClassPat, List[str]]: values and IDs extracted from the dataset
 | 
| 
 | 
   838     """
 | 
| 
 | 
   839     dataset = read_dataset(datasetPath, datasetName)
 | 
| 
240
 | 
   840     
 | 
| 
 | 
   841     # Ensure the first column is treated as the reaction name
 | 
| 
 | 
   842     dataset = dataset.set_index(dataset.columns[0])
 | 
| 
 | 
   843 
 | 
| 
 | 
   844     # Check if required reactions exist in the dataset
 | 
| 
 | 
   845     required_reactions = ['EX_lac__L_e', 'EX_glc__D_e', 'EX_gln__L_e', 'EX_glu__L_e']
 | 
| 
 | 
   846     missing_reactions = [reaction for reaction in required_reactions if reaction not in dataset.index]
 | 
| 
 | 
   847 
 | 
| 
 | 
   848     if missing_reactions:
 | 
| 
 | 
   849         sys.exit(f'Execution aborted: Missing required reactions {missing_reactions} in {datasetName}\n')
 | 
| 
 | 
   850 
 | 
| 
 | 
   851     # Calculate new rows using safe division
 | 
| 
 | 
   852     lact_glc = np.divide(
 | 
| 
241
 | 
   853         np.clip(dataset.loc['EX_lac__L_e'].to_numpy(), a_min=0, a_max=None),
 | 
| 
 | 
   854         np.clip(dataset.loc['EX_glc__D_e'].to_numpy(), a_min=None, a_max=0),
 | 
| 
 | 
   855         out=np.full_like(dataset.loc['EX_lac__L_e'].to_numpy(), np.nan),  # Prepara un array con NaN come output di default
 | 
| 
 | 
   856         where=dataset.loc['EX_glc__D_e'].to_numpy() != 0  # Condizione per evitare la divisione per zero
 | 
| 
240
 | 
   857     )
 | 
| 
 | 
   858     lact_gln = np.divide(
 | 
| 
241
 | 
   859         np.clip(dataset.loc['EX_lac__L_e'].to_numpy(), a_min=0, a_max=None),
 | 
| 
 | 
   860         np.clip(dataset.loc['EX_gln__L_e'].to_numpy(), a_min=None, a_max=0),
 | 
| 
 | 
   861         out=np.full_like(dataset.loc['EX_lac__L_e'].to_numpy(), np.nan), 
 | 
| 
 | 
   862         where=dataset.loc['EX_gln__L_e'].to_numpy() != 0
 | 
| 
 | 
   863     )
 | 
| 
 | 
   864     lact_o2 = np.divide(
 | 
| 
 | 
   865         np.clip(dataset.loc['EX_lac__L_e'].to_numpy(), a_min=0, a_max=None),
 | 
| 
 | 
   866         np.clip(dataset.loc['EX_o2_e'].to_numpy(), a_min=None, a_max=0),
 | 
| 
 | 
   867         out=np.full_like(dataset.loc['EX_lac__L_e'].to_numpy(), np.nan), 
 | 
| 
 | 
   868         where=dataset.loc['EX_o2_e'].to_numpy() != 0
 | 
| 
240
 | 
   869     )
 | 
| 
 | 
   870     glu_gln = np.divide(
 | 
| 
241
 | 
   871         dataset.loc['EX_glu__L_e'].to_numpy(),
 | 
| 
 | 
   872         np.clip(dataset.loc['EX_gln__L_e'].to_numpy(), a_min=None, a_max=0), 
 | 
| 
 | 
   873         out=np.full_like(dataset.loc['EX_lac__L_e'].to_numpy(), np.nan),
 | 
| 
 | 
   874         where=dataset.loc['EX_gln__L_e'].to_numpy() != 0
 | 
| 
240
 | 
   875     )
 | 
| 
 | 
   876 
 | 
| 
253
 | 
   877 
 | 
| 
246
 | 
   878     values = {'lact_glc': lact_glc, 'lact_gln': lact_gln, 'lact_o2': lact_o2, 'glu_gln': glu_gln}
 | 
| 
 | 
   879    
 | 
| 
 | 
   880     # Sostituzione di inf e NaN con 0 se necessario
 | 
| 
253
 | 
   881     for key in values:
 | 
| 
 | 
   882         values[key] = np.nan_to_num(values[key], nan=0.0, posinf=0.0, neginf=0.0)
 | 
| 
245
 | 
   883 
 | 
| 
246
 | 
   884     # Creazione delle nuove righe da aggiungere al dataset
 | 
| 
240
 | 
   885     new_rows = pd.DataFrame({
 | 
| 
246
 | 
   886         dataset.index.name: ['LactGlc', 'LactGln', 'LactO2', 'GluGln'],
 | 
| 
 | 
   887         **{col: [values['lact_glc'][i], values['lact_gln'][i], values['lact_o2'][i], values['glu_gln'][i]] 
 | 
| 
 | 
   888            for i, col in enumerate(dataset.columns)}
 | 
| 
240
 | 
   889     })
 | 
| 
 | 
   890 
 | 
| 
254
 | 
   891     print(new_rows)
 | 
| 
 | 
   892 
 | 
| 
246
 | 
   893     # Ritorna il dataset originale con le nuove righe
 | 
| 
240
 | 
   894     dataset.reset_index(inplace=True)
 | 
| 
 | 
   895     dataset = pd.concat([dataset, new_rows], ignore_index=True)
 | 
| 
 | 
   896 
 | 
| 
4
 | 
   897     IDs = pd.Series.tolist(dataset.iloc[:, 0].astype(str))
 | 
| 
 | 
   898 
 | 
| 
 | 
   899     dataset = dataset.drop(dataset.columns[0], axis = "columns").to_dict("list")
 | 
| 
 | 
   900     return { id : list(map(utils.Float("Dataset values, not an argument"), values)) for id, values in dataset.items() }, IDs
 | 
| 
 | 
   901 
 | 
| 
 | 
   902 def rgb_to_hex(rgb):
 | 
| 
 | 
   903     """
 | 
| 
 | 
   904     Convert RGB values (0-1 range) to hexadecimal color format.
 | 
| 
 | 
   905 
 | 
| 
 | 
   906     Args:
 | 
| 
 | 
   907         rgb (numpy.ndarray): An array of RGB color components (in the range [0, 1]).
 | 
| 
 | 
   908 
 | 
| 
 | 
   909     Returns:
 | 
| 
 | 
   910         str: The color in hexadecimal format (e.g., '#ff0000' for red).
 | 
| 
 | 
   911     """
 | 
| 
 | 
   912     # Convert RGB values (0-1 range) to hexadecimal format
 | 
| 
 | 
   913     rgb = (np.array(rgb) * 255).astype(int)
 | 
| 
 | 
   914     return '#{:02x}{:02x}{:02x}'.format(rgb[0], rgb[1], rgb[2])
 | 
| 
 | 
   915 
 | 
| 
 | 
   916 
 | 
| 
 | 
   917 
 | 
| 
 | 
   918 def save_colormap_image(min_value: float, max_value: float, path: utils.FilePath, colorMap:str="viridis"):
 | 
| 
 | 
   919     """
 | 
| 
 | 
   920     Create and save an image of the colormap showing the gradient and its range.
 | 
| 
 | 
   921 
 | 
| 
 | 
   922     Args:
 | 
| 
 | 
   923         min_value (float): The minimum value of the colormap range.
 | 
| 
 | 
   924         max_value (float): The maximum value of the colormap range.
 | 
| 
 | 
   925         filename (str): The filename for saving the image.
 | 
| 
 | 
   926     """
 | 
| 
 | 
   927 
 | 
| 
 | 
   928     # Create a colormap using matplotlib
 | 
| 
 | 
   929     cmap = plt.get_cmap(colorMap)
 | 
| 
 | 
   930 
 | 
| 
 | 
   931     # Create a figure and axis
 | 
| 
 | 
   932     fig, ax = plt.subplots(figsize=(6, 1))
 | 
| 
 | 
   933     fig.subplots_adjust(bottom=0.5)
 | 
| 
 | 
   934 
 | 
| 
 | 
   935     # Create a gradient image
 | 
| 
 | 
   936     gradient = np.linspace(0, 1, 256)
 | 
| 
 | 
   937     gradient = np.vstack((gradient, gradient))
 | 
| 
 | 
   938 
 | 
| 
 | 
   939     # Add min and max value annotations
 | 
| 
 | 
   940     ax.text(0, 0.5, f'{np.round(min_value, 3)}', va='center', ha='right', transform=ax.transAxes, fontsize=12, color='black')
 | 
| 
 | 
   941     ax.text(1, 0.5, f'{np.round(max_value, 3)}', va='center', ha='left', transform=ax.transAxes, fontsize=12, color='black')
 | 
| 
 | 
   942 
 | 
| 
 | 
   943 
 | 
| 
 | 
   944     # Display the gradient image
 | 
| 
 | 
   945     ax.imshow(gradient, aspect='auto', cmap=cmap)
 | 
| 
 | 
   946     ax.set_axis_off()
 | 
| 
 | 
   947 
 | 
| 
 | 
   948     # Save the image
 | 
| 
 | 
   949     plt.savefig(path.show(), bbox_inches='tight', pad_inches=0)
 | 
| 
 | 
   950     plt.close()
 | 
| 
 | 
   951     pass
 | 
| 
 | 
   952 
 | 
| 
 | 
   953 def min_nonzero_abs(arr):
 | 
| 
 | 
   954     # Flatten the array and filter out zeros, then find the minimum of the remaining values
 | 
| 
 | 
   955     non_zero_elements = np.abs(arr)[np.abs(arr) > 0]
 | 
| 
 | 
   956     return np.min(non_zero_elements) if non_zero_elements.size > 0 else None
 | 
| 
 | 
   957 
 | 
| 
 | 
   958 def computeEnrichmentMeanMedian(metabMap: ET.ElementTree, class_pat: Dict[str, List[List[float]]], ids: List[str], colormap:str) -> None:
 | 
| 
 | 
   959     """
 | 
| 
 | 
   960     Compute and visualize the metabolic map based on mean and median of the input fluxes.
 | 
| 
168
 | 
   961     The fluxes are normalised across classes/datasets and visualised using the given colormap.
 | 
| 
4
 | 
   962 
 | 
| 
 | 
   963     Args:
 | 
| 
 | 
   964         metabMap (ET.ElementTree): An XML tree representing the metabolic map.
 | 
| 
 | 
   965         class_pat (Dict[str, List[List[float]]]): A dictionary where keys are class names and values are lists of enrichment values.
 | 
| 
 | 
   966         ids (List[str]): A list of reaction IDs to be used for coloring arrows.
 | 
| 
 | 
   967     
 | 
| 
 | 
   968     Returns:
 | 
| 
 | 
   969         None
 | 
| 
 | 
   970     """
 | 
| 
 | 
   971     # Create copies only if they are needed
 | 
| 
 | 
   972     metabMap_mean = copy.deepcopy(metabMap)
 | 
| 
 | 
   973     metabMap_median = copy.deepcopy(metabMap)
 | 
| 
 | 
   974 
 | 
| 
 | 
   975     # Compute medians and means
 | 
| 
242
 | 
   976     medians = {key: np.round(np.nanmedian(np.array(value), axis=1), 6) for key, value in class_pat.items()}
 | 
| 
 | 
   977     means = {key: np.round(np.nanmean(np.array(value), axis=1),6) for key, value in class_pat.items()}
 | 
| 
4
 | 
   978 
 | 
| 
 | 
   979     # Normalize medians and means
 | 
| 
 | 
   980     max_flux_medians = max(np.max(np.abs(arr)) for arr in medians.values())
 | 
| 
 | 
   981     max_flux_means = max(np.max(np.abs(arr)) for arr in means.values())
 | 
| 
 | 
   982 
 | 
| 
168
 | 
   983     min_flux_medians = min(min_nonzero_abs(arr) for arr in medians.values())
 | 
| 
 | 
   984     min_flux_means = min(min_nonzero_abs(arr) for arr in means.values())
 | 
| 
4
 | 
   985 
 | 
| 
168
 | 
   986     medians = {key: median/max_flux_medians for key, median in medians.items()}
 | 
| 
 | 
   987     means = {key: mean/max_flux_means for key, mean in means.items()}
 | 
| 
4
 | 
   988 
 | 
| 
147
 | 
   989     save_colormap_image(min_flux_medians, max_flux_medians, utils.FilePath("Color map median", ext=utils.FileFormat.PNG, prefix=ARGS.output_path), colormap)
 | 
| 
 | 
   990     save_colormap_image(min_flux_means, max_flux_means, utils.FilePath("Color map mean", ext=utils.FileFormat.PNG, prefix=ARGS.output_path), colormap)
 | 
| 
4
 | 
   991 
 | 
| 
 | 
   992     cmap = plt.get_cmap(colormap)
 | 
| 
 | 
   993 
 | 
| 
240
 | 
   994     min_width = 2.0  # Minimum arrow width
 | 
| 
 | 
   995     max_width = 15.0  # Maximum arrow width
 | 
| 
 | 
   996 
 | 
| 
4
 | 
   997     for key in class_pat:
 | 
| 
 | 
   998         # Create color mappings for median and mean
 | 
| 
 | 
   999         colors_median = {
 | 
| 
168
 | 
  1000             rxn_id: rgb_to_hex(cmap(abs(medians[key][i]))) if medians[key][i] != 0 else '#bebebe'  #grey blocked
 | 
| 
4
 | 
  1001             for i, rxn_id in enumerate(ids)
 | 
| 
 | 
  1002         }
 | 
| 
 | 
  1003 
 | 
| 
 | 
  1004         colors_mean = {
 | 
| 
168
 | 
  1005             rxn_id: rgb_to_hex(cmap(abs(means[key][i]))) if means[key][i] != 0 else '#bebebe'  #grey blocked
 | 
| 
4
 | 
  1006             for i, rxn_id in enumerate(ids)
 | 
| 
 | 
  1007         }
 | 
| 
 | 
  1008 
 | 
| 
 | 
  1009         for i, rxn_id in enumerate(ids):
 | 
| 
240
 | 
  1010             # Calculate arrow width for median
 | 
| 
 | 
  1011             width_median = np.interp(abs(medians[key][i]), [0, 1], [min_width, max_width])
 | 
| 
4
 | 
  1012             isNegative = medians[key][i] < 0
 | 
| 
240
 | 
  1013             apply_arrow(metabMap_median, rxn_id, colors_median[rxn_id], isNegative, width_median)
 | 
| 
4
 | 
  1014 
 | 
| 
240
 | 
  1015             # Calculate arrow width for mean
 | 
| 
 | 
  1016             width_mean = np.interp(abs(means[key][i]), [0, 1], [min_width, max_width])
 | 
| 
4
 | 
  1017             isNegative = means[key][i] < 0
 | 
| 
240
 | 
  1018             apply_arrow(metabMap_mean, rxn_id, colors_mean[rxn_id], isNegative, width_mean)
 | 
| 
4
 | 
  1019 
 | 
| 
 | 
  1020         # Save and convert the SVG files
 | 
| 
 | 
  1021         save_and_convert(metabMap_mean, "mean", key)
 | 
| 
 | 
  1022         save_and_convert(metabMap_median, "median", key)
 | 
| 
 | 
  1023 
 | 
| 
240
 | 
  1024 def apply_arrow(metabMap, rxn_id, color, isNegative, width=5):
 | 
| 
4
 | 
  1025     """
 | 
| 
 | 
  1026     Apply an arrow to a specific reaction in the metabolic map with a given color.
 | 
| 
 | 
  1027 
 | 
| 
 | 
  1028     Args:
 | 
| 
 | 
  1029         metabMap (ET.ElementTree): An XML tree representing the metabolic map.
 | 
| 
 | 
  1030         rxn_id (str): The ID of the reaction to which the arrow will be applied.
 | 
| 
 | 
  1031         color (str): The color of the arrow in hexadecimal format.
 | 
| 
240
 | 
  1032         isNegative (bool): A boolean indicating if the arrow represents a negative value.
 | 
| 
 | 
  1033         width (int): The width of the arrow.
 | 
| 
4
 | 
  1034 
 | 
| 
 | 
  1035     Returns:
 | 
| 
 | 
  1036         None
 | 
| 
 | 
  1037     """
 | 
| 
240
 | 
  1038     arrow = Arrow(width=width, col=color)
 | 
| 
4
 | 
  1039     arrow.styleReactionElementsMeanMedian(metabMap, rxn_id, isNegative)
 | 
| 
 | 
  1040     pass
 | 
| 
 | 
  1041 
 | 
| 
 | 
  1042 def save_and_convert(metabMap, map_type, key):
 | 
| 
 | 
  1043     """
 | 
| 
 | 
  1044     Save the metabolic map as an SVG file and optionally convert it to PNG and PDF formats.
 | 
| 
 | 
  1045 
 | 
| 
 | 
  1046     Args:
 | 
| 
 | 
  1047         metabMap (ET.ElementTree): An XML tree representing the metabolic map.
 | 
| 
 | 
  1048         map_type (str): The type of map ('mean' or 'median').
 | 
| 
 | 
  1049         key (str): The key identifying the specific map.
 | 
| 
 | 
  1050 
 | 
| 
 | 
  1051     Returns:
 | 
| 
 | 
  1052         None
 | 
| 
 | 
  1053     """
 | 
| 
147
 | 
  1054     svgFilePath = utils.FilePath(f"SVG Map {map_type} - {key}", ext=utils.FileFormat.SVG, prefix=ARGS.output_path)
 | 
| 
4
 | 
  1055     utils.writeSvg(svgFilePath, metabMap)
 | 
| 
 | 
  1056     if ARGS.generate_pdf:
 | 
| 
147
 | 
  1057         pngPath = utils.FilePath(f"PNG Map {map_type} - {key}", ext=utils.FileFormat.PNG, prefix=ARGS.output_path)
 | 
| 
 | 
  1058         pdfPath = utils.FilePath(f"PDF Map {map_type} - {key}", ext=utils.FileFormat.PDF, prefix=ARGS.output_path)
 | 
| 
4
 | 
  1059         convert_to_pdf(svgFilePath, pngPath, pdfPath)
 | 
| 
 | 
  1060     if not ARGS.generate_svg:
 | 
| 
 | 
  1061         os.remove(svgFilePath.show())
 | 
| 
 | 
  1062 
 | 
| 
 | 
  1063     
 | 
| 
 | 
  1064 ############################ MAIN #############################################
 | 
| 
147
 | 
  1065 def main(args:List[str] = None) -> None:
 | 
| 
4
 | 
  1066     """
 | 
| 
 | 
  1067     Initializes everything and sets the program in motion based on the fronted input arguments.
 | 
| 
 | 
  1068 
 | 
| 
 | 
  1069     Returns:
 | 
| 
 | 
  1070         None
 | 
| 
 | 
  1071     
 | 
| 
 | 
  1072     Raises:
 | 
| 
 | 
  1073         sys.exit : if a user-provided custom map is in the wrong format (ET.XMLSyntaxError, ET.XMLSchemaParseError)
 | 
| 
 | 
  1074     """
 | 
| 
 | 
  1075 
 | 
| 
 | 
  1076     global ARGS
 | 
| 
147
 | 
  1077     ARGS = process_args(args)
 | 
| 
4
 | 
  1078 
 | 
| 
240
 | 
  1079     if ARGS.custom_map == 'None':
 | 
| 
 | 
  1080         ARGS.custom_map = None
 | 
| 
 | 
  1081 
 | 
| 
147
 | 
  1082     if os.path.isdir(ARGS.output_path) == False: os.makedirs(ARGS.output_path)
 | 
| 
4
 | 
  1083     
 | 
| 
 | 
  1084     core_map :ET.ElementTree = ARGS.choice_map.getMap(
 | 
| 
 | 
  1085         ARGS.tool_dir,
 | 
| 
 | 
  1086         utils.FilePath.fromStrPath(ARGS.custom_map) if ARGS.custom_map else None)
 | 
| 
 | 
  1087     # TODO: ^^^ ugly but fine for now, the argument is None if the model isn't custom because no file was given.
 | 
| 
 | 
  1088     # getMap will None-check the customPath and panic when the model IS custom but there's no file (good). A cleaner
 | 
| 
 | 
  1089     # solution can be derived from my comment in FilePath.fromStrPath
 | 
| 
 | 
  1090 
 | 
| 
 | 
  1091     ids, class_pat = getClassesAndIdsFromDatasets(ARGS.input_datas_fluxes, ARGS.input_data_fluxes, ARGS.input_class_fluxes, ARGS.names_fluxes)
 | 
| 
 | 
  1092 
 | 
| 
 | 
  1093     if(ARGS.choice_map == utils.Model.HMRcore):
 | 
| 
 | 
  1094         temp_map = utils.Model.HMRcore_no_legend
 | 
| 
 | 
  1095         computeEnrichmentMeanMedian(temp_map.getMap(ARGS.tool_dir), class_pat, ids, ARGS.color_map)
 | 
| 
 | 
  1096     elif(ARGS.choice_map == utils.Model.ENGRO2):
 | 
| 
 | 
  1097         temp_map = utils.Model.ENGRO2_no_legend
 | 
| 
 | 
  1098         computeEnrichmentMeanMedian(temp_map.getMap(ARGS.tool_dir), class_pat, ids, ARGS.color_map)
 | 
| 
 | 
  1099     else:
 | 
| 
 | 
  1100         computeEnrichmentMeanMedian(core_map, class_pat, ids, ARGS.color_map)
 | 
| 
148
 | 
  1101 
 | 
| 
4
 | 
  1102 
 | 
| 
151
 | 
  1103     enrichment_results = computeEnrichment(class_pat, ids)
 | 
| 
148
 | 
  1104     for i, j, comparisonDict, max_z_score in enrichment_results:
 | 
| 
 | 
  1105         map_copy = copy.deepcopy(core_map)
 | 
| 
 | 
  1106         temp_thingsInCommon(comparisonDict, map_copy, max_z_score, i, j)
 | 
| 
 | 
  1107         createOutputMaps(i, j, map_copy)
 | 
| 
4
 | 
  1108     
 | 
| 
 | 
  1109     if not ERRORS: return
 | 
| 
 | 
  1110     utils.logWarning(
 | 
| 
 | 
  1111         f"The following reaction IDs were mentioned in the dataset but weren't found in the map: {ERRORS}",
 | 
| 
 | 
  1112         ARGS.out_log)
 | 
| 
 | 
  1113     
 | 
| 
 | 
  1114     print('Execution succeded')
 | 
| 
 | 
  1115 
 | 
| 
 | 
  1116 ###############################################################################
 | 
| 
 | 
  1117 if __name__ == "__main__":
 | 
| 
148
 | 
  1118     main()
 | 
| 
 | 
  1119 
 |