| 489 | 1 """ | 
|  | 2 Apply RAS-based scaling to reaction bounds and optionally save updated models. | 
|  | 3 | 
|  | 4 Workflow: | 
|  | 5 - Read one or more RAS matrices (patients/samples x reactions) | 
|  | 6 - Normalize and merge them, optionally adding class suffixes to sample IDs | 
|  | 7 - Build a COBRA model from a tabular CSV | 
|  | 8 - Run FVA to initialize bounds, then scale per-sample based on RAS values | 
|  | 9 - Save bounds per sample and optionally export updated models in chosen formats | 
|  | 10 """ | 
| 93 | 11 import argparse | 
|  | 12 import utils.general_utils as utils | 
| 489 | 13 from typing import Optional, Dict, Set, List, Tuple, Union | 
| 93 | 14 import os | 
|  | 15 import numpy as np | 
|  | 16 import pandas as pd | 
|  | 17 import cobra | 
| 489 | 18 from cobra import Model | 
| 93 | 19 import sys | 
|  | 20 from joblib import Parallel, delayed, cpu_count | 
| 489 | 21 import utils.model_utils as modelUtils | 
| 93 | 22 | 
|  | 23 ################################# process args ############################### | 
| 147 | 24 def process_args(args :List[str] = None) -> argparse.Namespace: | 
| 93 | 25     """ | 
|  | 26     Processes command-line arguments. | 
|  | 27 | 
|  | 28     Args: | 
|  | 29         args (list): List of command-line arguments. | 
|  | 30 | 
|  | 31     Returns: | 
|  | 32         Namespace: An object containing parsed arguments. | 
|  | 33     """ | 
|  | 34     parser = argparse.ArgumentParser(usage = '%(prog)s [options]', | 
|  | 35                                      description = 'process some value\'s') | 
|  | 36 | 
|  | 37 | 
| 489 | 38     parser.add_argument("-mo", "--model_upload", type = str, | 
| 93 | 39         help = "path to input file with custom rules, if provided") | 
|  | 40 | 
|  | 41     parser.add_argument('-ol', '--out_log', | 
|  | 42                         help = "Output log") | 
|  | 43 | 
|  | 44     parser.add_argument('-td', '--tool_dir', | 
|  | 45                         type = str, | 
|  | 46                         required = True, | 
|  | 47                         help = 'your tool directory') | 
|  | 48 | 
|  | 49     parser.add_argument('-ir', '--input_ras', | 
|  | 50                         type=str, | 
|  | 51                         required = False, | 
|  | 52                         help = 'input ras') | 
|  | 53 | 
| 98 | 54     parser.add_argument('-rn', '--name', | 
| 94 | 55                 type=str, | 
|  | 56                 help = 'ras class names') | 
| 93 | 57 | 
|  | 58     parser.add_argument('-cc', '--cell_class', | 
|  | 59                     type = str, | 
|  | 60                     help = 'output of cell class') | 
| 147 | 61     parser.add_argument( | 
|  | 62         '-idop', '--output_path', | 
|  | 63         type = str, | 
|  | 64         default='ras_to_bounds/', | 
|  | 65         help = 'output path for maps') | 
| 93 | 66 | 
| 489 | 67     parser.add_argument('-sm', '--save_models', | 
|  | 68                     type=utils.Bool("save_models"), | 
|  | 69                     default=False, | 
|  | 70                     help = 'whether to save models with applied bounds') | 
|  | 71 | 
|  | 72     parser.add_argument('-smp', '--save_models_path', | 
|  | 73                         type = str, | 
|  | 74                         default='saved_models/', | 
|  | 75                         help = 'output path for saved models') | 
|  | 76 | 
|  | 77     parser.add_argument('-smf', '--save_models_format', | 
|  | 78                         type = str, | 
|  | 79                         default='csv', | 
|  | 80                         help = 'format for saved models (csv, xml, json, mat, yaml, tabular)') | 
|  | 81 | 
| 94 | 82 | 
| 147 | 83     ARGS = parser.parse_args(args) | 
| 93 | 84     return ARGS | 
|  | 85 | 
|  | 86 ########################### warning ########################################### | 
|  | 87 def warning(s :str) -> None: | 
|  | 88     """ | 
|  | 89     Log a warning message to an output log file and print it to the console. | 
|  | 90 | 
|  | 91     Args: | 
|  | 92         s (str): The warning message to be logged and printed. | 
|  | 93 | 
|  | 94     Returns: | 
|  | 95       None | 
|  | 96     """ | 
| 489 | 97     if ARGS.out_log: | 
|  | 98         with open(ARGS.out_log, 'a') as log: | 
|  | 99             log.write(s + "\n\n") | 
| 93 | 100     print(s) | 
|  | 101 | 
|  | 102 ############################ dataset input #################################### | 
|  | 103 def read_dataset(data :str, name :str) -> pd.DataFrame: | 
|  | 104     """ | 
|  | 105     Read a dataset from a CSV file and return it as a pandas DataFrame. | 
|  | 106 | 
|  | 107     Args: | 
|  | 108         data (str): Path to the CSV file containing the dataset. | 
|  | 109         name (str): Name of the dataset, used in error messages. | 
|  | 110 | 
|  | 111     Returns: | 
|  | 112         pandas.DataFrame: DataFrame containing the dataset. | 
|  | 113 | 
|  | 114     Raises: | 
|  | 115         pd.errors.EmptyDataError: If the CSV file is empty. | 
|  | 116         sys.exit: If the CSV file has the wrong format, the execution is aborted. | 
|  | 117     """ | 
|  | 118     try: | 
|  | 119         dataset = pd.read_csv(data, sep = '\t', header = 0, engine='python') | 
|  | 120     except pd.errors.EmptyDataError: | 
|  | 121         sys.exit('Execution aborted: wrong format of ' + name + '\n') | 
|  | 122     if len(dataset.columns) < 2: | 
|  | 123         sys.exit('Execution aborted: wrong format of ' + name + '\n') | 
|  | 124     return dataset | 
|  | 125 | 
|  | 126 | 
| 216 | 127 def apply_ras_bounds(bounds, ras_row): | 
| 93 | 128     """ | 
|  | 129     Adjust the bounds of reactions in the model based on RAS values. | 
|  | 130 | 
|  | 131     Args: | 
| 216 | 132         bounds (pd.DataFrame): Model bounds. | 
| 93 | 133         ras_row (pd.Series): A row from a RAS DataFrame containing scaling factors for reaction bounds. | 
|  | 134     Returns: | 
| 216 | 135         new_bounds (pd.DataFrame): integrated bounds. | 
| 93 | 136     """ | 
| 216 | 137     new_bounds = bounds.copy() | 
| 122 | 138     for reaction in ras_row.index: | 
|  | 139         scaling_factor = ras_row[reaction] | 
| 222 | 140         if not np.isnan(scaling_factor): | 
|  | 141             lower_bound=bounds.loc[reaction, "lower_bound"] | 
|  | 142             upper_bound=bounds.loc[reaction, "upper_bound"] | 
|  | 143             valMax=float((upper_bound)*scaling_factor) | 
|  | 144             valMin=float((lower_bound)*scaling_factor) | 
|  | 145             if upper_bound!=0 and lower_bound==0: | 
|  | 146                 new_bounds.loc[reaction, "upper_bound"] = valMax | 
|  | 147             if upper_bound==0 and lower_bound!=0: | 
|  | 148                 new_bounds.loc[reaction, "lower_bound"] = valMin | 
|  | 149             if upper_bound!=0 and lower_bound!=0: | 
|  | 150                 new_bounds.loc[reaction, "lower_bound"] = valMin | 
|  | 151                 new_bounds.loc[reaction, "upper_bound"] = valMax | 
| 216 | 152     return new_bounds | 
| 93 | 153 | 
| 489 | 154 | 
|  | 155 def save_model(model, filename, output_folder, file_format='csv'): | 
|  | 156     """ | 
|  | 157     Save a COBRA model to file in the specified format. | 
|  | 158 | 
|  | 159     Args: | 
|  | 160         model (cobra.Model): The model to save. | 
|  | 161         filename (str): Base filename (without extension). | 
|  | 162         output_folder (str): Output directory. | 
|  | 163         file_format (str): File format ('xml', 'json', 'mat', 'yaml', 'tabular', 'csv'). | 
|  | 164 | 
|  | 165     Returns: | 
|  | 166         None | 
|  | 167     """ | 
|  | 168     if not os.path.exists(output_folder): | 
|  | 169         os.makedirs(output_folder) | 
|  | 170 | 
|  | 171     try: | 
|  | 172         if file_format == 'tabular' or file_format == 'csv': | 
|  | 173             # Special handling for tabular format using utils functions | 
|  | 174             filepath = os.path.join(output_folder, f"{filename}.csv") | 
|  | 175 | 
| 508 | 176             # Use unified function for tabular export | 
|  | 177             merged = modelUtils.export_model_to_tabular( | 
|  | 178                 model=model, | 
|  | 179                 output_path=filepath, | 
|  | 180                 include_objective=True | 
|  | 181             ) | 
| 489 | 182 | 
|  | 183         else: | 
|  | 184             # Standard COBRA formats | 
|  | 185             filepath = os.path.join(output_folder, f"{filename}.{file_format}") | 
|  | 186 | 
|  | 187             if file_format == 'xml': | 
|  | 188                 cobra.io.write_sbml_model(model, filepath) | 
|  | 189             elif file_format == 'json': | 
|  | 190                 cobra.io.save_json_model(model, filepath) | 
|  | 191             elif file_format == 'mat': | 
|  | 192                 cobra.io.save_matlab_model(model, filepath) | 
|  | 193             elif file_format == 'yaml': | 
|  | 194                 cobra.io.save_yaml_model(model, filepath) | 
|  | 195             else: | 
|  | 196                 raise ValueError(f"Unsupported format: {file_format}") | 
|  | 197 | 
|  | 198         print(f"Model saved: {filepath}") | 
|  | 199 | 
|  | 200     except Exception as e: | 
|  | 201         warning(f"Error saving model {filename}: {str(e)}") | 
|  | 202 | 
|  | 203 def apply_bounds_to_model(model, bounds): | 
|  | 204     """ | 
|  | 205     Apply bounds from a DataFrame to a COBRA model. | 
|  | 206 | 
|  | 207     Args: | 
|  | 208         model (cobra.Model): The metabolic model to modify. | 
|  | 209         bounds (pd.DataFrame): DataFrame with reaction bounds. | 
|  | 210 | 
|  | 211     Returns: | 
|  | 212         cobra.Model: Modified model with new bounds. | 
|  | 213     """ | 
|  | 214     model_copy = model.copy() | 
|  | 215     for reaction_id in bounds.index: | 
|  | 216         try: | 
|  | 217             reaction = model_copy.reactions.get_by_id(reaction_id) | 
|  | 218             reaction.lower_bound = bounds.loc[reaction_id, "lower_bound"] | 
|  | 219             reaction.upper_bound = bounds.loc[reaction_id, "upper_bound"] | 
|  | 220         except KeyError: | 
|  | 221             # Reaction not found in model, skip | 
|  | 222             continue | 
|  | 223     return model_copy | 
|  | 224 | 
|  | 225 def process_ras_cell(cellName, ras_row, model, rxns_ids, output_folder, save_models=False, save_models_path='saved_models/', save_models_format='csv'): | 
| 93 | 226     """ | 
|  | 227     Process a single RAS cell, apply bounds, and save the bounds to a CSV file. | 
|  | 228 | 
|  | 229     Args: | 
|  | 230         cellName (str): The name of the RAS cell (used for naming the output file). | 
|  | 231         ras_row (pd.Series): A row from a RAS DataFrame containing scaling factors for reaction bounds. | 
|  | 232         model (cobra.Model): The metabolic model to be modified. | 
|  | 233         rxns_ids (list of str): List of reaction IDs to which the scaling factors will be applied. | 
|  | 234         output_folder (str): Folder path where the output CSV file will be saved. | 
| 489 | 235         save_models (bool): Whether to save models with applied bounds. | 
|  | 236         save_models_path (str): Path where to save models. | 
|  | 237         save_models_format (str): Format for saved models. | 
| 93 | 238 | 
|  | 239     Returns: | 
|  | 240         None | 
|  | 241     """ | 
| 216 | 242     bounds = pd.DataFrame([(rxn.lower_bound, rxn.upper_bound) for rxn in model.reactions], index=rxns_ids, columns=["lower_bound", "upper_bound"]) | 
|  | 243     new_bounds = apply_ras_bounds(bounds, ras_row) | 
|  | 244     new_bounds.to_csv(output_folder + cellName + ".csv", sep='\t', index=True) | 
| 489 | 245 | 
|  | 246     # Save model if requested | 
|  | 247     if save_models: | 
|  | 248         modified_model = apply_bounds_to_model(model, new_bounds) | 
|  | 249         save_model(modified_model, cellName, save_models_path, save_models_format) | 
|  | 250 | 
|  | 251     return | 
| 93 | 252 | 
| 489 | 253 def generate_bounds_model(model: cobra.Model, ras=None, output_folder='output/', save_models=False, save_models_path='saved_models/', save_models_format='csv') -> pd.DataFrame: | 
| 93 | 254     """ | 
|  | 255     Generate reaction bounds for a metabolic model based on medium conditions and optional RAS adjustments. | 
|  | 256 | 
|  | 257     Args: | 
|  | 258         model (cobra.Model): The metabolic model for which bounds will be generated. | 
|  | 259         ras (pd.DataFrame, optional): RAS pandas dataframe. Defaults to None. | 
|  | 260         output_folder (str, optional): Folder path where output CSV files will be saved. Defaults to 'output/'. | 
| 489 | 261         save_models (bool): Whether to save models with applied bounds. | 
|  | 262         save_models_path (str): Path where to save models. | 
|  | 263         save_models_format (str): Format for saved models. | 
| 93 | 264 | 
|  | 265     Returns: | 
|  | 266         pd.DataFrame: DataFrame containing the bounds of reactions in the model. | 
|  | 267     """ | 
| 489 | 268     rxns_ids = [rxn.id for rxn in model.reactions] | 
| 107 | 269 | 
| 120 | 270     # Perform Flux Variability Analysis (FVA) on this medium | 
| 93 | 271     df_FVA = cobra.flux_analysis.flux_variability_analysis(model, fraction_of_optimum=0, processes=1).round(8) | 
|  | 272 | 
|  | 273     # Set FVA bounds | 
|  | 274     for reaction in rxns_ids: | 
| 102 | 275         model.reactions.get_by_id(reaction).lower_bound = float(df_FVA.loc[reaction, "minimum"]) | 
|  | 276         model.reactions.get_by_id(reaction).upper_bound = float(df_FVA.loc[reaction, "maximum"]) | 
| 93 | 277 | 
|  | 278     if ras is not None: | 
| 489 | 279         Parallel(n_jobs=cpu_count())(delayed(process_ras_cell)( | 
|  | 280             cellName, ras_row, model, rxns_ids, output_folder, | 
|  | 281             save_models, save_models_path, save_models_format | 
|  | 282         ) for cellName, ras_row in ras.iterrows()) | 
| 93 | 283     else: | 
| 489 | 284         raise ValueError("RAS DataFrame is None. Cannot generate bounds without RAS data.") | 
|  | 285     return | 
| 93 | 286 | 
|  | 287 ############################# main ########################################### | 
| 147 | 288 def main(args:List[str] = None) -> None: | 
| 93 | 289     """ | 
| 489 | 290     Initialize and execute RAS-to-bounds pipeline based on the frontend input arguments. | 
| 93 | 291 | 
|  | 292     Returns: | 
|  | 293         None | 
|  | 294     """ | 
|  | 295     if not os.path.exists('ras_to_bounds'): | 
|  | 296         os.makedirs('ras_to_bounds') | 
|  | 297 | 
|  | 298     global ARGS | 
| 147 | 299     ARGS = process_args(args) | 
| 93 | 300 | 
| 489 | 301 | 
|  | 302     ras_file_list = ARGS.input_ras.split(",") | 
|  | 303     ras_file_names = ARGS.name.split(",") | 
|  | 304     if len(ras_file_names) != len(set(ras_file_names)): | 
|  | 305         error_message = "Duplicated file names in the uploaded RAS matrices." | 
|  | 306         warning(error_message) | 
|  | 307         raise ValueError(error_message) | 
| 94 | 308 | 
| 489 | 309     ras_class_names = [] | 
|  | 310     for file in ras_file_names: | 
|  | 311         ras_class_names.append(file.rsplit(".", 1)[0]) | 
|  | 312     ras_list = [] | 
|  | 313     class_assignments = pd.DataFrame(columns=["Patient_ID", "Class"]) | 
|  | 314     for ras_matrix, ras_class_name in zip(ras_file_list, ras_class_names): | 
|  | 315         ras = read_dataset(ras_matrix, "ras dataset") | 
|  | 316         ras.replace("None", None, inplace=True) | 
|  | 317         ras.set_index("Reactions", drop=True, inplace=True) | 
|  | 318         ras = ras.T | 
|  | 319         ras = ras.astype(float) | 
|  | 320         if(len(ras_file_list)>1): | 
|  | 321             # Append class name to patient id (DataFrame index) | 
|  | 322             ras.index = [f"{idx}_{ras_class_name}" for idx in ras.index] | 
|  | 323         else: | 
|  | 324             ras.index = [f"{idx}" for idx in ras.index] | 
|  | 325         ras_list.append(ras) | 
|  | 326         for patient_id in ras.index: | 
|  | 327             class_assignments.loc[class_assignments.shape[0]] = [patient_id, ras_class_name] | 
|  | 328 | 
| 93 | 329 | 
| 489 | 330     # Concatenate all RAS DataFrames into a single DataFrame | 
| 94 | 331         ras_combined = pd.concat(ras_list, axis=0) | 
| 489 | 332     # Normalize RAS values column-wise by max RAS | 
| 93 | 333         ras_combined = ras_combined.div(ras_combined.max(axis=0)) | 
| 123 | 334         ras_combined.dropna(axis=1, how='all', inplace=True) | 
| 93 | 335 | 
| 489 | 336     model = modelUtils.build_cobra_model_from_csv(ARGS.model_upload) | 
| 93 | 337 | 
| 489 | 338     validation = modelUtils.validate_model(model) | 
|  | 339 | 
|  | 340     print("\n=== MODEL VALIDATION ===") | 
|  | 341     for key, value in validation.items(): | 
|  | 342         print(f"{key}: {value}") | 
| 93 | 343 | 
|  | 344 | 
| 489 | 345     generate_bounds_model(model, ras=ras_combined, output_folder=ARGS.output_path, | 
|  | 346                     save_models=ARGS.save_models, save_models_path=ARGS.save_models_path, | 
|  | 347                     save_models_format=ARGS.save_models_format) | 
|  | 348     class_assignments.to_csv(ARGS.cell_class, sep='\t', index=False) | 
| 93 | 349 | 
| 489 | 350 | 
|  | 351     return | 
| 93 | 352 | 
|  | 353 ############################################################################## | 
|  | 354 if __name__ == "__main__": | 
|  | 355     main() |