| 93 | 1 from __future__ import division | 
|  | 2 # galaxy complains this ^^^ needs to be at the very beginning of the file, for some reason. | 
|  | 3 import sys | 
|  | 4 import argparse | 
|  | 5 import collections | 
|  | 6 import pandas as pd | 
|  | 7 import pickle as pk | 
|  | 8 import utils.general_utils as utils | 
|  | 9 import utils.rule_parsing as ruleUtils | 
|  | 10 from typing import Union, Optional, List, Dict, Tuple, TypeVar | 
| 309 | 11 import os | 
| 93 | 12 | 
|  | 13 ERRORS = [] | 
|  | 14 ########################## argparse ########################################## | 
|  | 15 ARGS :argparse.Namespace | 
| 147 | 16 def process_args(args:List[str] = None) -> argparse.Namespace: | 
| 93 | 17     """ | 
|  | 18     Processes command-line arguments. | 
|  | 19 | 
|  | 20     Args: | 
|  | 21         args (list): List of command-line arguments. | 
|  | 22 | 
|  | 23     Returns: | 
|  | 24         Namespace: An object containing parsed arguments. | 
|  | 25     """ | 
|  | 26     parser = argparse.ArgumentParser( | 
|  | 27         usage = '%(prog)s [options]', | 
|  | 28         description = "process some value's genes to create a comparison's map.") | 
|  | 29 | 
|  | 30     parser.add_argument( | 
|  | 31         '-rs', '--rules_selector', | 
| 265 | 32         type = utils.Model, default = utils.Model.ENGRO2, choices = list(utils.Model), | 
| 93 | 33         help = 'chose which type of dataset you want use') | 
|  | 34 | 
|  | 35     parser.add_argument("-rl", "--rule_list", type = str, | 
|  | 36         help = "path to input file with custom rules, if provided") | 
|  | 37 | 
|  | 38     parser.add_argument("-rn", "--rules_name", type = str, help = "custom rules name") | 
|  | 39     # ^ I need this because galaxy converts my files into .dat but I need to know what extension they were in | 
|  | 40 | 
|  | 41     parser.add_argument( | 
|  | 42         '-n', '--none', | 
|  | 43         type = utils.Bool("none"), default = True, | 
|  | 44         help = 'compute Nan values') | 
|  | 45 | 
|  | 46     parser.add_argument( | 
|  | 47         '-td', '--tool_dir', | 
|  | 48         type = str, | 
|  | 49         required = True, help = 'your tool directory') | 
|  | 50 | 
|  | 51     parser.add_argument( | 
|  | 52         '-ol', '--out_log', | 
|  | 53         type = str, | 
|  | 54         help = "Output log") | 
|  | 55 | 
|  | 56     parser.add_argument( | 
|  | 57         '-in', '--input', #id รจ diventato in | 
|  | 58         type = str, | 
|  | 59         help = 'input dataset') | 
|  | 60 | 
|  | 61     parser.add_argument( | 
|  | 62         '-ra', '--ras_output', | 
|  | 63         type = str, | 
|  | 64         required = True, help = 'ras output') | 
| 147 | 65 | 
| 93 | 66 | 
| 147 | 67     return parser.parse_args(args) | 
| 93 | 68 | 
|  | 69 ############################ dataset input #################################### | 
|  | 70 def read_dataset(data :str, name :str) -> pd.DataFrame: | 
|  | 71     """ | 
|  | 72     Read a dataset from a CSV file and return it as a pandas DataFrame. | 
|  | 73 | 
|  | 74     Args: | 
|  | 75         data (str): Path to the CSV file containing the dataset. | 
|  | 76         name (str): Name of the dataset, used in error messages. | 
|  | 77 | 
|  | 78     Returns: | 
|  | 79         pandas.DataFrame: DataFrame containing the dataset. | 
|  | 80 | 
|  | 81     Raises: | 
|  | 82         pd.errors.EmptyDataError: If the CSV file is empty. | 
|  | 83         sys.exit: If the CSV file has the wrong format, the execution is aborted. | 
|  | 84     """ | 
|  | 85     try: | 
|  | 86         dataset = pd.read_csv(data, sep = '\t', header = 0, engine='python') | 
|  | 87     except pd.errors.EmptyDataError: | 
|  | 88         sys.exit('Execution aborted: wrong format of ' + name + '\n') | 
|  | 89     if len(dataset.columns) < 2: | 
|  | 90         sys.exit('Execution aborted: wrong format of ' + name + '\n') | 
|  | 91     return dataset | 
|  | 92 | 
|  | 93 ############################ load id e rules ################################## | 
|  | 94 def load_id_rules(reactions :Dict[str, Dict[str, List[str]]]) -> Tuple[List[str], List[Dict[str, List[str]]]]: | 
|  | 95     """ | 
|  | 96     Load IDs and rules from a dictionary of reactions. | 
|  | 97 | 
|  | 98     Args: | 
|  | 99         reactions (dict): A dictionary where keys are IDs and values are rules. | 
|  | 100 | 
|  | 101     Returns: | 
|  | 102         tuple: A tuple containing two lists, the first list containing IDs and the second list containing rules. | 
|  | 103     """ | 
|  | 104     ids, rules = [], [] | 
|  | 105     for key, value in reactions.items(): | 
|  | 106             ids.append(key) | 
|  | 107             rules.append(value) | 
|  | 108     return (ids, rules) | 
|  | 109 | 
|  | 110 ############################ check_methods #################################### | 
|  | 111 def gene_type(l :str, name :str) -> str: | 
|  | 112     """ | 
|  | 113     Determine the type of gene ID. | 
|  | 114 | 
|  | 115     Args: | 
|  | 116         l (str): The gene identifier to check. | 
|  | 117         name (str): The name of the dataset, used in error messages. | 
|  | 118 | 
|  | 119     Returns: | 
|  | 120         str: The type of gene ID ('hugo_id', 'ensembl_gene_id', 'symbol', or 'entrez_id'). | 
|  | 121 | 
|  | 122     Raises: | 
|  | 123         sys.exit: If the gene ID type is not supported, the execution is aborted. | 
|  | 124     """ | 
|  | 125     if check_hgnc(l): | 
|  | 126         return 'hugo_id' | 
|  | 127     elif check_ensembl(l): | 
|  | 128         return 'ensembl_gene_id' | 
|  | 129     elif check_symbol(l): | 
|  | 130         return 'symbol' | 
|  | 131     elif check_entrez(l): | 
|  | 132         return 'entrez_id' | 
|  | 133     else: | 
|  | 134         sys.exit('Execution aborted:\n' + | 
|  | 135                  'gene ID type in ' + name + ' not supported. Supported ID'+ | 
|  | 136                  'types are: HUGO ID, Ensemble ID, HUGO symbol, Entrez ID\n') | 
|  | 137 | 
|  | 138 def check_hgnc(l :str) -> bool: | 
|  | 139     """ | 
|  | 140     Check if a gene identifier follows the HGNC format. | 
|  | 141 | 
|  | 142     Args: | 
|  | 143         l (str): The gene identifier to check. | 
|  | 144 | 
|  | 145     Returns: | 
|  | 146         bool: True if the gene identifier follows the HGNC format, False otherwise. | 
|  | 147     """ | 
|  | 148     if len(l) > 5: | 
|  | 149         if (l.upper()).startswith('HGNC:'): | 
|  | 150             return l[5:].isdigit() | 
|  | 151         else: | 
|  | 152             return False | 
|  | 153     else: | 
|  | 154         return False | 
|  | 155 | 
|  | 156 def check_ensembl(l :str) -> bool: | 
|  | 157     """ | 
|  | 158     Check if a gene identifier follows the Ensembl format. | 
|  | 159 | 
|  | 160     Args: | 
|  | 161         l (str): The gene identifier to check. | 
|  | 162 | 
|  | 163     Returns: | 
|  | 164         bool: True if the gene identifier follows the Ensembl format, False otherwise. | 
|  | 165     """ | 
|  | 166     return l.upper().startswith('ENS') | 
|  | 167 | 
|  | 168 | 
|  | 169 def check_symbol(l :str) -> bool: | 
|  | 170     """ | 
|  | 171     Check if a gene identifier follows the symbol format. | 
|  | 172 | 
|  | 173     Args: | 
|  | 174         l (str): The gene identifier to check. | 
|  | 175 | 
|  | 176     Returns: | 
|  | 177         bool: True if the gene identifier follows the symbol format, False otherwise. | 
|  | 178     """ | 
|  | 179     if len(l) > 0: | 
|  | 180         if l[0].isalpha() and l[1:].isalnum(): | 
|  | 181             return True | 
|  | 182         else: | 
|  | 183             return False | 
|  | 184     else: | 
|  | 185         return False | 
|  | 186 | 
|  | 187 def check_entrez(l :str) -> bool: | 
|  | 188     """ | 
|  | 189     Check if a gene identifier follows the Entrez ID format. | 
|  | 190 | 
|  | 191     Args: | 
|  | 192         l (str): The gene identifier to check. | 
|  | 193 | 
|  | 194     Returns: | 
|  | 195         bool: True if the gene identifier follows the Entrez ID format, False otherwise. | 
|  | 196     """ | 
|  | 197     if len(l) > 0: | 
|  | 198         return l.isdigit() | 
|  | 199     else: | 
|  | 200         return False | 
|  | 201 | 
|  | 202 ############################ gene ############################################# | 
|  | 203 def data_gene(gene: pd.DataFrame, type_gene: str, name: str, gene_custom: Optional[Dict[str, str]]) -> Dict[str, str]: | 
|  | 204     """ | 
|  | 205     Process gene data to ensure correct formatting and handle duplicates. | 
|  | 206 | 
|  | 207     Args: | 
|  | 208         gene (DataFrame): DataFrame containing gene data. | 
|  | 209         type_gene (str): Type of gene data (e.g., 'hugo_id', 'ensembl_gene_id', 'symbol', 'entrez_id'). | 
|  | 210         name (str): Name of the dataset. | 
|  | 211         gene_custom (dict or None): Custom gene data dictionary if provided. | 
|  | 212 | 
|  | 213     Returns: | 
|  | 214         dict: A dictionary containing gene data with gene IDs as keys and corresponding values. | 
|  | 215     """ | 
| 309 | 216 | 
| 93 | 217     for i in range(len(gene)): | 
|  | 218         tmp = gene.iloc[i, 0] | 
|  | 219         gene.iloc[i, 0] = tmp.strip().split('.')[0] | 
|  | 220 | 
|  | 221     gene_dup = [item for item, count in | 
|  | 222                collections.Counter(gene[gene.columns[0]]).items() if count > 1] | 
|  | 223     pat_dup = [item for item, count in | 
|  | 224                collections.Counter(list(gene.columns)).items() if count > 1] | 
| 260 | 225 | 
|  | 226     gene_in_rule = None | 
| 259 | 227 | 
| 93 | 228     if gene_dup: | 
|  | 229         if gene_custom == None: | 
| 264 | 230 | 
| 309 | 231             if str(ARGS.rules_selector) == 'HMRcore': | 
|  | 232                 gene_in_rule = pk.load(open(ARGS.tool_dir + '/local/pickle files/HMRcore_genes.p', 'rb')) | 
| 93 | 233 | 
| 309 | 234             elif str(ARGS.rules_selector) == 'Recon': | 
|  | 235                 gene_in_rule = pk.load(open(ARGS.tool_dir + '/local/pickle files/Recon_genes.p', 'rb')) | 
| 93 | 236 | 
| 309 | 237             elif str(ARGS.rules_selector) == 'ENGRO2': | 
|  | 238                 gene_in_rule = pk.load(open(ARGS.tool_dir + '/local/pickle files/ENGRO2_genes.p', 'rb')) | 
| 263 | 239 | 
| 309 | 240             utils.logWarning(f"{ARGS.tool_dir}'/local/pickle files/ENGRO2_genes.p'", ARGS.out_log) | 
| 259 | 241 | 
| 93 | 242             gene_in_rule = gene_in_rule.get(type_gene) | 
|  | 243 | 
|  | 244         else: | 
|  | 245             gene_in_rule = gene_custom | 
| 260 | 246 | 
| 93 | 247         tmp = [] | 
|  | 248         for i in gene_dup: | 
|  | 249             if gene_in_rule.get(i) == 'ok': | 
|  | 250                 tmp.append(i) | 
|  | 251         if tmp: | 
|  | 252             sys.exit('Execution aborted because gene ID ' | 
|  | 253                      +str(tmp)+' in '+name+' is duplicated\n') | 
|  | 254 | 
|  | 255     if pat_dup: utils.logWarning(f"Warning: duplicated label\n{pat_dup} in {name}", ARGS.out_log) | 
|  | 256     return (gene.set_index(gene.columns[0])).to_dict() | 
|  | 257 | 
|  | 258 ############################ resolve ########################################## | 
|  | 259 def replace_gene_value(l :str, d :str) -> Tuple[Union[int, float], list]: | 
|  | 260     """ | 
|  | 261     Replace gene identifiers with corresponding values from a dictionary. | 
|  | 262 | 
|  | 263     Args: | 
|  | 264         l (str): String of gene identifier. | 
|  | 265         d (str): String corresponding to its value. | 
|  | 266 | 
|  | 267     Returns: | 
|  | 268         tuple: A tuple containing two lists: the first list contains replaced values, and the second list contains any errors encountered during replacement. | 
|  | 269     """ | 
|  | 270     tmp = [] | 
|  | 271     err = [] | 
|  | 272     while l: | 
|  | 273         if isinstance(l[0], list): | 
|  | 274             tmp_rules, tmp_err = replace_gene_value(l[0], d) | 
|  | 275             tmp.append(tmp_rules) | 
|  | 276             err.extend(tmp_err) | 
|  | 277         else: | 
|  | 278             value = replace_gene(l[0], d) | 
|  | 279             tmp.append(value) | 
|  | 280             if value == None: | 
|  | 281                 err.append(l[0]) | 
|  | 282         l = l[1:] | 
|  | 283     return (tmp, err) | 
|  | 284 | 
|  | 285 def replace_gene(l :str, d :str) -> Union[int, float]: | 
|  | 286     """ | 
|  | 287     Replace a single gene identifier with its corresponding value from a dictionary. | 
|  | 288 | 
|  | 289     Args: | 
|  | 290         l (str): Gene identifier to replace. | 
|  | 291         d (str): String corresponding to its value. | 
|  | 292 | 
|  | 293     Returns: | 
|  | 294         float/int: Corresponding value from the dictionary if found, None otherwise. | 
|  | 295 | 
|  | 296     Raises: | 
|  | 297         sys.exit: If the value associated with the gene identifier is not valid. | 
|  | 298     """ | 
|  | 299     if l =='and' or l == 'or': | 
|  | 300         return l | 
|  | 301     else: | 
|  | 302         value = d.get(l, None) | 
|  | 303         if not(value == None or isinstance(value, (int, float))): | 
|  | 304             sys.exit('Execution aborted: ' + value + ' value not valid\n') | 
|  | 305         return value | 
|  | 306 | 
|  | 307 T = TypeVar("T", bound = Optional[Union[int, float]]) | 
|  | 308 def computes(val1 :T, op :str, val2 :T, cn :bool) -> T: | 
|  | 309     """ | 
|  | 310     Compute the RAS value between two value and an operator ('and' or 'or'). | 
|  | 311 | 
|  | 312     Args: | 
|  | 313         val1(Optional(Union[float, int])): First value. | 
|  | 314         op (str): Operator ('and' or 'or'). | 
|  | 315         val2(Optional(Union[float, int])): Second value. | 
|  | 316         cn (bool): Control boolean value. | 
|  | 317 | 
|  | 318     Returns: | 
|  | 319         Optional(Union[float, int]): Result of the computation. | 
|  | 320     """ | 
|  | 321     if val1 != None and val2 != None: | 
|  | 322         if op == 'and': | 
|  | 323             return min(val1, val2) | 
|  | 324         else: | 
|  | 325             return val1 + val2 | 
|  | 326     elif op == 'and': | 
|  | 327         if cn is True: | 
|  | 328             if val1 != None: | 
|  | 329                 return val1 | 
|  | 330             elif val2 != None: | 
|  | 331                 return val2 | 
|  | 332             else: | 
|  | 333                 return None | 
|  | 334         else: | 
|  | 335             return None | 
|  | 336     else: | 
|  | 337         if val1 != None: | 
|  | 338             return val1 | 
|  | 339         elif val2 != None: | 
|  | 340             return val2 | 
|  | 341         else: | 
|  | 342             return None | 
|  | 343 | 
|  | 344 # ris should be Literal[None] but Literal is not supported in Python 3.7 | 
|  | 345 def control(ris, l :List[Union[int, float, list]], cn :bool) -> Union[bool, int, float]: #Union[Literal[False], int, float]: | 
|  | 346     """ | 
|  | 347     Control the format of the expression. | 
|  | 348 | 
|  | 349     Args: | 
|  | 350         ris: Intermediate result. | 
|  | 351         l (list): Expression to control. | 
|  | 352         cn (bool): Control boolean value. | 
|  | 353 | 
|  | 354     Returns: | 
|  | 355         Union[Literal[False], int, float]: Result of the control. | 
|  | 356     """ | 
|  | 357     if len(l) == 1: | 
|  | 358         if isinstance(l[0], (float, int)) or l[0] == None: | 
|  | 359             return l[0] | 
|  | 360         elif isinstance(l[0], list): | 
|  | 361             return control(None, l[0], cn) | 
|  | 362         else: | 
|  | 363             return False | 
|  | 364     elif len(l) > 2: | 
|  | 365         return control_list(ris, l, cn) | 
|  | 366     else: | 
|  | 367         return False | 
|  | 368 | 
|  | 369 def control_list(ris, l :List[Optional[Union[float, int, list]]], cn :bool) -> Optional[bool]: #Optional[Literal[False]]: | 
|  | 370     """ | 
|  | 371     Control the format of a list of expressions. | 
|  | 372 | 
|  | 373     Args: | 
|  | 374         ris: Intermediate result. | 
|  | 375         l (list): List of expressions to control. | 
|  | 376         cn (bool): Control boolean value. | 
|  | 377 | 
|  | 378     Returns: | 
|  | 379         Optional[Literal[False]]: Result of the control. | 
|  | 380     """ | 
|  | 381     while l: | 
|  | 382         if len(l) == 1: | 
|  | 383             return False | 
|  | 384         elif (isinstance(l[0], (float, int)) or | 
|  | 385               l[0] == None) and l[1] in ['and', 'or']: | 
|  | 386             if isinstance(l[2], (float, int)) or l[2] == None: | 
|  | 387                 ris = computes(l[0], l[1], l[2], cn) | 
|  | 388             elif isinstance(l[2], list): | 
|  | 389                 tmp = control(None, l[2], cn) | 
|  | 390                 if tmp is False: | 
|  | 391                     return False | 
|  | 392                 else: | 
|  | 393                     ris = computes(l[0], l[1], tmp, cn) | 
|  | 394             else: | 
|  | 395                 return False | 
|  | 396             l = l[3:] | 
|  | 397         elif l[0] in ['and', 'or']: | 
|  | 398             if isinstance(l[1], (float, int)) or l[1] == None: | 
|  | 399                 ris = computes(ris, l[0], l[1], cn) | 
|  | 400             elif isinstance(l[1], list): | 
|  | 401                 tmp = control(None,l[1], cn) | 
|  | 402                 if tmp is False: | 
|  | 403                     return False | 
|  | 404                 else: | 
|  | 405                     ris = computes(ris, l[0], tmp, cn) | 
|  | 406             else: | 
|  | 407                 return False | 
|  | 408             l = l[2:] | 
|  | 409         elif isinstance(l[0], list) and l[1] in ['and', 'or']: | 
|  | 410             if isinstance(l[2], (float, int)) or l[2] == None: | 
|  | 411                 tmp = control(None, l[0], cn) | 
|  | 412                 if tmp is False: | 
|  | 413                     return False | 
|  | 414                 else: | 
|  | 415                     ris = computes(tmp, l[1], l[2], cn) | 
|  | 416             elif isinstance(l[2], list): | 
|  | 417                 tmp = control(None, l[0], cn) | 
|  | 418                 tmp2 = control(None, l[2], cn) | 
|  | 419                 if tmp is False or tmp2 is False: | 
|  | 420                     return False | 
|  | 421                 else: | 
|  | 422                     ris = computes(tmp, l[1], tmp2, cn) | 
|  | 423             else: | 
|  | 424                 return False | 
|  | 425             l = l[3:] | 
|  | 426         else: | 
|  | 427             return False | 
|  | 428     return ris | 
|  | 429 | 
|  | 430 ResolvedRules = Dict[str, List[Optional[Union[float, int]]]] | 
|  | 431 def resolve(genes: Dict[str, str], rules: List[str], ids: List[str], resolve_none: bool, name: str) -> Tuple[Optional[ResolvedRules], Optional[list]]: | 
|  | 432     """ | 
|  | 433     Resolve rules using gene data to compute scores for each rule. | 
|  | 434 | 
|  | 435     Args: | 
|  | 436         genes (dict): Dictionary containing gene data with gene IDs as keys and corresponding values. | 
|  | 437         rules (list): List of rules to resolve. | 
|  | 438         ids (list): List of IDs corresponding to the rules. | 
|  | 439         resolve_none (bool): Flag indicating whether to resolve None values in the rules. | 
|  | 440         name (str): Name of the dataset. | 
|  | 441 | 
|  | 442     Returns: | 
|  | 443         tuple: A tuple containing resolved rules as a dictionary and a list of gene IDs not found in the data. | 
|  | 444     """ | 
|  | 445     resolve_rules = {} | 
|  | 446     not_found = [] | 
|  | 447     flag = False | 
|  | 448     for key, value in genes.items(): | 
|  | 449         tmp_resolve = [] | 
|  | 450         for i in range(len(rules)): | 
|  | 451             tmp = rules[i] | 
|  | 452             if tmp: | 
|  | 453                 tmp, err = replace_gene_value(tmp, value) | 
|  | 454                 if err: | 
|  | 455                     not_found.extend(err) | 
|  | 456                 ris = control(None, tmp, resolve_none) | 
|  | 457                 if ris is False or ris == None: | 
|  | 458                     tmp_resolve.append(None) | 
|  | 459                 else: | 
|  | 460                     tmp_resolve.append(ris) | 
|  | 461                     flag = True | 
|  | 462             else: | 
|  | 463                 tmp_resolve.append(None) | 
|  | 464         resolve_rules[key] = tmp_resolve | 
|  | 465 | 
|  | 466     if flag is False: | 
|  | 467         utils.logWarning( | 
|  | 468             f"Warning: no computable score (due to missing gene values) for class {name}, the class has been disregarded", | 
|  | 469             ARGS.out_log) | 
|  | 470 | 
|  | 471         return (None, None) | 
|  | 472 | 
|  | 473     return (resolve_rules, list(set(not_found))) | 
|  | 474 ############################ create_ras ####################################### | 
|  | 475 def create_ras(resolve_rules: Optional[ResolvedRules], dataset_name: str, rules: List[str], ids: List[str], file: str) -> None: | 
|  | 476     """ | 
|  | 477     Create a RAS (Reaction Activity Score) file from resolved rules. | 
|  | 478 | 
|  | 479     Args: | 
|  | 480         resolve_rules (dict): Dictionary containing resolved rules. | 
|  | 481         dataset_name (str): Name of the dataset. | 
|  | 482         rules (list): List of rules. | 
|  | 483         file (str): Path to the output RAS file. | 
|  | 484 | 
|  | 485     Returns: | 
|  | 486         None | 
|  | 487     """ | 
|  | 488     if resolve_rules is None: | 
|  | 489         utils.logWarning(f"Couldn't generate RAS for current dataset: {dataset_name}", ARGS.out_log) | 
|  | 490 | 
|  | 491     for geni in resolve_rules.values(): | 
|  | 492         for i, valori in enumerate(geni): | 
|  | 493             if valori == None: | 
|  | 494                 geni[i] = 'None' | 
|  | 495 | 
|  | 496     output_ras = pd.DataFrame.from_dict(resolve_rules) | 
|  | 497 | 
|  | 498     output_ras.insert(0, 'Reactions', ids) | 
|  | 499     output_to_csv = pd.DataFrame.to_csv(output_ras, sep = '\t', index = False) | 
|  | 500 | 
|  | 501     text_file = open(file, "w") | 
|  | 502 | 
|  | 503     text_file.write(output_to_csv) | 
|  | 504     text_file.close() | 
|  | 505 | 
|  | 506 ################################- NEW RAS COMPUTATION -################################ | 
|  | 507 Expr = Optional[Union[int, float]] | 
|  | 508 Ras  = Expr | 
|  | 509 def ras_for_cell_lines(dataset: pd.DataFrame, rules: Dict[str, ruleUtils.OpList]) -> Dict[str, Dict[str, Ras]]: | 
|  | 510     """ | 
|  | 511     Generates the RAS scores for each cell line found in the dataset. | 
|  | 512 | 
|  | 513     Args: | 
|  | 514         dataset (pd.DataFrame): Dataset containing gene values. | 
|  | 515         rules (dict): The dict containing reaction ids as keys and rules as values. | 
|  | 516 | 
|  | 517     Side effects: | 
|  | 518         dataset : mut | 
|  | 519 | 
|  | 520     Returns: | 
|  | 521         dict: A dictionary where each key corresponds to a cell line name and each value is a dictionary | 
|  | 522         where each key corresponds to a reaction ID and each value is its computed RAS score. | 
|  | 523     """ | 
|  | 524     ras_values_by_cell_line = {} | 
|  | 525     dataset.set_index(dataset.columns[0], inplace=True) | 
|  | 526     # Considera tutte le colonne tranne la prima in cui ci sono gli hugo quindi va scartata | 
|  | 527     for cell_line_name in dataset.columns[1:]: | 
|  | 528         cell_line = dataset[cell_line_name].to_dict() | 
|  | 529         ras_values_by_cell_line[cell_line_name]= get_ras_values(rules, cell_line) | 
|  | 530     return ras_values_by_cell_line | 
|  | 531 | 
|  | 532 def get_ras_values(value_rules: Dict[str, ruleUtils.OpList], dataset: Dict[str, Expr]) -> Dict[str, Ras]: | 
|  | 533     """ | 
|  | 534     Computes the RAS (Reaction Activity Score) values for each rule in the given dict. | 
|  | 535 | 
|  | 536     Args: | 
|  | 537         value_rules (dict): A dictionary where keys are reaction ids and values are OpLists. | 
|  | 538         dataset : gene expression data of one cell line. | 
|  | 539 | 
|  | 540     Returns: | 
|  | 541         dict: A dictionary where keys are reaction ids and values are the computed RAS values for each rule. | 
|  | 542     """ | 
|  | 543     return {key: ras_op_list(op_list, dataset) for key, op_list in value_rules.items()} | 
|  | 544 | 
|  | 545 def get_gene_expr(dataset :Dict[str, Expr], name :str) -> Expr: | 
|  | 546     """ | 
|  | 547     Extracts the gene expression of the given gene from a cell line dataset. | 
|  | 548 | 
|  | 549     Args: | 
|  | 550         dataset : gene expression data of one cell line. | 
|  | 551         name : gene name. | 
|  | 552 | 
|  | 553     Returns: | 
|  | 554         Expr : the gene's expression value. | 
|  | 555     """ | 
|  | 556     expr = dataset.get(name, None) | 
|  | 557     if expr is None: ERRORS.append(name) | 
|  | 558 | 
|  | 559     return expr | 
|  | 560 | 
|  | 561 def ras_op_list(op_list: ruleUtils.OpList, dataset: Dict[str, Expr]) -> Ras: | 
|  | 562     """ | 
|  | 563     Computes recursively the RAS (Reaction Activity Score) value for the given OpList, considering the specified flag to control None behavior. | 
|  | 564 | 
|  | 565     Args: | 
|  | 566         op_list (OpList): The OpList representing a rule with gene values. | 
|  | 567         dataset : gene expression data of one cell line. | 
|  | 568 | 
|  | 569     Returns: | 
|  | 570         Ras: The computed RAS value for the given OpList. | 
|  | 571     """ | 
|  | 572     op = op_list.op | 
|  | 573     ras_value :Ras = None | 
|  | 574     if not op: return get_gene_expr(dataset, op_list[0]) | 
|  | 575     if op is ruleUtils.RuleOp.AND and not ARGS.none and None in op_list: return None | 
|  | 576 | 
|  | 577     for i in range(len(op_list)): | 
|  | 578         item = op_list[i] | 
|  | 579         if isinstance(item, ruleUtils.OpList): | 
|  | 580             item = ras_op_list(item, dataset) | 
|  | 581 | 
|  | 582         else: | 
|  | 583           item = get_gene_expr(dataset, item) | 
|  | 584 | 
|  | 585         if item is None: | 
|  | 586           if op is ruleUtils.RuleOp.AND and not ARGS.none: return None | 
|  | 587           continue | 
|  | 588 | 
|  | 589         if ras_value is None: | 
|  | 590           ras_value = item | 
|  | 591         else: | 
|  | 592           ras_value = ras_value + item if op is ruleUtils.RuleOp.OR else min(ras_value, item) | 
|  | 593 | 
|  | 594     return ras_value | 
|  | 595 | 
|  | 596 def save_as_tsv(rasScores: Dict[str, Dict[str, Ras]], reactions :List[str]) -> None: | 
|  | 597     """ | 
|  | 598     Save computed ras scores to the given path, as a tsv file. | 
|  | 599 | 
|  | 600     Args: | 
|  | 601         rasScores : the computed ras scores. | 
|  | 602         path : the output tsv file's path. | 
|  | 603 | 
|  | 604     Returns: | 
|  | 605         None | 
|  | 606     """ | 
|  | 607     for scores in rasScores.values(): # this is actually a lot faster than using the ootb dataframe metod, sadly | 
|  | 608         for reactId, score in scores.items(): | 
|  | 609             if score is None: scores[reactId] = "None" | 
|  | 610 | 
|  | 611     output_ras = pd.DataFrame.from_dict(rasScores) | 
|  | 612     output_ras.insert(0, 'Reactions', reactions) | 
|  | 613     output_ras.to_csv(ARGS.ras_output, sep = '\t', index = False) | 
|  | 614 | 
|  | 615 ############################ MAIN ############################################# | 
|  | 616 #TODO: not used but keep, it will be when the new translator dicts will be used. | 
|  | 617 def translateGene(geneName :str, encoding :str, geneTranslator :Dict[str, Dict[str, str]]) -> str: | 
|  | 618     """ | 
|  | 619     Translate gene from any supported encoding to HugoID. | 
|  | 620 | 
|  | 621     Args: | 
|  | 622         geneName (str): the name of the gene in its current encoding. | 
|  | 623         encoding (str): the encoding. | 
|  | 624         geneTranslator (Dict[str, Dict[str, str]]): the dict containing all supported gene names | 
|  | 625         and encodings in the current model, mapping each to the corresponding HugoID encoding. | 
|  | 626 | 
|  | 627     Raises: | 
|  | 628         ValueError: When the gene isn't supported in the model. | 
|  | 629 | 
|  | 630     Returns: | 
|  | 631         str: the gene in HugoID encoding. | 
|  | 632     """ | 
|  | 633     supportedGenesInEncoding = geneTranslator[encoding] | 
|  | 634     if geneName in supportedGenesInEncoding: return supportedGenesInEncoding[geneName] | 
|  | 635     raise ValueError(f"Gene \"{geneName}\" non trovato, verifica di star utilizzando il modello corretto!") | 
|  | 636 | 
|  | 637 def load_custom_rules() -> Dict[str, ruleUtils.OpList]: | 
|  | 638     """ | 
|  | 639     Opens custom rules file and extracts the rules. If the file is in .csv format an additional parsing step will be | 
|  | 640     performed, significantly impacting the runtime. | 
|  | 641 | 
|  | 642     Returns: | 
|  | 643         Dict[str, ruleUtils.OpList] : dict mapping reaction IDs to rules. | 
|  | 644     """ | 
|  | 645     datFilePath = utils.FilePath.fromStrPath(ARGS.rule_list) # actual file, stored in galaxy as a .dat | 
|  | 646 | 
|  | 647     try: filenamePath = utils.FilePath.fromStrPath(ARGS.rules_name) # file's name in input, to determine its original ext | 
|  | 648     except utils.PathErr as err: | 
|  | 649         raise utils.PathErr(filenamePath, f"Please make sure your file's name is a valid file path, {err.msg}") | 
|  | 650 | 
|  | 651     if filenamePath.ext is utils.FileFormat.PICKLE: return utils.readPickle(datFilePath) | 
|  | 652 | 
|  | 653     # csv rules need to be parsed, those in a pickle format are taken to be pre-parsed. | 
|  | 654     return { line[0] : ruleUtils.parseRuleToNestedList(line[1]) for line in utils.readCsv(datFilePath) } | 
|  | 655 | 
| 147 | 656 def main(args:List[str] = None) -> None: | 
| 93 | 657     """ | 
|  | 658     Initializes everything and sets the program in motion based on the fronted input arguments. | 
|  | 659 | 
|  | 660     Returns: | 
|  | 661         None | 
|  | 662     """ | 
|  | 663     # get args from frontend (related xml) | 
|  | 664     global ARGS | 
| 147 | 665     ARGS = process_args(args) | 
| 309 | 666 | 
| 93 | 667     # read dataset | 
|  | 668     dataset = read_dataset(ARGS.input, "dataset") | 
|  | 669     dataset.iloc[:, 0] = (dataset.iloc[:, 0]).astype(str) | 
|  | 670 | 
|  | 671     # remove versioning from gene names | 
|  | 672     dataset.iloc[:, 0] = dataset.iloc[:, 0].str.split('.').str[0] | 
|  | 673 | 
|  | 674     # handle custom models | 
|  | 675     model :utils.Model = ARGS.rules_selector | 
| 309 | 676 | 
| 93 | 677     if model is utils.Model.Custom: | 
|  | 678         rules = load_custom_rules() | 
|  | 679         reactions = list(rules.keys()) | 
|  | 680 | 
|  | 681         save_as_tsv(ras_for_cell_lines(dataset, rules), reactions) | 
|  | 682         if ERRORS: utils.logWarning( | 
|  | 683             f"The following genes are mentioned in the rules but don't appear in the dataset: {ERRORS}", | 
|  | 684             ARGS.out_log) | 
|  | 685 | 
|  | 686         return | 
|  | 687 | 
|  | 688     # This is the standard flow of the ras_generator program, for non-custom models. | 
|  | 689     name = "RAS Dataset" | 
|  | 690     type_gene = gene_type(dataset.iloc[0, 0], name) | 
|  | 691 | 
|  | 692     rules      = model.getRules(ARGS.tool_dir) | 
|  | 693     genes      = data_gene(dataset, type_gene, name, None) | 
|  | 694     ids, rules = load_id_rules(rules.get(type_gene)) | 
|  | 695 | 
|  | 696     resolve_rules, err = resolve(genes, rules, ids, ARGS.none, name) | 
|  | 697     create_ras(resolve_rules, name, rules, ids, ARGS.ras_output) | 
|  | 698 | 
|  | 699     if err: utils.logWarning( | 
|  | 700         f"Warning: gene(s) {err} not found in class \"{name}\", " + | 
|  | 701         "the expression level for this gene will be considered NaN", | 
|  | 702         ARGS.out_log) | 
|  | 703 | 
|  | 704     print("Execution succeded") | 
|  | 705 | 
|  | 706 ############################################################################### | 
|  | 707 if __name__ == "__main__": | 
| 309 | 708     main() |