| 
4
 | 
     1 from __future__ import division
 | 
| 
 | 
     2 import csv
 | 
| 
 | 
     3 from enum import Enum
 | 
| 
 | 
     4 import re
 | 
| 
 | 
     5 import sys
 | 
| 
 | 
     6 import numpy as np
 | 
| 
 | 
     7 import pandas as pd
 | 
| 
 | 
     8 import itertools as it
 | 
| 
 | 
     9 import scipy.stats as st
 | 
| 
 | 
    10 import lxml.etree as ET
 | 
| 
 | 
    11 import math
 | 
| 
 | 
    12 import utils.general_utils as utils
 | 
| 
 | 
    13 from PIL import Image
 | 
| 
 | 
    14 import os
 | 
| 
 | 
    15 import argparse
 | 
| 
 | 
    16 import pyvips
 | 
| 
 | 
    17 from typing import Tuple, Union, Optional, List, Dict
 | 
| 
 | 
    18 
 | 
| 
 | 
    19 ERRORS = []
 | 
| 
 | 
    20 ########################## argparse ##########################################
 | 
| 
 | 
    21 ARGS :argparse.Namespace
 | 
| 
 | 
    22 def process_args() -> argparse.Namespace:
 | 
| 
 | 
    23     """
 | 
| 
 | 
    24     Interfaces the script of a module with its frontend, making the user's choices for various parameters available as values in code.
 | 
| 
 | 
    25 
 | 
| 
 | 
    26     Args:
 | 
| 
 | 
    27         args : Always obtained (in file) from sys.argv
 | 
| 
 | 
    28 
 | 
| 
 | 
    29     Returns:
 | 
| 
 | 
    30         Namespace : An object containing the parsed arguments
 | 
| 
 | 
    31     """
 | 
| 
 | 
    32     parser = argparse.ArgumentParser(
 | 
| 
 | 
    33         usage = "%(prog)s [options]",
 | 
| 
 | 
    34         description = "process some value's genes to create a comparison's map.")
 | 
| 
 | 
    35     
 | 
| 
 | 
    36     #General:
 | 
| 
 | 
    37     parser.add_argument(
 | 
| 
 | 
    38         '-td', '--tool_dir',
 | 
| 
 | 
    39         type = str,
 | 
| 
 | 
    40         required = True,
 | 
| 
 | 
    41         help = 'your tool directory')
 | 
| 
 | 
    42     
 | 
| 
 | 
    43     parser.add_argument('-on', '--control', type = str)
 | 
| 
 | 
    44     parser.add_argument('-ol', '--out_log', help = "Output log")
 | 
| 
 | 
    45 
 | 
| 
 | 
    46     #Computation details:
 | 
| 
 | 
    47     parser.add_argument(
 | 
| 
 | 
    48         '-co', '--comparison',
 | 
| 
 | 
    49         type = str, 
 | 
| 
 | 
    50         default = '1vs1',
 | 
| 
 | 
    51         choices = ['manyvsmany', 'onevsrest', 'onevsmany'])
 | 
| 
 | 
    52     
 | 
| 
 | 
    53     parser.add_argument(
 | 
| 
 | 
    54         '-pv' ,'--pValue',
 | 
| 
 | 
    55         type = float, 
 | 
| 
 | 
    56         default = 0.1, 
 | 
| 
 | 
    57         help = 'P-Value threshold (default: %(default)s)')
 | 
| 
 | 
    58     
 | 
| 
 | 
    59     parser.add_argument(
 | 
| 
 | 
    60         '-fc', '--fChange',
 | 
| 
 | 
    61         type = float, 
 | 
| 
 | 
    62         default = 1.5, 
 | 
| 
 | 
    63         help = 'Fold-Change threshold (default: %(default)s)')
 | 
| 
 | 
    64     
 | 
| 
 | 
    65     parser.add_argument(
 | 
| 
 | 
    66         "-ne", "--net",
 | 
| 
 | 
    67         type = utils.Bool("net"), default = False,
 | 
| 
 | 
    68         help = "choose if you want net enrichment for RPS")
 | 
| 
 | 
    69 
 | 
| 
 | 
    70     parser.add_argument(
 | 
| 
 | 
    71         '-op', '--option',
 | 
| 
 | 
    72         type = str, 
 | 
| 
 | 
    73         choices = ['datasets', 'dataset_class'],
 | 
| 
 | 
    74         help='dataset or dataset and class')
 | 
| 
 | 
    75     
 | 
| 
 | 
    76     #RAS:
 | 
| 
 | 
    77     parser.add_argument(
 | 
| 
 | 
    78         "-ra", "--using_RAS",
 | 
| 
 | 
    79         type = utils.Bool("using_RAS"), default = True,
 | 
| 
 | 
    80         help = "choose whether to use RAS datasets.")
 | 
| 
 | 
    81 
 | 
| 
 | 
    82     parser.add_argument(
 | 
| 
 | 
    83         '-id', '--input_data',
 | 
| 
 | 
    84         type = str,
 | 
| 
 | 
    85         help = 'input dataset')
 | 
| 
 | 
    86     
 | 
| 
 | 
    87     parser.add_argument(
 | 
| 
 | 
    88         '-ic', '--input_class',
 | 
| 
 | 
    89         type = str, 
 | 
| 
 | 
    90         help = 'sample group specification')
 | 
| 
 | 
    91     
 | 
| 
 | 
    92     parser.add_argument(
 | 
| 
 | 
    93         '-ids', '--input_datas',
 | 
| 
 | 
    94         type = str,
 | 
| 
 | 
    95         nargs = '+', 
 | 
| 
 | 
    96         help = 'input datasets')
 | 
| 
 | 
    97     
 | 
| 
 | 
    98     parser.add_argument(
 | 
| 
 | 
    99         '-na', '--names',
 | 
| 
 | 
   100         type = str,
 | 
| 
 | 
   101         nargs = '+', 
 | 
| 
 | 
   102         help = 'input names')
 | 
| 
 | 
   103     
 | 
| 
 | 
   104     #RPS:
 | 
| 
 | 
   105     parser.add_argument(
 | 
| 
 | 
   106         "-rp", "--using_RPS",
 | 
| 
 | 
   107         type = utils.Bool("using_RPS"), default = False,
 | 
| 
 | 
   108         help = "choose whether to use RPS datasets.")
 | 
| 
 | 
   109     
 | 
| 
 | 
   110     parser.add_argument(
 | 
| 
 | 
   111         '-idr', '--input_data_rps',
 | 
| 
 | 
   112         type = str,
 | 
| 
 | 
   113         help = 'input dataset rps')
 | 
| 
 | 
   114     
 | 
| 
 | 
   115     parser.add_argument(
 | 
| 
 | 
   116         '-icr', '--input_class_rps', 
 | 
| 
 | 
   117         type = str,
 | 
| 
 | 
   118         help = 'sample group specification rps')
 | 
| 
 | 
   119     
 | 
| 
 | 
   120     parser.add_argument(
 | 
| 
 | 
   121         '-idsr', '--input_datas_rps', 
 | 
| 
 | 
   122         type = str,
 | 
| 
 | 
   123         nargs = '+', 
 | 
| 
 | 
   124         help = 'input datasets rps')
 | 
| 
 | 
   125     
 | 
| 
 | 
   126     parser.add_argument(
 | 
| 
 | 
   127         '-nar', '--names_rps', 
 | 
| 
 | 
   128         type = str,
 | 
| 
 | 
   129         nargs = '+', 
 | 
| 
 | 
   130         help = 'input names rps')
 | 
| 
 | 
   131     
 | 
| 
 | 
   132     #Output:
 | 
| 
 | 
   133     parser.add_argument(
 | 
| 
 | 
   134         "-gs", "--generate_svg",
 | 
| 
 | 
   135         type = utils.Bool("generate_svg"), default = True,
 | 
| 
 | 
   136         help = "choose whether to use RAS datasets.")
 | 
| 
 | 
   137     
 | 
| 
 | 
   138     parser.add_argument(
 | 
| 
 | 
   139         "-gp", "--generate_pdf",
 | 
| 
 | 
   140         type = utils.Bool("generate_pdf"), default = True,
 | 
| 
 | 
   141         help = "choose whether to use RAS datasets.")
 | 
| 
 | 
   142     
 | 
| 
 | 
   143     parser.add_argument(
 | 
| 
 | 
   144         '-cm', '--custom_map',
 | 
| 
 | 
   145         type = str,
 | 
| 
 | 
   146         help='custom map to use')
 | 
| 
 | 
   147     
 | 
| 
 | 
   148     parser.add_argument(
 | 
| 
 | 
   149         '-mc',  '--choice_map',
 | 
| 
 | 
   150         type = utils.Model, default = utils.Model.HMRcore,
 | 
| 
 | 
   151         choices = [utils.Model.HMRcore, utils.Model.ENGRO2, utils.Model.Custom])
 | 
| 
 | 
   152 
 | 
| 
 | 
   153     args :argparse.Namespace = parser.parse_args()
 | 
| 
 | 
   154     if args.using_RAS and not args.using_RPS: args.net = False
 | 
| 
 | 
   155 
 | 
| 
 | 
   156     return args
 | 
| 
 | 
   157           
 | 
| 
 | 
   158 ############################ dataset input ####################################
 | 
| 
 | 
   159 def read_dataset(data :str, name :str) -> pd.DataFrame:
 | 
| 
 | 
   160     """
 | 
| 
 | 
   161     Tries to read the dataset from its path (data) as a tsv and turns it into a DataFrame.
 | 
| 
 | 
   162 
 | 
| 
 | 
   163     Args:
 | 
| 
 | 
   164         data : filepath of a dataset (from frontend input params or literals upon calling)
 | 
| 
 | 
   165         name : name associated with the dataset (from frontend input params or literals upon calling)
 | 
| 
 | 
   166 
 | 
| 
 | 
   167     Returns:
 | 
| 
 | 
   168         pd.DataFrame : dataset in a runtime operable shape
 | 
| 
 | 
   169     
 | 
| 
 | 
   170     Raises:
 | 
| 
 | 
   171         sys.exit : if there's no data (pd.errors.EmptyDataError) or if the dataset has less than 2 columns
 | 
| 
 | 
   172     """
 | 
| 
 | 
   173     try:
 | 
| 
 | 
   174         dataset = pd.read_csv(data, sep = '\t', header = 0, engine='python')
 | 
| 
 | 
   175     except pd.errors.EmptyDataError:
 | 
| 
 | 
   176         sys.exit('Execution aborted: wrong format of ' + name + '\n')
 | 
| 
 | 
   177     if len(dataset.columns) < 2:
 | 
| 
 | 
   178         sys.exit('Execution aborted: wrong format of ' + name + '\n')
 | 
| 
 | 
   179     return dataset
 | 
| 
 | 
   180 
 | 
| 
 | 
   181 ############################ dataset name #####################################
 | 
| 
 | 
   182 def name_dataset(name_data :str, count :int) -> str:
 | 
| 
 | 
   183     """
 | 
| 
 | 
   184     Produces a unique name for a dataset based on what was provided by the user. The default name for any dataset is "Dataset", thus if the user didn't change it this function appends f"_{count}" to make it unique.
 | 
| 
 | 
   185 
 | 
| 
 | 
   186     Args:
 | 
| 
 | 
   187         name_data : name associated with the dataset (from frontend input params)
 | 
| 
 | 
   188         count : counter from 1 to make these names unique (external)
 | 
| 
 | 
   189 
 | 
| 
 | 
   190     Returns:
 | 
| 
 | 
   191         str : the name made unique
 | 
| 
 | 
   192     """
 | 
| 
 | 
   193     if str(name_data) == 'Dataset':
 | 
| 
 | 
   194         return str(name_data) + '_' + str(count)
 | 
| 
 | 
   195     else:
 | 
| 
 | 
   196         return str(name_data)
 | 
| 
 | 
   197 
 | 
| 
 | 
   198 ############################ map_methods ######################################
 | 
| 
 | 
   199 FoldChange = Union[float, int, str] # Union[float, Literal[0, "-INF", "INF"]]
 | 
| 
 | 
   200 def fold_change(avg1 :float, avg2 :float) -> FoldChange:
 | 
| 
 | 
   201     """
 | 
| 
 | 
   202     Calculates the fold change between two gene expression values.
 | 
| 
 | 
   203 
 | 
| 
 | 
   204     Args:
 | 
| 
 | 
   205         avg1 : average expression value from one dataset avg2 : average expression value from the other dataset
 | 
| 
 | 
   206 
 | 
| 
 | 
   207     Returns:
 | 
| 
 | 
   208         FoldChange :
 | 
| 
 | 
   209             0 : when both input values are 0
 | 
| 
 | 
   210             "-INF" : when avg1 is 0
 | 
| 
 | 
   211             "INF" : when avg2 is 0
 | 
| 
 | 
   212             float : for any other combination of values
 | 
| 
 | 
   213     """
 | 
| 
 | 
   214     if avg1 == 0 and avg2 == 0:
 | 
| 
 | 
   215         return 0
 | 
| 
 | 
   216     elif avg1 == 0:
 | 
| 
 | 
   217         return '-INF'
 | 
| 
 | 
   218     elif avg2 == 0:
 | 
| 
 | 
   219         return 'INF'
 | 
| 
 | 
   220     else: # (threshold_F_C - 1) / (abs(threshold_F_C) + 1) con threshold_F_C > 1
 | 
| 
 | 
   221         return (avg1 - avg2) / (abs(avg1) + abs(avg2))
 | 
| 
 | 
   222     
 | 
| 
 | 
   223 def fix_style(l :str, col :Optional[str], width :str, dash :str) -> str:
 | 
| 
 | 
   224     """
 | 
| 
 | 
   225     Produces a "fixed" style string to assign to a reaction arrow in the SVG map, assigning style properties to the corresponding values passed as input params.
 | 
| 
 | 
   226 
 | 
| 
 | 
   227     Args:
 | 
| 
 | 
   228         l : current style string of an SVG element
 | 
| 
 | 
   229         col : new value for the "stroke" style property
 | 
| 
 | 
   230         width : new value for the "stroke-width" style property
 | 
| 
 | 
   231         dash : new value for the "stroke-dasharray" style property
 | 
| 
 | 
   232 
 | 
| 
 | 
   233     Returns:
 | 
| 
 | 
   234         str : the fixed style string
 | 
| 
 | 
   235     """
 | 
| 
 | 
   236     tmp = l.split(';')
 | 
| 
 | 
   237     flag_col = False
 | 
| 
 | 
   238     flag_width = False
 | 
| 
 | 
   239     flag_dash = False
 | 
| 
 | 
   240     for i in range(len(tmp)):
 | 
| 
 | 
   241         if tmp[i].startswith('stroke:'):
 | 
| 
 | 
   242             tmp[i] = 'stroke:' + col
 | 
| 
 | 
   243             flag_col = True
 | 
| 
 | 
   244         if tmp[i].startswith('stroke-width:'):
 | 
| 
 | 
   245             tmp[i] = 'stroke-width:' + width
 | 
| 
 | 
   246             flag_width = True
 | 
| 
 | 
   247         if tmp[i].startswith('stroke-dasharray:'):
 | 
| 
 | 
   248             tmp[i] = 'stroke-dasharray:' + dash
 | 
| 
 | 
   249             flag_dash = True
 | 
| 
 | 
   250     if not flag_col:
 | 
| 
 | 
   251         tmp.append('stroke:' + col)
 | 
| 
 | 
   252     if not flag_width:
 | 
| 
 | 
   253         tmp.append('stroke-width:' + width)
 | 
| 
 | 
   254     if not flag_dash:
 | 
| 
 | 
   255         tmp.append('stroke-dasharray:' + dash)
 | 
| 
 | 
   256     return ';'.join(tmp)
 | 
| 
 | 
   257 
 | 
| 
 | 
   258 # The type of d values is collapsed, losing precision, because the dict containst lists instead of tuples, please fix!
 | 
| 
 | 
   259 def fix_map(d :Dict[str, List[Union[float, FoldChange]]], core_map :ET.ElementTree, threshold_P_V :float, threshold_F_C :float, max_z_score :float) -> ET.ElementTree:
 | 
| 
 | 
   260     """
 | 
| 
 | 
   261     Edits the selected SVG map based on the p-value and fold change data (d) and some significance thresholds also passed as inputs.
 | 
| 
 | 
   262 
 | 
| 
 | 
   263     Args:
 | 
| 
 | 
   264         d : dictionary mapping a p-value and a fold-change value (values) to each reaction ID as encoded in the SVG map (keys)
 | 
| 
 | 
   265         core_map : SVG map to modify
 | 
| 
 | 
   266         threshold_P_V : threshold for a p-value to be considered significant
 | 
| 
 | 
   267         threshold_F_C : threshold for a fold change value to be considered significant
 | 
| 
 | 
   268         max_z_score : highest z-score (absolute value)
 | 
| 
 | 
   269     
 | 
| 
 | 
   270     Returns:
 | 
| 
 | 
   271         ET.ElementTree : the modified core_map
 | 
| 
 | 
   272 
 | 
| 
 | 
   273     Side effects:
 | 
| 
 | 
   274         core_map : mut
 | 
| 
 | 
   275     """
 | 
| 
 | 
   276     maxT = 12
 | 
| 
 | 
   277     minT = 2
 | 
| 
 | 
   278     grey = '#BEBEBE'
 | 
| 
 | 
   279     blue = '#6495ed'
 | 
| 
 | 
   280     red = '#ecac68'
 | 
| 
 | 
   281     for el in core_map.iter():
 | 
| 
 | 
   282         el_id = str(el.get('id'))
 | 
| 
 | 
   283         if el_id.startswith('R_'):
 | 
| 
 | 
   284             tmp = d.get(el_id[2:])
 | 
| 
 | 
   285             if tmp != None:
 | 
| 
 | 
   286                 p_val :float = tmp[0]
 | 
| 
 | 
   287                 f_c = tmp[1]
 | 
| 
 | 
   288                 z_score = tmp[2]
 | 
| 
 | 
   289                 if p_val < threshold_P_V:
 | 
| 
 | 
   290                     if not isinstance(f_c, str):
 | 
| 
 | 
   291                         if abs(f_c) < ((threshold_F_C - 1) / (abs(threshold_F_C) + 1)): # 
 | 
| 
 | 
   292                             col = grey
 | 
| 
 | 
   293                             width = str(minT)
 | 
| 
 | 
   294                         else:
 | 
| 
 | 
   295                             if f_c < 0:
 | 
| 
 | 
   296                                 col = blue
 | 
| 
 | 
   297                             elif f_c > 0:
 | 
| 
 | 
   298                                 col = red
 | 
| 
 | 
   299                             width = str(max((abs(z_score) * maxT) / max_z_score, minT))
 | 
| 
 | 
   300                     else:
 | 
| 
 | 
   301                         if f_c == '-INF':
 | 
| 
 | 
   302                             col = blue
 | 
| 
 | 
   303                         elif f_c == 'INF':
 | 
| 
 | 
   304                             col = red
 | 
| 
 | 
   305                         width = str(maxT)
 | 
| 
 | 
   306                     dash = 'none'
 | 
| 
 | 
   307                 else:
 | 
| 
 | 
   308                     dash = '5,5'
 | 
| 
 | 
   309                     col = grey
 | 
| 
 | 
   310                     width = str(minT)
 | 
| 
 | 
   311                 el.set('style', fix_style(el.get('style', ""), col, width, dash))
 | 
| 
 | 
   312     return core_map
 | 
| 
 | 
   313 
 | 
| 
 | 
   314 def getElementById(reactionId :str, metabMap :ET.ElementTree) -> utils.Result[ET.Element, utils.Result.ResultErr]:
 | 
| 
 | 
   315     """
 | 
| 
 | 
   316     Finds any element in the given map with the given ID. ID uniqueness in an svg file is recommended but
 | 
| 
 | 
   317     not enforced, if more than one element with the exact ID is found only the first will be returned.
 | 
| 
 | 
   318 
 | 
| 
 | 
   319     Args:
 | 
| 
 | 
   320         reactionId (str): exact ID of the requested element.
 | 
| 
 | 
   321         metabMap (ET.ElementTree): metabolic map containing the element.
 | 
| 
 | 
   322 
 | 
| 
 | 
   323     Returns:
 | 
| 
 | 
   324         utils.Result[ET.Element, ResultErr]: result of the search, either the first match found or a ResultErr.
 | 
| 
 | 
   325     """
 | 
| 
 | 
   326     return utils.Result.Ok(
 | 
| 
 | 
   327         f"//*[@id=\"{reactionId}\"]").map(
 | 
| 
 | 
   328         lambda xPath : metabMap.xpath(xPath)[0]).mapErr(
 | 
| 
 | 
   329         lambda _ : utils.Result.ResultErr(f"No elements with ID \"{reactionId}\" found in map"))
 | 
| 
 | 
   330         # ^^^ we shamelessly ignore the contents of the IndexError, it offers nothing to the user.
 | 
| 
 | 
   331 
 | 
| 
 | 
   332 def styleMapElement(element :ET.Element, styleStr :str) -> None:
 | 
| 
 | 
   333     currentStyles :str = element.get("style", "")
 | 
| 
 | 
   334     if re.search(r";stroke:[^;]+;stroke-width:[^;]+;stroke-dasharray:[^;]+$", currentStyles):
 | 
| 
 | 
   335         currentStyles = ';'.join(currentStyles.split(';')[:-3])
 | 
| 
 | 
   336 
 | 
| 
 | 
   337     element.set("style", currentStyles + styleStr)
 | 
| 
 | 
   338 
 | 
| 
 | 
   339 class ReactionDirection(Enum):
 | 
| 
 | 
   340     Unknown = ""
 | 
| 
 | 
   341     Direct  = "_F"
 | 
| 
 | 
   342     Inverse = "_B"
 | 
| 
 | 
   343 
 | 
| 
 | 
   344     @classmethod
 | 
| 
 | 
   345     def fromDir(cls, s :str) -> "ReactionDirection":
 | 
| 
 | 
   346         # vvv as long as there's so few variants I actually condone the if spam:
 | 
| 
 | 
   347         if s == ReactionDirection.Direct.value:  return ReactionDirection.Direct
 | 
| 
 | 
   348         if s == ReactionDirection.Inverse.value: return ReactionDirection.Inverse
 | 
| 
 | 
   349         return ReactionDirection.Unknown
 | 
| 
 | 
   350 
 | 
| 
 | 
   351     @classmethod
 | 
| 
 | 
   352     def fromReactionId(cls, reactionId :str) -> "ReactionDirection":
 | 
| 
 | 
   353         return ReactionDirection.fromDir(reactionId[-2:])
 | 
| 
 | 
   354 
 | 
| 
 | 
   355 def getArrowBodyElementId(reactionId :str) -> str:
 | 
| 
 | 
   356     if reactionId.endswith("_RV"): reactionId = reactionId[:-3] #TODO: standardize _RV
 | 
| 
 | 
   357     elif ReactionDirection.fromReactionId(reactionId) is not ReactionDirection.Unknown: reactionId = reactionId[:-2]
 | 
| 
 | 
   358     return f"R_{reactionId}"
 | 
| 
 | 
   359 
 | 
| 
 | 
   360 def getArrowHeadElementId(reactionId :str) -> Tuple[str, str]:
 | 
| 
 | 
   361     """
 | 
| 
 | 
   362     We attempt extracting the direction information from the provided reaction ID, if unsuccessful we provide the IDs of both directions.
 | 
| 
 | 
   363 
 | 
| 
 | 
   364     Args:
 | 
| 
 | 
   365         reactionId : the provided reaction ID.
 | 
| 
 | 
   366 
 | 
| 
 | 
   367     Returns:
 | 
| 
 | 
   368         Tuple[str, str]: either a single str ID for the correct arrow head followed by an empty string or both options to try.
 | 
| 
 | 
   369     """
 | 
| 
 | 
   370     if reactionId.endswith("_RV"): reactionId = reactionId[:-3] #TODO: standardize _RV
 | 
| 
 | 
   371     elif ReactionDirection.fromReactionId(reactionId) is not ReactionDirection.Unknown: return reactionId[:-3:-1] + reactionId[:-2], ""
 | 
| 
 | 
   372     return f"F_{reactionId}", f"B_{reactionId}"
 | 
| 
 | 
   373 
 | 
| 
 | 
   374 class ArrowColor(Enum):
 | 
| 
 | 
   375     """
 | 
| 
 | 
   376     Encodes possible arrow colors based on their meaning in the enrichment process.
 | 
| 
 | 
   377     """
 | 
| 
 | 
   378     Invalid       = "#BEBEBE" # gray, fold-change under treshold
 | 
| 
 | 
   379     UpRegulated   = "#ecac68" # red, up-regulated reaction
 | 
| 
 | 
   380     DownRegulated = "#6495ed" # blue, down-regulated reaction
 | 
| 
 | 
   381 
 | 
| 
 | 
   382     UpRegulatedInv = "#FF0000"
 | 
| 
 | 
   383     # ^^^ different shade of red (actually orange), up-regulated net value for a reversible reaction with
 | 
| 
 | 
   384     # conflicting enrichment in the two directions.
 | 
| 
 | 
   385 
 | 
| 
 | 
   386     DownRegulatedInv = "#0000FF"
 | 
| 
 | 
   387     # ^^^ different shade of blue (actually purple), down-regulated net value for a reversible reaction with
 | 
| 
 | 
   388     # conflicting enrichment in the two directions.
 | 
| 
 | 
   389 
 | 
| 
 | 
   390     @classmethod
 | 
| 
 | 
   391     def fromFoldChangeSign(cls, foldChange :float, *, useAltColor = False) -> "ArrowColor":
 | 
| 
 | 
   392         colors = (cls.DownRegulated, cls.DownRegulatedInv) if foldChange < 0 else (cls.UpRegulated, cls.UpRegulatedInv)
 | 
| 
 | 
   393         return colors[useAltColor]
 | 
| 
 | 
   394 
 | 
| 
 | 
   395     def __str__(self) -> str: return self.value
 | 
| 
 | 
   396 
 | 
| 
 | 
   397 class Arrow:
 | 
| 
 | 
   398     """
 | 
| 
 | 
   399     Models the properties of a reaction arrow that change based on enrichment.
 | 
| 
 | 
   400     """
 | 
| 
 | 
   401     MIN_W = 2
 | 
| 
 | 
   402     MAX_W = 12
 | 
| 
 | 
   403 
 | 
| 
 | 
   404     def __init__(self, width :int, col: ArrowColor, *, isDashed = False) -> None:
 | 
| 
 | 
   405         """
 | 
| 
 | 
   406         (Private) Initializes an instance of Arrow.
 | 
| 
 | 
   407 
 | 
| 
 | 
   408         Args:
 | 
| 
 | 
   409             width : width of the arrow, ideally to be kept within Arrow.MIN_W and Arrow.MAX_W (not enforced).
 | 
| 
 | 
   410             col : color of the arrow.
 | 
| 
 | 
   411             isDashed : whether the arrow should be dashed, meaning the associated pValue resulted not significant.
 | 
| 
 | 
   412         
 | 
| 
 | 
   413         Returns:
 | 
| 
 | 
   414             None : practically, a Arrow instance.
 | 
| 
 | 
   415         """
 | 
| 
 | 
   416         self.w    = width
 | 
| 
 | 
   417         self.col  = col
 | 
| 
 | 
   418         self.dash = isDashed
 | 
| 
 | 
   419     
 | 
| 
 | 
   420     def applyTo(self, reactionId :str, metabMap :ET.ElementTree, styleStr :str) -> None:
 | 
| 
 | 
   421         if getElementById(reactionId, metabMap).map(lambda el : styleMapElement(el, styleStr)).isErr:
 | 
| 
 | 
   422             ERRORS.append(reactionId)
 | 
| 
 | 
   423 
 | 
| 
 | 
   424     def styleReactionElements(self, metabMap :ET.ElementTree, reactionId :str, *, mindReactionDir = True) -> None:
 | 
| 
 | 
   425         # If We're dealing with RAS data or in general don't care about the direction of the reaction we only style the arrow body
 | 
| 
 | 
   426         if not mindReactionDir:
 | 
| 
 | 
   427             return self.applyTo(getArrowBodyElementId(reactionId), metabMap, self.toStyleStr())
 | 
| 
 | 
   428         
 | 
| 
 | 
   429         # Now we style the arrow head(s):
 | 
| 
 | 
   430         idOpt1, idOpt2 = getArrowHeadElementId(reactionId)
 | 
| 
 | 
   431         self.applyTo(idOpt1, metabMap, self.toStyleStr(downSizedForTips = True))
 | 
| 
 | 
   432         if idOpt2: self.applyTo(idOpt2, metabMap, self.toStyleStr(downSizedForTips = True))
 | 
| 
 | 
   433     
 | 
| 
 | 
   434     def getMapReactionId(self, reactionId :str, mindReactionDir :bool) -> str:
 | 
| 
 | 
   435         """
 | 
| 
 | 
   436         Computes the reaction ID as encoded in the map for a given reaction ID from the dataset.
 | 
| 
 | 
   437 
 | 
| 
 | 
   438         Args:
 | 
| 
 | 
   439             reactionId: the reaction ID, as encoded in the dataset.
 | 
| 
 | 
   440             mindReactionDir: if True forward (F_) and backward (B_) directions will be encoded in the result.
 | 
| 
 | 
   441     
 | 
| 
 | 
   442         Returns:
 | 
| 
 | 
   443             str : the ID of an arrow's body or tips in the map.
 | 
| 
 | 
   444         """
 | 
| 
 | 
   445         # we assume the reactionIds also don't encode reaction dir if they don't mind it when styling the map.
 | 
| 
 | 
   446         if not mindReactionDir: return "R_" + reactionId
 | 
| 
 | 
   447 
 | 
| 
 | 
   448         #TODO: this is clearly something we need to make consistent in RPS
 | 
| 
 | 
   449         return (reactionId[:-3:-1] + reactionId[:-2]) if reactionId[:-2] in ["_F", "_B"] else f"F_{reactionId}" # "Pyr_F" --> "F_Pyr"
 | 
| 
 | 
   450 
 | 
| 
 | 
   451     def toStyleStr(self, *, downSizedForTips = False) -> str:
 | 
| 
 | 
   452         """
 | 
| 
 | 
   453         Collapses the styles of this Arrow into a str, ready to be applied as part of the "style" property on an svg element.
 | 
| 
 | 
   454 
 | 
| 
 | 
   455         Returns:
 | 
| 
 | 
   456             str : the styles string.
 | 
| 
 | 
   457         """
 | 
| 
 | 
   458         width = self.w
 | 
| 
 | 
   459         if downSizedForTips: width *= 0.8
 | 
| 
 | 
   460         return f";stroke:{self.col};stroke-width:{width};stroke-dasharray:{'5,5' if self.dash else 'none'}"
 | 
| 
 | 
   461 
 | 
| 
 | 
   462 # vvv These constants could be inside the class itself a static properties, but python
 | 
| 
 | 
   463 # was built by brainless organisms so here we are!
 | 
| 
 | 
   464 INVALID_ARROW = Arrow(Arrow.MIN_W, ArrowColor.Invalid)
 | 
| 
 | 
   465 INSIGNIFICANT_ARROW = Arrow(Arrow.MIN_W, ArrowColor.Invalid, isDashed = True)
 | 
| 
 | 
   466 
 | 
| 
 | 
   467 def applyRpsEnrichmentToMap(rpsEnrichmentRes :Dict[str, Union[Tuple[float, FoldChange], Tuple[float, FoldChange, float, float]]], metabMap :ET.ElementTree, maxNumericZScore :float) -> None:
 | 
| 
 | 
   468     """
 | 
| 
 | 
   469     Applies RPS enrichment results to the provided metabolic map.
 | 
| 
 | 
   470 
 | 
| 
 | 
   471     Args:
 | 
| 
 | 
   472         rpsEnrichmentRes : RPS enrichment results.
 | 
| 
 | 
   473         metabMap : the metabolic map to edit.
 | 
| 
 | 
   474         maxNumericZScore : biggest finite z-score value found.
 | 
| 
 | 
   475     
 | 
| 
 | 
   476     Side effects:
 | 
| 
 | 
   477         metabMap : mut
 | 
| 
 | 
   478     
 | 
| 
 | 
   479     Returns:
 | 
| 
 | 
   480         None
 | 
| 
 | 
   481     """
 | 
| 
 | 
   482     for reactionId, values in rpsEnrichmentRes.items():
 | 
| 
 | 
   483         pValue = values[0]
 | 
| 
 | 
   484         foldChange = values[1]
 | 
| 
 | 
   485         z_score = values[2]
 | 
| 
 | 
   486 
 | 
| 
 | 
   487         if isinstance(foldChange, str): foldChange = float(foldChange)
 | 
| 
 | 
   488         if pValue >= ARGS.pValue: # pValue above tresh: dashed arrow
 | 
| 
 | 
   489             INSIGNIFICANT_ARROW.styleReactionElements(metabMap, reactionId)
 | 
| 
 | 
   490             continue
 | 
| 
 | 
   491 
 | 
| 
 | 
   492         if abs(foldChange) <  (ARGS.fChange - 1) / (abs(ARGS.fChange) + 1):
 | 
| 
 | 
   493             INVALID_ARROW.styleReactionElements(metabMap, reactionId)
 | 
| 
 | 
   494             continue
 | 
| 
 | 
   495         
 | 
| 
 | 
   496         width = Arrow.MAX_W
 | 
| 
 | 
   497         if not math.isinf(foldChange):
 | 
| 
 | 
   498             try: width = max(abs(z_score * Arrow.MAX_W) / maxNumericZScore, Arrow.MIN_W)
 | 
| 
 | 
   499             except ZeroDivisionError: pass
 | 
| 
 | 
   500         
 | 
| 
 | 
   501         if not reactionId.endswith("_RV"): # RV stands for reversible reactions
 | 
| 
 | 
   502             Arrow(width, ArrowColor.fromFoldChangeSign(foldChange)).styleReactionElements(metabMap, reactionId)
 | 
| 
 | 
   503             continue
 | 
| 
 | 
   504         
 | 
| 
 | 
   505         reactionId = reactionId[:-3] # Remove "_RV"
 | 
| 
 | 
   506         
 | 
| 
 | 
   507         inversionScore = (values[3] < 0) + (values[4] < 0) # Compacts the signs of averages into 1 easy to check score
 | 
| 
 | 
   508         if inversionScore == 2: foldChange *= -1
 | 
| 
 | 
   509         # ^^^ Style the inverse direction with the opposite sign netValue
 | 
| 
 | 
   510         
 | 
| 
 | 
   511         # If the score is 1 (opposite signs) we use alternative colors vvv
 | 
| 
 | 
   512         arrow = Arrow(width, ArrowColor.fromFoldChangeSign(foldChange, useAltColor = inversionScore == 1))
 | 
| 
 | 
   513         
 | 
| 
 | 
   514         # vvv These 2 if statements can both be true and can both happen
 | 
| 
 | 
   515         if ARGS.net: # style arrow head(s):
 | 
| 
 | 
   516             arrow.styleReactionElements(metabMap, reactionId + ("_B" if inversionScore == 2 else "_F"))
 | 
| 
 | 
   517         
 | 
| 
 | 
   518         if not ARGS.using_RAS: # style arrow body
 | 
| 
 | 
   519             arrow.styleReactionElements(metabMap, reactionId, mindReactionDir = False)
 | 
| 
 | 
   520 
 | 
| 
 | 
   521 ############################ split class ######################################
 | 
| 
 | 
   522 def split_class(classes :pd.DataFrame, resolve_rules :Dict[str, List[float]]) -> Dict[str, List[List[float]]]:
 | 
| 
 | 
   523     """
 | 
| 
 | 
   524     Generates a :dict that groups together data from a :DataFrame based on classes the data is related to.
 | 
| 
 | 
   525 
 | 
| 
 | 
   526     Args:
 | 
| 
 | 
   527         classes : a :DataFrame of only string values, containing class information (rows) and keys to query the resolve_rules :dict
 | 
| 
 | 
   528         resolve_rules : a :dict containing :float data
 | 
| 
 | 
   529 
 | 
| 
 | 
   530     Returns:
 | 
| 
 | 
   531         dict : the dict with data grouped by class
 | 
| 
 | 
   532 
 | 
| 
 | 
   533     Side effects:
 | 
| 
 | 
   534         classes : mut
 | 
| 
 | 
   535     """
 | 
| 
 | 
   536     class_pat :Dict[str, List[List[float]]] = {}
 | 
| 
 | 
   537     for i in range(len(classes)):
 | 
| 
 | 
   538         classe :str = classes.iloc[i, 1]
 | 
| 
 | 
   539         if pd.isnull(classe): continue
 | 
| 
 | 
   540 
 | 
| 
 | 
   541         l :List[List[float]] = []
 | 
| 
 | 
   542         for j in range(i, len(classes)):
 | 
| 
 | 
   543             if classes.iloc[j, 1] == classe:
 | 
| 
 | 
   544                 pat_id :str = classes.iloc[j, 0]
 | 
| 
 | 
   545                 tmp = resolve_rules.get(pat_id, None)
 | 
| 
 | 
   546                 if tmp != None:
 | 
| 
 | 
   547                     l.append(tmp)
 | 
| 
 | 
   548                 classes.iloc[j, 1] = None
 | 
| 
 | 
   549         
 | 
| 
 | 
   550         if l:
 | 
| 
 | 
   551             class_pat[classe] = list(map(list, zip(*l)))
 | 
| 
 | 
   552             continue
 | 
| 
 | 
   553         
 | 
| 
 | 
   554         utils.logWarning(
 | 
| 
 | 
   555             f"Warning: no sample found in class \"{classe}\", the class has been disregarded", ARGS.out_log)
 | 
| 
 | 
   556     
 | 
| 
 | 
   557     return class_pat
 | 
| 
 | 
   558 
 | 
| 
 | 
   559 ############################ conversion ##############################################
 | 
| 
 | 
   560 #conversion from svg to png 
 | 
| 
 | 
   561 def svg_to_png_with_background(svg_path :utils.FilePath, png_path :utils.FilePath, dpi :int = 72, scale :int = 1, size :Optional[float] = None) -> None:
 | 
| 
 | 
   562     """
 | 
| 
 | 
   563     Internal utility to convert an SVG to PNG (forced opaque) to aid in PDF conversion.
 | 
| 
 | 
   564 
 | 
| 
 | 
   565     Args:
 | 
| 
 | 
   566         svg_path : path to SVG file
 | 
| 
 | 
   567         png_path : path for new PNG file
 | 
| 
 | 
   568         dpi : dots per inch of the generated PNG
 | 
| 
 | 
   569         scale : scaling factor for the generated PNG, computed internally when a size is provided
 | 
| 
 | 
   570         size : final effective width of the generated PNG
 | 
| 
 | 
   571 
 | 
| 
 | 
   572     Returns:
 | 
| 
 | 
   573         None
 | 
| 
 | 
   574     """
 | 
| 
 | 
   575     if size:
 | 
| 
 | 
   576         image = pyvips.Image.new_from_file(svg_path.show(), dpi=dpi, scale=1)
 | 
| 
 | 
   577         scale = size / image.width
 | 
| 
 | 
   578         image = image.resize(scale)
 | 
| 
 | 
   579     else:
 | 
| 
 | 
   580         image = pyvips.Image.new_from_file(svg_path.show(), dpi=dpi, scale=scale)
 | 
| 
 | 
   581 
 | 
| 
 | 
   582     white_background = pyvips.Image.black(image.width, image.height).new_from_image([255, 255, 255])
 | 
| 
 | 
   583     white_background = white_background.affine([scale, 0, 0, scale])
 | 
| 
 | 
   584 
 | 
| 
 | 
   585     if white_background.bands != image.bands:
 | 
| 
 | 
   586         white_background = white_background.extract_band(0)
 | 
| 
 | 
   587 
 | 
| 
 | 
   588     composite_image = white_background.composite2(image, 'over')
 | 
| 
 | 
   589     composite_image.write_to_file(png_path.show())
 | 
| 
 | 
   590 
 | 
| 
 | 
   591 #funzione unica, lascio fuori i file e li passo in input
 | 
| 
 | 
   592 #conversion from png to pdf
 | 
| 
 | 
   593 def convert_png_to_pdf(png_file :utils.FilePath, pdf_file :utils.FilePath) -> None:
 | 
| 
 | 
   594     """
 | 
| 
 | 
   595     Internal utility to convert a PNG to PDF to aid from SVG conversion.
 | 
| 
 | 
   596 
 | 
| 
 | 
   597     Args:
 | 
| 
 | 
   598         png_file : path to PNG file
 | 
| 
 | 
   599         pdf_file : path to new PDF file
 | 
| 
 | 
   600 
 | 
| 
 | 
   601     Returns:
 | 
| 
 | 
   602         None
 | 
| 
 | 
   603     """
 | 
| 
 | 
   604     image = Image.open(png_file.show())
 | 
| 
 | 
   605     image = image.convert("RGB")
 | 
| 
 | 
   606     image.save(pdf_file.show(), "PDF", resolution=100.0)
 | 
| 
 | 
   607 
 | 
| 
 | 
   608 #function called to reduce redundancy in the code
 | 
| 
 | 
   609 def convert_to_pdf(file_svg :utils.FilePath, file_png :utils.FilePath, file_pdf :utils.FilePath) -> None:
 | 
| 
 | 
   610     """
 | 
| 
 | 
   611     Converts the SVG map at the provided path to PDF.
 | 
| 
 | 
   612 
 | 
| 
 | 
   613     Args:
 | 
| 
 | 
   614         file_svg : path to SVG file
 | 
| 
 | 
   615         file_png : path to PNG file
 | 
| 
 | 
   616         file_pdf : path to new PDF file
 | 
| 
 | 
   617 
 | 
| 
 | 
   618     Returns:
 | 
| 
 | 
   619         None
 | 
| 
 | 
   620     """
 | 
| 
 | 
   621     svg_to_png_with_background(file_svg, file_png)
 | 
| 
 | 
   622     try:
 | 
| 
 | 
   623         convert_png_to_pdf(file_png, file_pdf)
 | 
| 
 | 
   624         print(f'PDF file {file_pdf.filePath} successfully generated.')
 | 
| 
 | 
   625     
 | 
| 
 | 
   626     except Exception as e:
 | 
| 
 | 
   627         raise utils.DataErr(file_pdf.show(), f'Error generating PDF file: {e}')
 | 
| 
 | 
   628 
 | 
| 
 | 
   629 ############################ map ##############################################
 | 
| 
 | 
   630 def buildOutputPath(dataset1Name :str, dataset2Name = "rest", *, details = "", ext :utils.FileFormat) -> utils.FilePath:
 | 
| 
 | 
   631     """
 | 
| 
 | 
   632     Builds a FilePath instance from the names of confronted datasets ready to point to a location in the
 | 
| 
 | 
   633     "result/" folder, used by this tool for output files in collections.
 | 
| 
 | 
   634 
 | 
| 
 | 
   635     Args:
 | 
| 
 | 
   636         dataset1Name : _description_
 | 
| 
 | 
   637         dataset2Name : _description_. Defaults to "rest".
 | 
| 
 | 
   638         details : _description_
 | 
| 
 | 
   639         ext : _description_
 | 
| 
 | 
   640 
 | 
| 
 | 
   641     Returns:
 | 
| 
 | 
   642         utils.FilePath : _description_
 | 
| 
 | 
   643     """
 | 
| 
 | 
   644     # This function returns a util data structure but is extremely specific to this module.
 | 
| 
 | 
   645     # RAS also uses collections as output and as such might benefit from a method like this, but I'd wait
 | 
| 
 | 
   646     # TODO: until a third tool with multiple outputs appears before porting this to utils.
 | 
| 
 | 
   647     return utils.FilePath(
 | 
| 
 | 
   648         f"{dataset1Name}_vs_{dataset2Name}" + (f" ({details})" if details else ""),
 | 
| 
 | 
   649         # ^^^ yes this string is built every time even if the form is the same for the same 2 datasets in
 | 
| 
 | 
   650         # all output files: I don't care, this was never the performance bottleneck of the tool and
 | 
| 
 | 
   651         # there is no other net gain in saving and re-using the built string.
 | 
| 
 | 
   652         ext,
 | 
| 
 | 
   653         prefix = "result")
 | 
| 
 | 
   654 
 | 
| 
 | 
   655 FIELD_NOT_AVAILABLE = '/'
 | 
| 
 | 
   656 def writeToCsv(rows: List[list], fieldNames :List[str], outPath :utils.FilePath) -> None:
 | 
| 
 | 
   657     fieldsAmt = len(fieldNames)
 | 
| 
 | 
   658     with open(outPath.show(), "w", newline = "") as fd:
 | 
| 
 | 
   659         writer = csv.DictWriter(fd, fieldnames = fieldNames, delimiter = '\t')
 | 
| 
 | 
   660         writer.writeheader()
 | 
| 
 | 
   661         
 | 
| 
 | 
   662         for row in rows:
 | 
| 
 | 
   663             sizeMismatch = fieldsAmt - len(row)
 | 
| 
 | 
   664             if sizeMismatch > 0: row.extend([FIELD_NOT_AVAILABLE] * sizeMismatch)
 | 
| 
 | 
   665             writer.writerow({ field : data for field, data in zip(fieldNames, row) })
 | 
| 
 | 
   666 
 | 
| 
 | 
   667 OldEnrichedScores = Dict[str, List[Union[float, FoldChange]]] #TODO: try to use Tuple whenever possible
 | 
| 
 | 
   668 def writeTabularResult(enrichedScores : OldEnrichedScores, ras_enrichment: bool, outPath :utils.FilePath) -> None:
 | 
| 
 | 
   669     fieldNames = ["ids", "P_Value", "fold change"]
 | 
| 
 | 
   670     if not ras_enrichment: fieldNames.extend(["average_1", "average_2"])
 | 
| 
 | 
   671 
 | 
| 
 | 
   672     writeToCsv([ [reactId] + values for reactId, values in enrichedScores.items() ], fieldNames, outPath)
 | 
| 
 | 
   673 
 | 
| 
 | 
   674 def temp_thingsInCommon(tmp :Dict[str, List[Union[float, FoldChange]]], core_map :ET.ElementTree, max_z_score :float, dataset1Name :str, dataset2Name = "rest", ras_enrichment = True) -> None:
 | 
| 
 | 
   675     # this function compiles the things always in common between comparison modes after enrichment.
 | 
| 
 | 
   676     # TODO: organize, name better.
 | 
| 
 | 
   677     writeTabularResult(tmp, ras_enrichment, buildOutputPath(dataset1Name, dataset2Name, details = "Tabular Result", ext = utils.FileFormat.TSV))
 | 
| 
 | 
   678     
 | 
| 
 | 
   679     if ras_enrichment:
 | 
| 
 | 
   680         fix_map(tmp, core_map, ARGS.pValue, ARGS.fChange, max_z_score)
 | 
| 
 | 
   681         return
 | 
| 
 | 
   682 
 | 
| 
 | 
   683     for reactId, enrichData in tmp.items(): tmp[reactId] = tuple(enrichData)
 | 
| 
 | 
   684     applyRpsEnrichmentToMap(tmp, core_map, max_z_score)
 | 
| 
 | 
   685 
 | 
| 
 | 
   686 def computePValue(dataset1Data: List[float], dataset2Data: List[float]) -> Tuple[float, float]:
 | 
| 
 | 
   687     """
 | 
| 
 | 
   688     Computes the statistical significance score (P-value) of the comparison between coherent data
 | 
| 
 | 
   689     from two datasets. The data is supposed to, in both datasets:
 | 
| 
 | 
   690     - be related to the same reaction ID;
 | 
| 
 | 
   691     - be ordered by sample, such that the item at position i in both lists is related to the
 | 
| 
 | 
   692       same sample or cell line.
 | 
| 
 | 
   693 
 | 
| 
 | 
   694     Args:
 | 
| 
 | 
   695         dataset1Data : data from the 1st dataset.
 | 
| 
 | 
   696         dataset2Data : data from the 2nd dataset.
 | 
| 
 | 
   697 
 | 
| 
 | 
   698     Returns:
 | 
| 
 | 
   699         tuple: (P-value, Z-score)
 | 
| 
 | 
   700             - P-value from a Kolmogorov-Smirnov test on the provided data.
 | 
| 
 | 
   701             - Z-score of the difference between means of the two datasets.
 | 
| 
 | 
   702     """
 | 
| 
 | 
   703     # Perform Kolmogorov-Smirnov test
 | 
| 
 | 
   704     ks_statistic, p_value = st.ks_2samp(dataset1Data, dataset2Data)
 | 
| 
 | 
   705     
 | 
| 
 | 
   706     # Calculate means and standard deviations
 | 
| 
 | 
   707     mean1 = np.mean(dataset1Data)
 | 
| 
 | 
   708     mean2 = np.mean(dataset2Data)
 | 
| 
 | 
   709     std1 = np.std(dataset1Data, ddof=1)
 | 
| 
 | 
   710     std2 = np.std(dataset2Data, ddof=1)
 | 
| 
 | 
   711     
 | 
| 
 | 
   712     n1 = len(dataset1Data)
 | 
| 
 | 
   713     n2 = len(dataset2Data)
 | 
| 
 | 
   714     
 | 
| 
 | 
   715     # Calculate Z-score
 | 
| 
 | 
   716     z_score = (mean1 - mean2) / np.sqrt((std1**2 / n1) + (std2**2 / n2))
 | 
| 
 | 
   717     
 | 
| 
 | 
   718     return p_value, z_score
 | 
| 
 | 
   719 
 | 
| 
 | 
   720 def compareDatasetPair(dataset1Data :List[List[float]], dataset2Data :List[List[float]], ids :List[str]) -> Tuple[Dict[str, List[Union[float, FoldChange]]], float]:
 | 
| 
 | 
   721     #TODO: the following code still suffers from "dumbvarnames-osis"
 | 
| 
 | 
   722     tmp :Dict[str, List[Union[float, FoldChange]]] = {}
 | 
| 
 | 
   723     count   = 0
 | 
| 
 | 
   724     max_z_score = 0
 | 
| 
 | 
   725 
 | 
| 
 | 
   726     for l1, l2 in zip(dataset1Data, dataset2Data):
 | 
| 
 | 
   727         reactId = ids[count]
 | 
| 
 | 
   728         count += 1
 | 
| 
 | 
   729         if not reactId: continue # we skip ids that have already been processed
 | 
| 
 | 
   730 
 | 
| 
 | 
   731         try: #TODO: identify the source of these errors and minimize code in the try block
 | 
| 
 | 
   732             reactDir = ReactionDirection.fromReactionId(reactId)
 | 
| 
 | 
   733             # Net score is computed only for reversible reactions when user wants it on arrow tips or when RAS datasets aren't used
 | 
| 
 | 
   734             if (ARGS.net or not ARGS.using_RAS) and reactDir is not ReactionDirection.Unknown:
 | 
| 
 | 
   735                 try: position = ids.index(reactId[:-1] + ('B' if reactDir is ReactionDirection.Direct else 'F'))
 | 
| 
 | 
   736                 except ValueError: continue # we look for the complementary id, if not found we skip
 | 
| 
 | 
   737 
 | 
| 
 | 
   738                 nets1 = np.subtract(l1, dataset1Data[position])
 | 
| 
 | 
   739                 nets2 = np.subtract(l2, dataset2Data[position])
 | 
| 
 | 
   740 
 | 
| 
 | 
   741                 p_value, z_score = computePValue(nets1, nets2)
 | 
| 
 | 
   742                 avg1 = sum(nets1)   / len(nets1)
 | 
| 
 | 
   743                 avg2 = sum(nets2)   / len(nets2)
 | 
| 
 | 
   744                 net = fold_change(avg1, avg2)
 | 
| 
 | 
   745                 
 | 
| 
 | 
   746                 if math.isnan(net): continue
 | 
| 
 | 
   747                 tmp[reactId[:-1] + "RV"] = [p_value, net, z_score, avg1, avg2]
 | 
| 
 | 
   748                 
 | 
| 
 | 
   749                 # vvv complementary directional ids are set to None once processed if net is to be applied to tips
 | 
| 
 | 
   750                 if ARGS.net:
 | 
| 
 | 
   751                     ids[position] = None
 | 
| 
 | 
   752                     continue
 | 
| 
 | 
   753 
 | 
| 
 | 
   754             # fallthrough is intended, regular scores need to be computed when tips aren't net but RAS datasets aren't used
 | 
| 
 | 
   755             p_value, z_score = computePValue(l1, l2)
 | 
| 
 | 
   756             avg = fold_change(sum(l1) / len(l1), sum(l2) / len(l2))
 | 
| 
 | 
   757             if not isinstance(z_score, str) and max_z_score < abs(z_score): max_z_score = abs(z_score)
 | 
| 
 | 
   758             tmp[reactId] = [float(p_value), avg, z_score]
 | 
| 
 | 
   759         
 | 
| 
 | 
   760         except (TypeError, ZeroDivisionError): continue
 | 
| 
 | 
   761     
 | 
| 
 | 
   762     return tmp, max_z_score
 | 
| 
 | 
   763 
 | 
| 
 | 
   764 def computeEnrichment(metabMap :ET.ElementTree, class_pat :Dict[str, List[List[float]]], ids :List[str], *, fromRAS = True) -> None:
 | 
| 
 | 
   765     """
 | 
| 
 | 
   766     Compares clustered data based on a given comparison mode and applies enrichment-based styling on the
 | 
| 
 | 
   767     provided metabolic map.
 | 
| 
 | 
   768 
 | 
| 
 | 
   769     Args:
 | 
| 
 | 
   770         metabMap : SVG map to modify.
 | 
| 
 | 
   771         class_pat : the clustered data.
 | 
| 
 | 
   772         ids : ids for data association.
 | 
| 
 | 
   773         fromRAS : whether the data to enrich consists of RAS scores.
 | 
| 
 | 
   774 
 | 
| 
 | 
   775     Returns:
 | 
| 
 | 
   776         None
 | 
| 
 | 
   777 
 | 
| 
 | 
   778     Raises:
 | 
| 
 | 
   779         sys.exit : if there are less than 2 classes for comparison
 | 
| 
 | 
   780     
 | 
| 
 | 
   781     Side effects:
 | 
| 
 | 
   782         metabMap : mut
 | 
| 
 | 
   783         ids : mut
 | 
| 
 | 
   784     """
 | 
| 
 | 
   785     class_pat = { k.strip() : v for k, v in class_pat.items() }
 | 
| 
 | 
   786     #TODO: simplfy this stuff vvv and stop using sys.exit (raise the correct utils error)
 | 
| 
 | 
   787     if (not class_pat) or (len(class_pat.keys()) < 2): sys.exit('Execution aborted: classes provided for comparisons are less than two\n')
 | 
| 
 | 
   788 
 | 
| 
 | 
   789     if ARGS.comparison == "manyvsmany":
 | 
| 
 | 
   790         for i, j in it.combinations(class_pat.keys(), 2):
 | 
| 
 | 
   791             #TODO: these 2 functions are always called in pair and in this order and need common data,
 | 
| 
 | 
   792             # some clever refactoring would be appreciated.
 | 
| 
 | 
   793             comparisonDict, max_z_score = compareDatasetPair(class_pat.get(i), class_pat.get(j), ids)
 | 
| 
 | 
   794             temp_thingsInCommon(comparisonDict, metabMap, max_z_score, i, j, fromRAS)
 | 
| 
 | 
   795     
 | 
| 
 | 
   796     elif ARGS.comparison == "onevsrest":
 | 
| 
 | 
   797         for single_cluster in class_pat.keys():
 | 
| 
 | 
   798             t :List[List[List[float]]] = []
 | 
| 
 | 
   799             for k in class_pat.keys():
 | 
| 
 | 
   800                 if k != single_cluster:
 | 
| 
 | 
   801                    t.append(class_pat.get(k))
 | 
| 
 | 
   802             
 | 
| 
 | 
   803             rest :List[List[float]] = []
 | 
| 
 | 
   804             for i in t:
 | 
| 
 | 
   805                 rest = rest + i
 | 
| 
 | 
   806             
 | 
| 
 | 
   807             comparisonDict, max_z_score = compareDatasetPair(class_pat.get(single_cluster), rest, ids)
 | 
| 
 | 
   808             temp_thingsInCommon(comparisonDict, metabMap, max_z_score, single_cluster, fromRAS)
 | 
| 
 | 
   809     
 | 
| 
 | 
   810     elif ARGS.comparison == "onevsmany":
 | 
| 
 | 
   811         controlItems = class_pat.get(ARGS.control)
 | 
| 
 | 
   812         for otherDataset in class_pat.keys():
 | 
| 
 | 
   813             if otherDataset == ARGS.control: continue
 | 
| 
 | 
   814             
 | 
| 
 | 
   815             comparisonDict, max_z_score = compareDatasetPair(controlItems, class_pat.get(otherDataset), ids)
 | 
| 
 | 
   816             temp_thingsInCommon(comparisonDict, metabMap, max_z_score, ARGS.control, otherDataset, fromRAS)
 | 
| 
 | 
   817 
 | 
| 
 | 
   818 def createOutputMaps(dataset1Name :str, dataset2Name :str, core_map :ET.ElementTree) -> None:
 | 
| 
 | 
   819     svgFilePath = buildOutputPath(dataset1Name, dataset2Name, details = "SVG Map", ext = utils.FileFormat.SVG)
 | 
| 
 | 
   820     utils.writeSvg(svgFilePath, core_map)
 | 
| 
 | 
   821 
 | 
| 
 | 
   822     if ARGS.generate_pdf:
 | 
| 
 | 
   823         pngPath = buildOutputPath(dataset1Name, dataset2Name, details = "PNG Map", ext = utils.FileFormat.PNG)
 | 
| 
 | 
   824         pdfPath = buildOutputPath(dataset1Name, dataset2Name, details = "PDF Map", ext = utils.FileFormat.PDF)
 | 
| 
 | 
   825         convert_to_pdf(svgFilePath, pngPath, pdfPath)                     
 | 
| 
 | 
   826 
 | 
| 
 | 
   827     if not ARGS.generate_svg: os.remove(svgFilePath.show())
 | 
| 
 | 
   828 
 | 
| 
 | 
   829 ClassPat = Dict[str, List[List[float]]]
 | 
| 
 | 
   830 def getClassesAndIdsFromDatasets(datasetsPaths :List[str], datasetPath :str, classPath :str, names :List[str]) -> Tuple[List[str], ClassPat]:
 | 
| 
 | 
   831     # TODO: I suggest creating dicts with ids as keys instead of keeping class_pat and ids separate,
 | 
| 
 | 
   832     # for the sake of everyone's sanity.
 | 
| 
 | 
   833     class_pat :ClassPat = {}
 | 
| 
 | 
   834     if ARGS.option == 'datasets':
 | 
| 
 | 
   835         num = 1 #TODO: the dataset naming function could be a generator
 | 
| 
 | 
   836         for path, name in zip(datasetsPaths, names):
 | 
| 
 | 
   837             name = name_dataset(name, num)
 | 
| 
 | 
   838             resolve_rules_float, ids = getDatasetValues(path, name)
 | 
| 
 | 
   839             if resolve_rules_float != None:
 | 
| 
 | 
   840                 class_pat[name] = list(map(list, zip(*resolve_rules_float.values())))
 | 
| 
 | 
   841         
 | 
| 
 | 
   842             num += 1
 | 
| 
 | 
   843     
 | 
| 
 | 
   844     elif ARGS.option == "dataset_class":
 | 
| 
 | 
   845         classes = read_dataset(classPath, "class")
 | 
| 
 | 
   846         classes = classes.astype(str)
 | 
| 
 | 
   847 
 | 
| 
 | 
   848         resolve_rules_float, ids = getDatasetValues(datasetPath, "Dataset Class (not actual name)")
 | 
| 
 | 
   849         if resolve_rules_float != None: class_pat = split_class(classes, resolve_rules_float)
 | 
| 
 | 
   850     
 | 
| 
 | 
   851     return ids, class_pat
 | 
| 
 | 
   852     #^^^ TODO: this could be a match statement over an enum, make it happen future marea dev with python 3.12! (it's why I kept the ifs)
 | 
| 
 | 
   853 
 | 
| 
 | 
   854 #TODO: create these damn args as FilePath objects
 | 
| 
 | 
   855 def getDatasetValues(datasetPath :str, datasetName :str) -> Tuple[ClassPat, List[str]]:
 | 
| 
 | 
   856     """
 | 
| 
 | 
   857     Opens the dataset at the given path and extracts the values (expected nullable numerics) and the IDs.
 | 
| 
 | 
   858 
 | 
| 
 | 
   859     Args:
 | 
| 
 | 
   860         datasetPath : path to the dataset
 | 
| 
 | 
   861         datasetName (str): dataset name, used in error reporting
 | 
| 
 | 
   862 
 | 
| 
 | 
   863     Returns:
 | 
| 
 | 
   864         Tuple[ClassPat, List[str]]: values and IDs extracted from the dataset
 | 
| 
 | 
   865     """
 | 
| 
 | 
   866     dataset = read_dataset(datasetPath, datasetName)
 | 
| 
 | 
   867     IDs = pd.Series.tolist(dataset.iloc[:, 0].astype(str))
 | 
| 
 | 
   868 
 | 
| 
 | 
   869     dataset = dataset.drop(dataset.columns[0], axis = "columns").to_dict("list")
 | 
| 
 | 
   870     return { id : list(map(utils.Float("Dataset values, not an argument"), values)) for id, values in dataset.items() }, IDs
 | 
| 
 | 
   871 
 | 
| 
 | 
   872 ############################ MAIN #############################################
 | 
| 
 | 
   873 def main() -> None:
 | 
| 
 | 
   874     """
 | 
| 
 | 
   875     Initializes everything and sets the program in motion based on the fronted input arguments.
 | 
| 
 | 
   876 
 | 
| 
 | 
   877     Returns:
 | 
| 
 | 
   878         None
 | 
| 
 | 
   879     
 | 
| 
 | 
   880     Raises:
 | 
| 
 | 
   881         sys.exit : if a user-provided custom map is in the wrong format (ET.XMLSyntaxError, ET.XMLSchemaParseError)
 | 
| 
 | 
   882     """
 | 
| 
 | 
   883 
 | 
| 
 | 
   884     global ARGS
 | 
| 
 | 
   885     ARGS = process_args()
 | 
| 
 | 
   886 
 | 
| 
 | 
   887     if os.path.isdir('result') == False: os.makedirs('result')
 | 
| 
 | 
   888     
 | 
| 
 | 
   889     core_map :ET.ElementTree = ARGS.choice_map.getMap(
 | 
| 
 | 
   890         ARGS.tool_dir,
 | 
| 
 | 
   891         utils.FilePath.fromStrPath(ARGS.custom_map) if ARGS.custom_map else None)
 | 
| 
 | 
   892     # TODO: ^^^ ugly but fine for now, the argument is None if the model isn't custom because no file was given.
 | 
| 
 | 
   893     # getMap will None-check the customPath and panic when the model IS custom but there's no file (good). A cleaner
 | 
| 
 | 
   894     # solution can be derived from my comment in FilePath.fromStrPath
 | 
| 
 | 
   895 
 | 
| 
 | 
   896     if ARGS.using_RAS:
 | 
| 
 | 
   897         ids, class_pat = getClassesAndIdsFromDatasets(ARGS.input_datas, ARGS.input_data, ARGS.input_class, ARGS.names)
 | 
| 
 | 
   898         computeEnrichment(core_map, class_pat, ids)
 | 
| 
 | 
   899     
 | 
| 
 | 
   900     if ARGS.using_RPS:
 | 
| 
 | 
   901         ids, class_pat = getClassesAndIdsFromDatasets(ARGS.input_datas_rps, ARGS.input_data_rps, ARGS.input_class_rps, ARGS.names_rps)
 | 
| 
 | 
   902         computeEnrichment(core_map, class_pat, ids, fromRAS = False)
 | 
| 
 | 
   903     
 | 
| 
 | 
   904     # create output files: TODO: this is the same comparison happening in "maps", find a better way to organize this
 | 
| 
 | 
   905     if ARGS.comparison == "manyvsmany":
 | 
| 
 | 
   906         for i, j in it.combinations(class_pat.keys(), 2): createOutputMaps(i, j, core_map)
 | 
| 
 | 
   907         return
 | 
| 
 | 
   908     
 | 
| 
 | 
   909     if ARGS.comparison == "onevsrest":
 | 
| 
 | 
   910         for single_cluster in class_pat.keys(): createOutputMaps(single_cluster, "rest", core_map)
 | 
| 
 | 
   911         return
 | 
| 
 | 
   912     
 | 
| 
 | 
   913     for otherDataset in class_pat.keys():
 | 
| 
 | 
   914         if otherDataset != ARGS.control: createOutputMaps(i, j, core_map)
 | 
| 
 | 
   915 
 | 
| 
 | 
   916     if not ERRORS: return
 | 
| 
 | 
   917     utils.logWarning(
 | 
| 
 | 
   918         f"The following reaction IDs were mentioned in the dataset but weren't found in the map: {ERRORS}",
 | 
| 
 | 
   919         ARGS.out_log)
 | 
| 
 | 
   920     
 | 
| 
 | 
   921     print('Execution succeded')
 | 
| 
 | 
   922 
 | 
| 
 | 
   923 ###############################################################################
 | 
| 
 | 
   924 if __name__ == "__main__":
 | 
| 
 | 
   925     main() |