| 
4
 | 
     1 from __future__ import division
 | 
| 
 | 
     2 import csv
 | 
| 
 | 
     3 from enum import Enum
 | 
| 
 | 
     4 import re
 | 
| 
 | 
     5 import sys
 | 
| 
 | 
     6 import numpy as np
 | 
| 
 | 
     7 import pandas as pd
 | 
| 
 | 
     8 import itertools as it
 | 
| 
 | 
     9 import scipy.stats as st
 | 
| 
 | 
    10 import lxml.etree as ET
 | 
| 
 | 
    11 import math
 | 
| 
 | 
    12 import utils.general_utils as utils
 | 
| 
 | 
    13 from PIL import Image
 | 
| 
 | 
    14 import os
 | 
| 
 | 
    15 import copy
 | 
| 
 | 
    16 import argparse
 | 
| 
 | 
    17 import pyvips
 | 
| 
 | 
    18 from PIL import Image, ImageDraw, ImageFont
 | 
| 
 | 
    19 from typing import Tuple, Union, Optional, List, Dict
 | 
| 
 | 
    20 import matplotlib.pyplot as plt
 | 
| 
 | 
    21 
 | 
| 
 | 
    22 ERRORS = []
 | 
| 
 | 
    23 ########################## argparse ##########################################
 | 
| 
 | 
    24 ARGS :argparse.Namespace
 | 
| 
 | 
    25 def process_args() -> argparse.Namespace:
 | 
| 
 | 
    26     """
 | 
| 
 | 
    27     Interfaces the script of a module with its frontend, making the user's choices for various parameters available as values in code.
 | 
| 
 | 
    28 
 | 
| 
 | 
    29     Args:
 | 
| 
 | 
    30         args : Always obtained (in file) from sys.argv
 | 
| 
 | 
    31 
 | 
| 
 | 
    32     Returns:
 | 
| 
 | 
    33         Namespace : An object containing the parsed arguments
 | 
| 
 | 
    34     """
 | 
| 
 | 
    35     parser = argparse.ArgumentParser(
 | 
| 
 | 
    36         usage = "%(prog)s [options]",
 | 
| 
 | 
    37         description = "process some value's genes to create a comparison's map.")
 | 
| 
 | 
    38     
 | 
| 
 | 
    39     #General:
 | 
| 
 | 
    40     parser.add_argument(
 | 
| 
 | 
    41         '-td', '--tool_dir',
 | 
| 
 | 
    42         type = str,
 | 
| 
 | 
    43         required = True,
 | 
| 
 | 
    44         help = 'your tool directory')
 | 
| 
 | 
    45     
 | 
| 
 | 
    46     parser.add_argument('-on', '--control', type = str)
 | 
| 
 | 
    47     parser.add_argument('-ol', '--out_log', help = "Output log")
 | 
| 
 | 
    48 
 | 
| 
 | 
    49     #Computation details:
 | 
| 
 | 
    50     parser.add_argument(
 | 
| 
 | 
    51         '-co', '--comparison',
 | 
| 
 | 
    52         type = str, 
 | 
| 
 | 
    53         default = '1vs1',
 | 
| 
 | 
    54         choices = ['manyvsmany', 'onevsrest', 'onevsmany'])
 | 
| 
 | 
    55     
 | 
| 
 | 
    56     parser.add_argument(
 | 
| 
 | 
    57         '-pv' ,'--pValue',
 | 
| 
 | 
    58         type = float, 
 | 
| 
 | 
    59         default = 0.1, 
 | 
| 
 | 
    60         help = 'P-Value threshold (default: %(default)s)')
 | 
| 
 | 
    61     
 | 
| 
 | 
    62     parser.add_argument(
 | 
| 
 | 
    63         '-fc', '--fChange',
 | 
| 
 | 
    64         type = float, 
 | 
| 
 | 
    65         default = 1.5, 
 | 
| 
 | 
    66         help = 'Fold-Change threshold (default: %(default)s)')
 | 
| 
 | 
    67     
 | 
| 
 | 
    68 
 | 
| 
 | 
    69     parser.add_argument(
 | 
| 
 | 
    70         '-op', '--option',
 | 
| 
 | 
    71         type = str, 
 | 
| 
 | 
    72         choices = ['datasets', 'dataset_class'],
 | 
| 
 | 
    73         help='dataset or dataset and class')
 | 
| 
 | 
    74 
 | 
| 
 | 
    75     parser.add_argument(
 | 
| 
 | 
    76         '-idf', '--input_data_fluxes',
 | 
| 
 | 
    77         type = str,
 | 
| 
 | 
    78         help = 'input dataset fluxes')
 | 
| 
 | 
    79     
 | 
| 
 | 
    80     parser.add_argument(
 | 
| 
 | 
    81         '-icf', '--input_class_fluxes', 
 | 
| 
 | 
    82         type = str,
 | 
| 
 | 
    83         help = 'sample group specification fluxes')
 | 
| 
 | 
    84     
 | 
| 
 | 
    85     parser.add_argument(
 | 
| 
 | 
    86         '-idsf', '--input_datas_fluxes', 
 | 
| 
 | 
    87         type = str,
 | 
| 
 | 
    88         nargs = '+', 
 | 
| 
 | 
    89         help = 'input datasets fluxes')
 | 
| 
 | 
    90     
 | 
| 
 | 
    91     parser.add_argument(
 | 
| 
 | 
    92         '-naf', '--names_fluxes', 
 | 
| 
 | 
    93         type = str,
 | 
| 
 | 
    94         nargs = '+', 
 | 
| 
 | 
    95         help = 'input names fluxes')
 | 
| 
 | 
    96     
 | 
| 
 | 
    97     #Output:
 | 
| 
 | 
    98     parser.add_argument(
 | 
| 
 | 
    99         "-gs", "--generate_svg",
 | 
| 
 | 
   100         type = utils.Bool("generate_svg"), default = True,
 | 
| 
 | 
   101         help = "choose whether to generate svg")
 | 
| 
 | 
   102     
 | 
| 
 | 
   103     parser.add_argument(
 | 
| 
 | 
   104         "-gp", "--generate_pdf",
 | 
| 
 | 
   105         type = utils.Bool("generate_pdf"), default = True,
 | 
| 
 | 
   106         help = "choose whether to generate pdf")
 | 
| 
 | 
   107     
 | 
| 
 | 
   108     parser.add_argument(
 | 
| 
 | 
   109         '-cm', '--custom_map',
 | 
| 
 | 
   110         type = str,
 | 
| 
 | 
   111         help='custom map to use')
 | 
| 
 | 
   112     
 | 
| 
 | 
   113     parser.add_argument(
 | 
| 
 | 
   114         '-mc',  '--choice_map',
 | 
| 
 | 
   115         type = utils.Model, default = utils.Model.HMRcore,
 | 
| 
 | 
   116         choices = [utils.Model.HMRcore, utils.Model.ENGRO2, utils.Model.Custom])
 | 
| 
 | 
   117     
 | 
| 
 | 
   118     parser.add_argument(
 | 
| 
 | 
   119         '-colorm',  '--color_map',
 | 
| 
 | 
   120         type = str,
 | 
| 
 | 
   121         choices = ["jet", "viridis"])
 | 
| 
 | 
   122 
 | 
| 
 | 
   123     args :argparse.Namespace = parser.parse_args()
 | 
| 
 | 
   124     args.net = True
 | 
| 
 | 
   125 
 | 
| 
 | 
   126     return args
 | 
| 
 | 
   127           
 | 
| 
 | 
   128 ############################ dataset input ####################################
 | 
| 
 | 
   129 def read_dataset(data :str, name :str) -> pd.DataFrame:
 | 
| 
 | 
   130     """
 | 
| 
 | 
   131     Tries to read the dataset from its path (data) as a tsv and turns it into a DataFrame.
 | 
| 
 | 
   132 
 | 
| 
 | 
   133     Args:
 | 
| 
 | 
   134         data : filepath of a dataset (from frontend input params or literals upon calling)
 | 
| 
 | 
   135         name : name associated with the dataset (from frontend input params or literals upon calling)
 | 
| 
 | 
   136 
 | 
| 
 | 
   137     Returns:
 | 
| 
 | 
   138         pd.DataFrame : dataset in a runtime operable shape
 | 
| 
 | 
   139     
 | 
| 
 | 
   140     Raises:
 | 
| 
 | 
   141         sys.exit : if there's no data (pd.errors.EmptyDataError) or if the dataset has less than 2 columns
 | 
| 
 | 
   142     """
 | 
| 
 | 
   143     try:
 | 
| 
 | 
   144         dataset = pd.read_csv(data, sep = '\t', header = 0, engine='python')
 | 
| 
 | 
   145     except pd.errors.EmptyDataError:
 | 
| 
 | 
   146         sys.exit('Execution aborted: wrong format of ' + name + '\n')
 | 
| 
 | 
   147     if len(dataset.columns) < 2:
 | 
| 
 | 
   148         sys.exit('Execution aborted: wrong format of ' + name + '\n')
 | 
| 
 | 
   149     return dataset
 | 
| 
 | 
   150 
 | 
| 
 | 
   151 ############################ dataset name #####################################
 | 
| 
 | 
   152 def name_dataset(name_data :str, count :int) -> str:
 | 
| 
 | 
   153     """
 | 
| 
 | 
   154     Produces a unique name for a dataset based on what was provided by the user. The default name for any dataset is "Dataset", thus if the user didn't change it this function appends f"_{count}" to make it unique.
 | 
| 
 | 
   155 
 | 
| 
 | 
   156     Args:
 | 
| 
 | 
   157         name_data : name associated with the dataset (from frontend input params)
 | 
| 
 | 
   158         count : counter from 1 to make these names unique (external)
 | 
| 
 | 
   159 
 | 
| 
 | 
   160     Returns:
 | 
| 
 | 
   161         str : the name made unique
 | 
| 
 | 
   162     """
 | 
| 
 | 
   163     if str(name_data) == 'Dataset':
 | 
| 
 | 
   164         return str(name_data) + '_' + str(count)
 | 
| 
 | 
   165     else:
 | 
| 
 | 
   166         return str(name_data)
 | 
| 
 | 
   167 
 | 
| 
 | 
   168 ############################ map_methods ######################################
 | 
| 
 | 
   169 FoldChange = Union[float, int, str] # Union[float, Literal[0, "-INF", "INF"]]
 | 
| 
 | 
   170 def fold_change(avg1 :float, avg2 :float) -> FoldChange:
 | 
| 
 | 
   171     """
 | 
| 
 | 
   172     Calculates the fold change between two gene expression values.
 | 
| 
 | 
   173 
 | 
| 
 | 
   174     Args:
 | 
| 
 | 
   175         avg1 : average expression value from one dataset avg2 : average expression value from the other dataset
 | 
| 
 | 
   176 
 | 
| 
 | 
   177     Returns:
 | 
| 
 | 
   178         FoldChange :
 | 
| 
 | 
   179             0 : when both input values are 0
 | 
| 
 | 
   180             "-INF" : when avg1 is 0
 | 
| 
 | 
   181             "INF" : when avg2 is 0
 | 
| 
 | 
   182             float : for any other combination of values
 | 
| 
 | 
   183     """
 | 
| 
 | 
   184     if avg1 == 0 and avg2 == 0:
 | 
| 
 | 
   185         return 0
 | 
| 
 | 
   186     elif avg1 == 0:
 | 
| 
 | 
   187         return '-INF'
 | 
| 
 | 
   188     elif avg2 == 0:
 | 
| 
 | 
   189         return 'INF'
 | 
| 
 | 
   190     else: # (threshold_F_C - 1) / (abs(threshold_F_C) + 1) con threshold_F_C > 1
 | 
| 
 | 
   191         return (avg1 - avg2) / (abs(avg1) + abs(avg2))
 | 
| 
 | 
   192     
 | 
| 
 | 
   193 def fix_style(l :str, col :Optional[str], width :str, dash :str) -> str:
 | 
| 
 | 
   194     """
 | 
| 
 | 
   195     Produces a "fixed" style string to assign to a reaction arrow in the SVG map, assigning style properties to the corresponding values passed as input params.
 | 
| 
 | 
   196 
 | 
| 
 | 
   197     Args:
 | 
| 
 | 
   198         l : current style string of an SVG element
 | 
| 
 | 
   199         col : new value for the "stroke" style property
 | 
| 
 | 
   200         width : new value for the "stroke-width" style property
 | 
| 
 | 
   201         dash : new value for the "stroke-dasharray" style property
 | 
| 
 | 
   202 
 | 
| 
 | 
   203     Returns:
 | 
| 
 | 
   204         str : the fixed style string
 | 
| 
 | 
   205     """
 | 
| 
 | 
   206     tmp = l.split(';')
 | 
| 
 | 
   207     flag_col = False
 | 
| 
 | 
   208     flag_width = False
 | 
| 
 | 
   209     flag_dash = False
 | 
| 
 | 
   210     for i in range(len(tmp)):
 | 
| 
 | 
   211         if tmp[i].startswith('stroke:'):
 | 
| 
 | 
   212             tmp[i] = 'stroke:' + col
 | 
| 
 | 
   213             flag_col = True
 | 
| 
 | 
   214         if tmp[i].startswith('stroke-width:'):
 | 
| 
 | 
   215             tmp[i] = 'stroke-width:' + width
 | 
| 
 | 
   216             flag_width = True
 | 
| 
 | 
   217         if tmp[i].startswith('stroke-dasharray:'):
 | 
| 
 | 
   218             tmp[i] = 'stroke-dasharray:' + dash
 | 
| 
 | 
   219             flag_dash = True
 | 
| 
 | 
   220     if not flag_col:
 | 
| 
 | 
   221         tmp.append('stroke:' + col)
 | 
| 
 | 
   222     if not flag_width:
 | 
| 
 | 
   223         tmp.append('stroke-width:' + width)
 | 
| 
 | 
   224     if not flag_dash:
 | 
| 
 | 
   225         tmp.append('stroke-dasharray:' + dash)
 | 
| 
 | 
   226     return ';'.join(tmp)
 | 
| 
 | 
   227 
 | 
| 
 | 
   228 # The type of d values is collapsed, losing precision, because the dict containst lists instead of tuples, please fix!
 | 
| 
 | 
   229 def fix_map(d :Dict[str, List[Union[float, FoldChange]]], core_map :ET.ElementTree, threshold_P_V :float, threshold_F_C :float, max_z_score :float) -> ET.ElementTree:
 | 
| 
 | 
   230     """
 | 
| 
 | 
   231     Edits the selected SVG map based on the p-value and fold change data (d) and some significance thresholds also passed as inputs.
 | 
| 
 | 
   232 
 | 
| 
 | 
   233     Args:
 | 
| 
 | 
   234         d : dictionary mapping a p-value and a fold-change value (values) to each reaction ID as encoded in the SVG map (keys)
 | 
| 
 | 
   235         core_map : SVG map to modify
 | 
| 
 | 
   236         threshold_P_V : threshold for a p-value to be considered significant
 | 
| 
 | 
   237         threshold_F_C : threshold for a fold change value to be considered significant
 | 
| 
 | 
   238         max_z_score : highest z-score (absolute value)
 | 
| 
 | 
   239     
 | 
| 
 | 
   240     Returns:
 | 
| 
 | 
   241         ET.ElementTree : the modified core_map
 | 
| 
 | 
   242 
 | 
| 
 | 
   243     Side effects:
 | 
| 
 | 
   244         core_map : mut
 | 
| 
 | 
   245     """
 | 
| 
 | 
   246     maxT = 12
 | 
| 
 | 
   247     minT = 2
 | 
| 
 | 
   248     grey = '#BEBEBE'
 | 
| 
 | 
   249     blue = '#6495ed'
 | 
| 
 | 
   250     red = '#ecac68'
 | 
| 
 | 
   251     for el in core_map.iter():
 | 
| 
 | 
   252         el_id = str(el.get('id'))
 | 
| 
 | 
   253         if el_id.startswith('R_'):
 | 
| 
 | 
   254             tmp = d.get(el_id[2:])
 | 
| 
 | 
   255             if tmp != None:
 | 
| 
 | 
   256                 p_val :float = tmp[0]
 | 
| 
 | 
   257                 f_c = tmp[1]
 | 
| 
 | 
   258                 z_score = tmp[2]
 | 
| 
 | 
   259                 if p_val < threshold_P_V:
 | 
| 
 | 
   260                     if not isinstance(f_c, str):
 | 
| 
 | 
   261                         if abs(f_c) < ((threshold_F_C - 1) / (abs(threshold_F_C) + 1)): # 
 | 
| 
 | 
   262                             col = grey
 | 
| 
 | 
   263                             width = str(minT)
 | 
| 
 | 
   264                         else:
 | 
| 
 | 
   265                             if f_c < 0:
 | 
| 
 | 
   266                                 col = blue
 | 
| 
 | 
   267                             elif f_c > 0:
 | 
| 
 | 
   268                                 col = red
 | 
| 
 | 
   269                             width = str(max((abs(z_score) * maxT) / max_z_score, minT))
 | 
| 
 | 
   270                     else:
 | 
| 
 | 
   271                         if f_c == '-INF':
 | 
| 
 | 
   272                             col = blue
 | 
| 
 | 
   273                         elif f_c == 'INF':
 | 
| 
 | 
   274                             col = red
 | 
| 
 | 
   275                         width = str(maxT)
 | 
| 
 | 
   276                     dash = 'none'
 | 
| 
 | 
   277                 else:
 | 
| 
 | 
   278                     dash = '5,5'
 | 
| 
 | 
   279                     col = grey
 | 
| 
 | 
   280                     width = str(minT)
 | 
| 
 | 
   281                 el.set('style', fix_style(el.get('style', ""), col, width, dash))
 | 
| 
 | 
   282     return core_map
 | 
| 
 | 
   283 
 | 
| 
 | 
   284 def getElementById(reactionId :str, metabMap :ET.ElementTree) -> utils.Result[ET.Element, utils.Result.ResultErr]:
 | 
| 
 | 
   285     """
 | 
| 
 | 
   286     Finds any element in the given map with the given ID. ID uniqueness in an svg file is recommended but
 | 
| 
 | 
   287     not enforced, if more than one element with the exact ID is found only the first will be returned.
 | 
| 
 | 
   288 
 | 
| 
 | 
   289     Args:
 | 
| 
 | 
   290         reactionId (str): exact ID of the requested element.
 | 
| 
 | 
   291         metabMap (ET.ElementTree): metabolic map containing the element.
 | 
| 
 | 
   292 
 | 
| 
 | 
   293     Returns:
 | 
| 
 | 
   294         utils.Result[ET.Element, ResultErr]: result of the search, either the first match found or a ResultErr.
 | 
| 
 | 
   295     """
 | 
| 
 | 
   296     return utils.Result.Ok(
 | 
| 
 | 
   297         f"//*[@id=\"{reactionId}\"]").map(
 | 
| 
 | 
   298         lambda xPath : metabMap.xpath(xPath)[0]).mapErr(
 | 
| 
 | 
   299         lambda _ : utils.Result.ResultErr(f"No elements with ID \"{reactionId}\" found in map"))
 | 
| 
 | 
   300         # ^^^ we shamelessly ignore the contents of the IndexError, it offers nothing to the user.
 | 
| 
 | 
   301 
 | 
| 
 | 
   302 def styleMapElement(element :ET.Element, styleStr :str) -> None:
 | 
| 
 | 
   303     currentStyles :str = element.get("style", "")
 | 
| 
 | 
   304     if re.search(r";stroke:[^;]+;stroke-width:[^;]+;stroke-dasharray:[^;]+$", currentStyles):
 | 
| 
 | 
   305         currentStyles = ';'.join(currentStyles.split(';')[:-3])
 | 
| 
 | 
   306 
 | 
| 
 | 
   307     element.set("style", currentStyles + styleStr)
 | 
| 
 | 
   308 
 | 
| 
 | 
   309 class ReactionDirection(Enum):
 | 
| 
 | 
   310     Unknown = ""
 | 
| 
 | 
   311     Direct  = "_F"
 | 
| 
 | 
   312     Inverse = "_B"
 | 
| 
 | 
   313 
 | 
| 
 | 
   314     @classmethod
 | 
| 
 | 
   315     def fromDir(cls, s :str) -> "ReactionDirection":
 | 
| 
 | 
   316         # vvv as long as there's so few variants I actually condone the if spam:
 | 
| 
 | 
   317         if s == ReactionDirection.Direct.value:  return ReactionDirection.Direct
 | 
| 
 | 
   318         if s == ReactionDirection.Inverse.value: return ReactionDirection.Inverse
 | 
| 
 | 
   319         return ReactionDirection.Unknown
 | 
| 
 | 
   320 
 | 
| 
 | 
   321     @classmethod
 | 
| 
 | 
   322     def fromReactionId(cls, reactionId :str) -> "ReactionDirection":
 | 
| 
 | 
   323         return ReactionDirection.fromDir(reactionId[-2:])
 | 
| 
 | 
   324 
 | 
| 
 | 
   325 def getArrowBodyElementId(reactionId :str) -> str:
 | 
| 
 | 
   326     if reactionId.endswith("_RV"): reactionId = reactionId[:-3] #TODO: standardize _RV
 | 
| 
 | 
   327     elif ReactionDirection.fromReactionId(reactionId) is not ReactionDirection.Unknown: reactionId = reactionId[:-2]
 | 
| 
 | 
   328     return f"R_{reactionId}"
 | 
| 
 | 
   329 
 | 
| 
 | 
   330 def getArrowHeadElementId(reactionId :str) -> Tuple[str, str]:
 | 
| 
 | 
   331     """
 | 
| 
 | 
   332     We attempt extracting the direction information from the provided reaction ID, if unsuccessful we provide the IDs of both directions.
 | 
| 
 | 
   333 
 | 
| 
 | 
   334     Args:
 | 
| 
 | 
   335         reactionId : the provided reaction ID.
 | 
| 
 | 
   336 
 | 
| 
 | 
   337     Returns:
 | 
| 
 | 
   338         Tuple[str, str]: either a single str ID for the correct arrow head followed by an empty string or both options to try.
 | 
| 
 | 
   339     """
 | 
| 
 | 
   340     if reactionId.endswith("_RV"): reactionId = reactionId[:-3] #TODO: standardize _RV
 | 
| 
 | 
   341     elif ReactionDirection.fromReactionId(reactionId) is not ReactionDirection.Unknown: return reactionId[:-3:-1] + reactionId[:-2], ""
 | 
| 
 | 
   342     return f"F_{reactionId}", f"B_{reactionId}"
 | 
| 
 | 
   343 
 | 
| 
 | 
   344 class ArrowColor(Enum):
 | 
| 
 | 
   345     """
 | 
| 
 | 
   346     Encodes possible arrow colors based on their meaning in the enrichment process.
 | 
| 
 | 
   347     """
 | 
| 
 | 
   348     Invalid       = "#BEBEBE" # gray, fold-change under treshold
 | 
| 
 | 
   349     Transparent   = "#ffffff00" # white, not significant p-value
 | 
| 
 | 
   350     UpRegulated   = "#ecac68" # red, up-regulated reaction
 | 
| 
 | 
   351     DownRegulated = "#6495ed" # blue, down-regulated reaction
 | 
| 
 | 
   352 
 | 
| 
 | 
   353     UpRegulatedInv = "#FF0000"
 | 
| 
 | 
   354     # ^^^ different shade of red (actually orange), up-regulated net value for a reversible reaction with
 | 
| 
 | 
   355     # conflicting enrichment in the two directions.
 | 
| 
 | 
   356 
 | 
| 
 | 
   357     DownRegulatedInv = "#0000FF"
 | 
| 
 | 
   358     # ^^^ different shade of blue (actually purple), down-regulated net value for a reversible reaction with
 | 
| 
 | 
   359     # conflicting enrichment in the two directions.
 | 
| 
 | 
   360 
 | 
| 
 | 
   361     @classmethod
 | 
| 
 | 
   362     def fromFoldChangeSign(cls, foldChange :float, *, useAltColor = False) -> "ArrowColor":
 | 
| 
 | 
   363         colors = (cls.DownRegulated, cls.DownRegulatedInv) if foldChange < 0 else (cls.UpRegulated, cls.UpRegulatedInv)
 | 
| 
 | 
   364         return colors[useAltColor]
 | 
| 
 | 
   365 
 | 
| 
 | 
   366     def __str__(self) -> str: return self.value
 | 
| 
 | 
   367 
 | 
| 
 | 
   368 class Arrow:
 | 
| 
 | 
   369     """
 | 
| 
 | 
   370     Models the properties of a reaction arrow that change based on enrichment.
 | 
| 
 | 
   371     """
 | 
| 
 | 
   372     MIN_W = 2
 | 
| 
 | 
   373     MAX_W = 12
 | 
| 
 | 
   374 
 | 
| 
 | 
   375     def __init__(self, width :int, col: ArrowColor, *, isDashed = False) -> None:
 | 
| 
 | 
   376         """
 | 
| 
 | 
   377         (Private) Initializes an instance of Arrow.
 | 
| 
 | 
   378 
 | 
| 
 | 
   379         Args:
 | 
| 
 | 
   380             width : width of the arrow, ideally to be kept within Arrow.MIN_W and Arrow.MAX_W (not enforced).
 | 
| 
 | 
   381             col : color of the arrow.
 | 
| 
 | 
   382             isDashed : whether the arrow should be dashed, meaning the associated pValue resulted not significant.
 | 
| 
 | 
   383         
 | 
| 
 | 
   384         Returns:
 | 
| 
 | 
   385             None : practically, a Arrow instance.
 | 
| 
 | 
   386         """
 | 
| 
 | 
   387         self.w    = width
 | 
| 
 | 
   388         self.col  = col
 | 
| 
 | 
   389         self.dash = isDashed
 | 
| 
 | 
   390     
 | 
| 
 | 
   391     def applyTo(self, reactionId :str, metabMap :ET.ElementTree, styleStr :str) -> None:
 | 
| 
 | 
   392         if getElementById(reactionId, metabMap).map(lambda el : styleMapElement(el, styleStr)).isErr:
 | 
| 
 | 
   393             ERRORS.append(reactionId)
 | 
| 
 | 
   394 
 | 
| 
 | 
   395     def styleReactionElements(self, metabMap :ET.ElementTree, reactionId :str, *, mindReactionDir = True) -> None:
 | 
| 
 | 
   396         if not mindReactionDir:
 | 
| 
 | 
   397             return self.applyTo(getArrowBodyElementId(reactionId), metabMap, self.toStyleStr())
 | 
| 
 | 
   398         
 | 
| 
 | 
   399         # Now we style the arrow head(s):
 | 
| 
 | 
   400         idOpt1, idOpt2 = getArrowHeadElementId(reactionId)
 | 
| 
 | 
   401         self.applyTo(idOpt1, metabMap, self.toStyleStr(downSizedForTips = True))
 | 
| 
 | 
   402         if idOpt2: self.applyTo(idOpt2, metabMap, self.toStyleStr(downSizedForTips = True))
 | 
| 
 | 
   403 
 | 
| 
 | 
   404     def styleReactionElementsMeanMedian(self, metabMap :ET.ElementTree, reactionId :str, isNegative:bool) -> None:
 | 
| 
 | 
   405 
 | 
| 
 | 
   406         self.applyTo(getArrowBodyElementId(reactionId), metabMap, self.toStyleStr())
 | 
| 
 | 
   407         idOpt1, idOpt2 = getArrowHeadElementId(reactionId)
 | 
| 
 | 
   408 
 | 
| 
 | 
   409         if(isNegative):
 | 
| 
 | 
   410             self.applyTo(idOpt2, metabMap, self.toStyleStr(downSizedForTips = True))
 | 
| 
 | 
   411             self.col = ArrowColor.Transparent
 | 
| 
 | 
   412             self.applyTo(idOpt1, metabMap, self.toStyleStr(downSizedForTips = True)) #trasp
 | 
| 
 | 
   413         else:
 | 
| 
 | 
   414             self.applyTo(idOpt1, metabMap, self.toStyleStr(downSizedForTips = True))
 | 
| 
 | 
   415             self.col = ArrowColor.Transparent
 | 
| 
 | 
   416             self.applyTo(idOpt2, metabMap, self.toStyleStr(downSizedForTips = True)) #trasp
 | 
| 
 | 
   417 
 | 
| 
 | 
   418 
 | 
| 
 | 
   419     
 | 
| 
 | 
   420     def getMapReactionId(self, reactionId :str, mindReactionDir :bool) -> str:
 | 
| 
 | 
   421         """
 | 
| 
 | 
   422         Computes the reaction ID as encoded in the map for a given reaction ID from the dataset.
 | 
| 
 | 
   423 
 | 
| 
 | 
   424         Args:
 | 
| 
 | 
   425             reactionId: the reaction ID, as encoded in the dataset.
 | 
| 
 | 
   426             mindReactionDir: if True forward (F_) and backward (B_) directions will be encoded in the result.
 | 
| 
 | 
   427     
 | 
| 
 | 
   428         Returns:
 | 
| 
 | 
   429             str : the ID of an arrow's body or tips in the map.
 | 
| 
 | 
   430         """
 | 
| 
 | 
   431         # we assume the reactionIds also don't encode reaction dir if they don't mind it when styling the map.
 | 
| 
 | 
   432         if not mindReactionDir: return "R_" + reactionId
 | 
| 
 | 
   433 
 | 
| 
 | 
   434         #TODO: this is clearly something we need to make consistent in fluxes
 | 
| 
 | 
   435         return (reactionId[:-3:-1] + reactionId[:-2]) if reactionId[:-2] in ["_F", "_B"] else f"F_{reactionId}" # "Pyr_F" --> "F_Pyr"
 | 
| 
 | 
   436 
 | 
| 
 | 
   437     def toStyleStr(self, *, downSizedForTips = False) -> str:
 | 
| 
 | 
   438         """
 | 
| 
 | 
   439         Collapses the styles of this Arrow into a str, ready to be applied as part of the "style" property on an svg element.
 | 
| 
 | 
   440 
 | 
| 
 | 
   441         Returns:
 | 
| 
 | 
   442             str : the styles string.
 | 
| 
 | 
   443         """
 | 
| 
 | 
   444         width = self.w
 | 
| 
 | 
   445         if downSizedForTips: width *= 0.8
 | 
| 
 | 
   446         return f";stroke:{self.col};stroke-width:{width};stroke-dasharray:{'5,5' if self.dash else 'none'}"
 | 
| 
 | 
   447 
 | 
| 
 | 
   448 # vvv These constants could be inside the class itself a static properties, but python
 | 
| 
 | 
   449 # was built by brainless organisms so here we are!
 | 
| 
 | 
   450 INVALID_ARROW = Arrow(Arrow.MIN_W, ArrowColor.Invalid)
 | 
| 
 | 
   451 INSIGNIFICANT_ARROW = Arrow(Arrow.MIN_W, ArrowColor.Invalid, isDashed = True)
 | 
| 
 | 
   452 
 | 
| 
 | 
   453 def applyFluxesEnrichmentToMap(fluxesEnrichmentRes :Dict[str, Union[Tuple[float, FoldChange], Tuple[float, FoldChange, float, float]]], metabMap :ET.ElementTree, maxNumericZScore :float) -> None:
 | 
| 
 | 
   454     """
 | 
| 
 | 
   455     Applies fluxes enrichment results to the provided metabolic map.
 | 
| 
 | 
   456 
 | 
| 
 | 
   457     Args:
 | 
| 
 | 
   458         fluxesEnrichmentRes : fluxes enrichment results.
 | 
| 
 | 
   459         metabMap : the metabolic map to edit.
 | 
| 
 | 
   460         maxNumericZScore : biggest finite z-score value found.
 | 
| 
 | 
   461     
 | 
| 
 | 
   462     Side effects:
 | 
| 
 | 
   463         metabMap : mut
 | 
| 
 | 
   464     
 | 
| 
 | 
   465     Returns:
 | 
| 
 | 
   466         None
 | 
| 
 | 
   467     """
 | 
| 
 | 
   468     for reactionId, values in fluxesEnrichmentRes.items():
 | 
| 
 | 
   469         pValue = values[0]
 | 
| 
 | 
   470         foldChange = values[1]
 | 
| 
 | 
   471         z_score = values[2]
 | 
| 
 | 
   472 
 | 
| 
 | 
   473         if isinstance(foldChange, str): foldChange = float(foldChange)
 | 
| 
 | 
   474         if pValue >= ARGS.pValue: # pValue above tresh: dashed arrow
 | 
| 
 | 
   475             INSIGNIFICANT_ARROW.styleReactionElements(metabMap, reactionId)
 | 
| 
 | 
   476             INSIGNIFICANT_ARROW.styleReactionElements(metabMap, reactionId, mindReactionDir = False)
 | 
| 
 | 
   477 
 | 
| 
 | 
   478             continue
 | 
| 
 | 
   479 
 | 
| 
 | 
   480         if abs(foldChange) <  (ARGS.fChange - 1) / (abs(ARGS.fChange) + 1):
 | 
| 
 | 
   481             INVALID_ARROW.styleReactionElements(metabMap, reactionId)
 | 
| 
 | 
   482             INVALID_ARROW.styleReactionElements(metabMap, reactionId, mindReactionDir = False)
 | 
| 
 | 
   483 
 | 
| 
 | 
   484             continue
 | 
| 
 | 
   485         
 | 
| 
 | 
   486         width = Arrow.MAX_W
 | 
| 
 | 
   487         if not math.isinf(foldChange):
 | 
| 
 | 
   488             try: 
 | 
| 
 | 
   489                 width = max(abs(z_score * Arrow.MAX_W) / maxNumericZScore, Arrow.MIN_W) 
 | 
| 
 | 
   490 
 | 
| 
 | 
   491             except ZeroDivisionError: pass
 | 
| 
 | 
   492         
 | 
| 
 | 
   493         #if not reactionId.endswith("_RV"): # RV stands for reversible reactions
 | 
| 
 | 
   494         #    Arrow(width, ArrowColor.fromFoldChangeSign(foldChange)).styleReactionElements(metabMap, reactionId)
 | 
| 
 | 
   495         #    continue
 | 
| 
 | 
   496         
 | 
| 
 | 
   497         #reactionId = reactionId[:-3] # Remove "_RV"
 | 
| 
 | 
   498         
 | 
| 
 | 
   499         inversionScore = (values[3] < 0) + (values[4] < 0) # Compacts the signs of averages into 1 easy to check score
 | 
| 
 | 
   500         if inversionScore == 2: foldChange *= -1
 | 
| 
 | 
   501         # ^^^ Style the inverse direction with the opposite sign netValue
 | 
| 
 | 
   502         
 | 
| 
 | 
   503         # If the score is 1 (opposite signs) we use alternative colors vvv
 | 
| 
 | 
   504         arrow = Arrow(width, ArrowColor.fromFoldChangeSign(foldChange, useAltColor = inversionScore == 1))
 | 
| 
 | 
   505         
 | 
| 
 | 
   506         # vvv These 2 if statements can both be true and can both happen
 | 
| 
 | 
   507         if ARGS.net: # style arrow head(s):
 | 
| 
 | 
   508             arrow.styleReactionElements(metabMap, reactionId + ("_B" if inversionScore == 2 else "_F"))
 | 
| 
 | 
   509             arrow.applyTo(("F_" if inversionScore == 2 else "B_") + reactionId, metabMap, f";stroke:{ArrowColor.Transparent};stroke-width:0;stroke-dasharray:None")
 | 
| 
 | 
   510 
 | 
| 
 | 
   511         arrow.styleReactionElements(metabMap, reactionId, mindReactionDir = False)
 | 
| 
 | 
   512 
 | 
| 
 | 
   513 
 | 
| 
 | 
   514 ############################ split class ######################################
 | 
| 
 | 
   515 def split_class(classes :pd.DataFrame, resolve_rules :Dict[str, List[float]]) -> Dict[str, List[List[float]]]:
 | 
| 
 | 
   516     """
 | 
| 
 | 
   517     Generates a :dict that groups together data from a :DataFrame based on classes the data is related to.
 | 
| 
 | 
   518 
 | 
| 
 | 
   519     Args:
 | 
| 
 | 
   520         classes : a :DataFrame of only string values, containing class information (rows) and keys to query the resolve_rules :dict
 | 
| 
 | 
   521         resolve_rules : a :dict containing :float data
 | 
| 
 | 
   522 
 | 
| 
 | 
   523     Returns:
 | 
| 
 | 
   524         dict : the dict with data grouped by class
 | 
| 
 | 
   525 
 | 
| 
 | 
   526     Side effects:
 | 
| 
 | 
   527         classes : mut
 | 
| 
 | 
   528     """
 | 
| 
 | 
   529     class_pat :Dict[str, List[List[float]]] = {}
 | 
| 
 | 
   530     for i in range(len(classes)):
 | 
| 
 | 
   531         classe :str = classes.iloc[i, 1]
 | 
| 
 | 
   532         if pd.isnull(classe): continue
 | 
| 
 | 
   533 
 | 
| 
 | 
   534         l :List[List[float]] = []
 | 
| 
 | 
   535         for j in range(i, len(classes)):
 | 
| 
 | 
   536             if classes.iloc[j, 1] == classe:
 | 
| 
 | 
   537                 pat_id :str = classes.iloc[j, 0]
 | 
| 
 | 
   538                 tmp = resolve_rules.get(pat_id, None)
 | 
| 
 | 
   539                 if tmp != None:
 | 
| 
 | 
   540                     l.append(tmp)
 | 
| 
 | 
   541                 classes.iloc[j, 1] = None
 | 
| 
 | 
   542         
 | 
| 
 | 
   543         if l:
 | 
| 
 | 
   544             class_pat[classe] = list(map(list, zip(*l)))
 | 
| 
 | 
   545             continue
 | 
| 
 | 
   546         
 | 
| 
 | 
   547         utils.logWarning(
 | 
| 
 | 
   548             f"Warning: no sample found in class \"{classe}\", the class has been disregarded", ARGS.out_log)
 | 
| 
 | 
   549     
 | 
| 
 | 
   550     return class_pat
 | 
| 
 | 
   551 
 | 
| 
 | 
   552 ############################ conversion ##############################################
 | 
| 
 | 
   553 #conversion from svg to png 
 | 
| 
 | 
   554 def svg_to_png_with_background(svg_path :utils.FilePath, png_path :utils.FilePath, dpi :int = 72, scale :int = 1, size :Optional[float] = None) -> None:
 | 
| 
 | 
   555     """
 | 
| 
 | 
   556     Internal utility to convert an SVG to PNG (forced opaque) to aid in PDF conversion.
 | 
| 
 | 
   557 
 | 
| 
 | 
   558     Args:
 | 
| 
 | 
   559         svg_path : path to SVG file
 | 
| 
 | 
   560         png_path : path for new PNG file
 | 
| 
 | 
   561         dpi : dots per inch of the generated PNG
 | 
| 
 | 
   562         scale : scaling factor for the generated PNG, computed internally when a size is provided
 | 
| 
 | 
   563         size : final effective width of the generated PNG
 | 
| 
 | 
   564 
 | 
| 
 | 
   565     Returns:
 | 
| 
 | 
   566         None
 | 
| 
 | 
   567     """
 | 
| 
 | 
   568     if size:
 | 
| 
 | 
   569         image = pyvips.Image.new_from_file(svg_path.show(), dpi=dpi, scale=1)
 | 
| 
 | 
   570         scale = size / image.width
 | 
| 
 | 
   571         image = image.resize(scale)
 | 
| 
 | 
   572     else:
 | 
| 
 | 
   573         image = pyvips.Image.new_from_file(svg_path.show(), dpi=dpi, scale=scale)
 | 
| 
 | 
   574 
 | 
| 
 | 
   575     white_background = pyvips.Image.black(image.width, image.height).new_from_image([255, 255, 255])
 | 
| 
 | 
   576     white_background = white_background.affine([scale, 0, 0, scale])
 | 
| 
 | 
   577 
 | 
| 
 | 
   578     if white_background.bands != image.bands:
 | 
| 
 | 
   579         white_background = white_background.extract_band(0)
 | 
| 
 | 
   580 
 | 
| 
 | 
   581     composite_image = white_background.composite2(image, 'over')
 | 
| 
 | 
   582     composite_image.write_to_file(png_path.show())
 | 
| 
 | 
   583 
 | 
| 
 | 
   584 #funzione unica, lascio fuori i file e li passo in input
 | 
| 
 | 
   585 #conversion from png to pdf
 | 
| 
 | 
   586 def convert_png_to_pdf(png_file :utils.FilePath, pdf_file :utils.FilePath) -> None:
 | 
| 
 | 
   587     """
 | 
| 
 | 
   588     Internal utility to convert a PNG to PDF to aid from SVG conversion.
 | 
| 
 | 
   589 
 | 
| 
 | 
   590     Args:
 | 
| 
 | 
   591         png_file : path to PNG file
 | 
| 
 | 
   592         pdf_file : path to new PDF file
 | 
| 
 | 
   593 
 | 
| 
 | 
   594     Returns:
 | 
| 
 | 
   595         None
 | 
| 
 | 
   596     """
 | 
| 
 | 
   597     image = Image.open(png_file.show())
 | 
| 
 | 
   598     image = image.convert("RGB")
 | 
| 
 | 
   599     image.save(pdf_file.show(), "PDF", resolution=100.0)
 | 
| 
 | 
   600 
 | 
| 
 | 
   601 #function called to reduce redundancy in the code
 | 
| 
 | 
   602 def convert_to_pdf(file_svg :utils.FilePath, file_png :utils.FilePath, file_pdf :utils.FilePath) -> None:
 | 
| 
 | 
   603     """
 | 
| 
 | 
   604     Converts the SVG map at the provided path to PDF.
 | 
| 
 | 
   605 
 | 
| 
 | 
   606     Args:
 | 
| 
 | 
   607         file_svg : path to SVG file
 | 
| 
 | 
   608         file_png : path to PNG file
 | 
| 
 | 
   609         file_pdf : path to new PDF file
 | 
| 
 | 
   610 
 | 
| 
 | 
   611     Returns:
 | 
| 
 | 
   612         None
 | 
| 
 | 
   613     """
 | 
| 
 | 
   614     svg_to_png_with_background(file_svg, file_png)
 | 
| 
 | 
   615     try:
 | 
| 
 | 
   616         convert_png_to_pdf(file_png, file_pdf)
 | 
| 
 | 
   617         print(f'PDF file {file_pdf.filePath} successfully generated.')
 | 
| 
 | 
   618     
 | 
| 
 | 
   619     except Exception as e:
 | 
| 
 | 
   620         raise utils.DataErr(file_pdf.show(), f'Error generating PDF file: {e}')
 | 
| 
 | 
   621 
 | 
| 
 | 
   622 ############################ map ##############################################
 | 
| 
 | 
   623 def buildOutputPath(dataset1Name :str, dataset2Name = "rest", *, details = "", ext :utils.FileFormat) -> utils.FilePath:
 | 
| 
 | 
   624     """
 | 
| 
 | 
   625     Builds a FilePath instance from the names of confronted datasets ready to point to a location in the
 | 
| 
 | 
   626     "result/" folder, used by this tool for output files in collections.
 | 
| 
 | 
   627 
 | 
| 
 | 
   628     Args:
 | 
| 
 | 
   629         dataset1Name : _description_
 | 
| 
 | 
   630         dataset2Name : _description_. Defaults to "rest".
 | 
| 
 | 
   631         details : _description_
 | 
| 
 | 
   632         ext : _description_
 | 
| 
 | 
   633 
 | 
| 
 | 
   634     Returns:
 | 
| 
 | 
   635         utils.FilePath : _description_
 | 
| 
 | 
   636     """
 | 
| 
 | 
   637     # This function returns a util data structure but is extremely specific to this module.
 | 
| 
 | 
   638     # RAS also uses collections as output and as such might benefit from a method like this, but I'd wait
 | 
| 
 | 
   639     # TODO: until a third tool with multiple outputs appears before porting this to utils.
 | 
| 
 | 
   640     return utils.FilePath(
 | 
| 
 | 
   641         f"{dataset1Name}_vs_{dataset2Name}" + (f" ({details})" if details else ""),
 | 
| 
 | 
   642         # ^^^ yes this string is built every time even if the form is the same for the same 2 datasets in
 | 
| 
 | 
   643         # all output files: I don't care, this was never the performance bottleneck of the tool and
 | 
| 
 | 
   644         # there is no other net gain in saving and re-using the built string.
 | 
| 
 | 
   645         ext,
 | 
| 
 | 
   646         prefix = "result")
 | 
| 
 | 
   647 
 | 
| 
 | 
   648 FIELD_NOT_AVAILABLE = '/'
 | 
| 
 | 
   649 def writeToCsv(rows: List[list], fieldNames :List[str], outPath :utils.FilePath) -> None:
 | 
| 
 | 
   650     fieldsAmt = len(fieldNames)
 | 
| 
 | 
   651     with open(outPath.show(), "w", newline = "") as fd:
 | 
| 
 | 
   652         writer = csv.DictWriter(fd, fieldnames = fieldNames, delimiter = '\t')
 | 
| 
 | 
   653         writer.writeheader()
 | 
| 
 | 
   654         
 | 
| 
 | 
   655         for row in rows:
 | 
| 
 | 
   656             sizeMismatch = fieldsAmt - len(row)
 | 
| 
 | 
   657             if sizeMismatch > 0: row.extend([FIELD_NOT_AVAILABLE] * sizeMismatch)
 | 
| 
 | 
   658             writer.writerow({ field : data for field, data in zip(fieldNames, row) })
 | 
| 
 | 
   659 
 | 
| 
 | 
   660 OldEnrichedScores = Dict[str, List[Union[float, FoldChange]]] #TODO: try to use Tuple whenever possible
 | 
| 
 | 
   661 def writeTabularResult(enrichedScores : OldEnrichedScores, outPath :utils.FilePath) -> None:
 | 
| 
 | 
   662     fieldNames = ["ids", "P_Value", "fold change"]
 | 
| 
 | 
   663     fieldNames.extend(["average_1", "average_2"])
 | 
| 
 | 
   664 
 | 
| 
 | 
   665     writeToCsv([ [reactId] + values for reactId, values in enrichedScores.items() ], fieldNames, outPath)
 | 
| 
 | 
   666 
 | 
| 
 | 
   667 def temp_thingsInCommon(tmp :Dict[str, List[Union[float, FoldChange]]], core_map :ET.ElementTree, max_z_score :float, dataset1Name :str, dataset2Name = "rest") -> None:
 | 
| 
 | 
   668     # this function compiles the things always in common between comparison modes after enrichment.
 | 
| 
 | 
   669     # TODO: organize, name better.
 | 
| 
 | 
   670     writeTabularResult(tmp, buildOutputPath(dataset1Name, dataset2Name, details = "Tabular Result", ext = utils.FileFormat.TSV))
 | 
| 
 | 
   671     for reactId, enrichData in tmp.items(): tmp[reactId] = tuple(enrichData)
 | 
| 
 | 
   672     applyFluxesEnrichmentToMap(tmp, core_map, max_z_score)
 | 
| 
 | 
   673 
 | 
| 
 | 
   674 def computePValue(dataset1Data: List[float], dataset2Data: List[float]) -> Tuple[float, float]:
 | 
| 
 | 
   675     """
 | 
| 
 | 
   676     Computes the statistical significance score (P-value) of the comparison between coherent data
 | 
| 
 | 
   677     from two datasets. The data is supposed to, in both datasets:
 | 
| 
 | 
   678     - be related to the same reaction ID;
 | 
| 
 | 
   679     - be ordered by sample, such that the item at position i in both lists is related to the
 | 
| 
 | 
   680       same sample or cell line.
 | 
| 
 | 
   681 
 | 
| 
 | 
   682     Args:
 | 
| 
 | 
   683         dataset1Data : data from the 1st dataset.
 | 
| 
 | 
   684         dataset2Data : data from the 2nd dataset.
 | 
| 
 | 
   685 
 | 
| 
 | 
   686     Returns:
 | 
| 
 | 
   687         tuple: (P-value, Z-score)
 | 
| 
 | 
   688             - P-value from a Kolmogorov-Smirnov test on the provided data.
 | 
| 
 | 
   689             - Z-score of the difference between means of the two datasets.
 | 
| 
 | 
   690     """
 | 
| 
 | 
   691     # Perform Kolmogorov-Smirnov test
 | 
| 
 | 
   692     ks_statistic, p_value = st.ks_2samp(dataset1Data, dataset2Data)
 | 
| 
 | 
   693     
 | 
| 
 | 
   694     # Calculate means and standard deviations
 | 
| 
 | 
   695     mean1 = np.mean(dataset1Data)
 | 
| 
 | 
   696     mean2 = np.mean(dataset2Data)
 | 
| 
 | 
   697     std1 = np.std(dataset1Data, ddof=1)
 | 
| 
 | 
   698     std2 = np.std(dataset2Data, ddof=1)
 | 
| 
 | 
   699     
 | 
| 
 | 
   700     n1 = len(dataset1Data)
 | 
| 
 | 
   701     n2 = len(dataset2Data)
 | 
| 
 | 
   702     
 | 
| 
 | 
   703     # Calculate Z-score
 | 
| 
 | 
   704     z_score = (mean1 - mean2) / np.sqrt((std1**2 / n1) + (std2**2 / n2))
 | 
| 
 | 
   705     
 | 
| 
 | 
   706     return p_value, z_score
 | 
| 
 | 
   707 
 | 
| 
 | 
   708 def compareDatasetPair(dataset1Data :List[List[float]], dataset2Data :List[List[float]], ids :List[str]) -> Tuple[Dict[str, List[Union[float, FoldChange]]], float]:
 | 
| 
 | 
   709     #TODO: the following code still suffers from "dumbvarnames-osis"
 | 
| 
 | 
   710     tmp :Dict[str, List[Union[float, FoldChange]]] = {}
 | 
| 
 | 
   711     count   = 0
 | 
| 
 | 
   712     max_z_score = 0
 | 
| 
 | 
   713 
 | 
| 
 | 
   714     for l1, l2 in zip(dataset1Data, dataset2Data):
 | 
| 
 | 
   715         reactId = ids[count]
 | 
| 
 | 
   716         count += 1
 | 
| 
 | 
   717         if not reactId: continue # we skip ids that have already been processed
 | 
| 
 | 
   718 
 | 
| 
 | 
   719         try: 
 | 
| 
 | 
   720             p_value, z_score = computePValue(l1, l2)
 | 
| 
 | 
   721             avg1 = sum(l1) / len(l1)
 | 
| 
 | 
   722             avg2 = sum(l2) / len(l2)
 | 
| 
 | 
   723             avg = fold_change(avg1, avg2)
 | 
| 
 | 
   724             if not isinstance(z_score, str) and max_z_score < abs(z_score): max_z_score = abs(z_score)
 | 
| 
 | 
   725             tmp[reactId] = [float(p_value), avg, z_score, avg1, avg2]
 | 
| 
 | 
   726         except (TypeError, ZeroDivisionError): continue
 | 
| 
 | 
   727     
 | 
| 
 | 
   728     return tmp, max_z_score
 | 
| 
 | 
   729 
 | 
| 
 | 
   730 def computeEnrichment(metabMap :ET.ElementTree, class_pat :Dict[str, List[List[float]]], ids :List[str]) -> None:
 | 
| 
 | 
   731     """
 | 
| 
 | 
   732     Compares clustered data based on a given comparison mode and applies enrichment-based styling on the
 | 
| 
 | 
   733     provided metabolic map.
 | 
| 
 | 
   734 
 | 
| 
 | 
   735     Args:
 | 
| 
 | 
   736         metabMap : SVG map to modify.
 | 
| 
 | 
   737         class_pat : the clustered data.
 | 
| 
 | 
   738         ids : ids for data association.
 | 
| 
 | 
   739         
 | 
| 
 | 
   740 
 | 
| 
 | 
   741     Returns:
 | 
| 
 | 
   742         None
 | 
| 
 | 
   743 
 | 
| 
 | 
   744     Raises:
 | 
| 
 | 
   745         sys.exit : if there are less than 2 classes for comparison
 | 
| 
 | 
   746     
 | 
| 
 | 
   747     Side effects:
 | 
| 
 | 
   748         metabMap : mut
 | 
| 
 | 
   749         ids : mut
 | 
| 
 | 
   750     """
 | 
| 
 | 
   751     class_pat = { k.strip() : v for k, v in class_pat.items() }
 | 
| 
 | 
   752     #TODO: simplfy this stuff vvv and stop using sys.exit (raise the correct utils error)
 | 
| 
 | 
   753     if (not class_pat) or (len(class_pat.keys()) < 2): sys.exit('Execution aborted: classes provided for comparisons are less than two\n')
 | 
| 
 | 
   754 
 | 
| 
 | 
   755     if ARGS.comparison == "manyvsmany":
 | 
| 
 | 
   756         for i, j in it.combinations(class_pat.keys(), 2):
 | 
| 
 | 
   757             #TODO: these 2 functions are always called in pair and in this order and need common data,
 | 
| 
 | 
   758             # some clever refactoring would be appreciated.
 | 
| 
 | 
   759             comparisonDict, max_z_score = compareDatasetPair(class_pat.get(i), class_pat.get(j), ids)
 | 
| 
 | 
   760             temp_thingsInCommon(comparisonDict, metabMap, max_z_score, i, j)
 | 
| 
 | 
   761     
 | 
| 
 | 
   762     elif ARGS.comparison == "onevsrest":
 | 
| 
 | 
   763         for single_cluster in class_pat.keys():
 | 
| 
 | 
   764             t :List[List[List[float]]] = []
 | 
| 
 | 
   765             for k in class_pat.keys():
 | 
| 
 | 
   766                 if k != single_cluster:
 | 
| 
 | 
   767                    t.append(class_pat.get(k))
 | 
| 
 | 
   768             
 | 
| 
 | 
   769             rest :List[List[float]] = []
 | 
| 
 | 
   770             for i in t:
 | 
| 
 | 
   771                 rest = rest + i
 | 
| 
 | 
   772             
 | 
| 
 | 
   773             comparisonDict, max_z_score = compareDatasetPair(class_pat.get(single_cluster), rest, ids)
 | 
| 
 | 
   774             temp_thingsInCommon(comparisonDict, metabMap, max_z_score, single_cluster)
 | 
| 
 | 
   775     
 | 
| 
 | 
   776     elif ARGS.comparison == "onevsmany":
 | 
| 
 | 
   777         controlItems = class_pat.get(ARGS.control)
 | 
| 
 | 
   778         for otherDataset in class_pat.keys():
 | 
| 
 | 
   779             if otherDataset == ARGS.control: continue
 | 
| 
 | 
   780             
 | 
| 
 | 
   781             comparisonDict, max_z_score = compareDatasetPair(controlItems, class_pat.get(otherDataset), ids)
 | 
| 
 | 
   782             temp_thingsInCommon(comparisonDict, metabMap, max_z_score, ARGS.control, otherDataset)
 | 
| 
 | 
   783 
 | 
| 
 | 
   784 def createOutputMaps(dataset1Name :str, dataset2Name :str, core_map :ET.ElementTree) -> None:
 | 
| 
 | 
   785     svgFilePath = buildOutputPath(dataset1Name, dataset2Name, details = "SVG Map", ext = utils.FileFormat.SVG)
 | 
| 
 | 
   786     utils.writeSvg(svgFilePath, core_map)
 | 
| 
 | 
   787 
 | 
| 
 | 
   788     if ARGS.generate_pdf:
 | 
| 
 | 
   789         pngPath = buildOutputPath(dataset1Name, dataset2Name, details = "PNG Map", ext = utils.FileFormat.PNG)
 | 
| 
 | 
   790         pdfPath = buildOutputPath(dataset1Name, dataset2Name, details = "PDF Map", ext = utils.FileFormat.PDF)
 | 
| 
 | 
   791         convert_to_pdf(svgFilePath, pngPath, pdfPath)                     
 | 
| 
 | 
   792 
 | 
| 
 | 
   793     if not ARGS.generate_svg: os.remove(svgFilePath.show())
 | 
| 
 | 
   794 
 | 
| 
 | 
   795 ClassPat = Dict[str, List[List[float]]]
 | 
| 
 | 
   796 def getClassesAndIdsFromDatasets(datasetsPaths :List[str], datasetPath :str, classPath :str, names :List[str]) -> Tuple[List[str], ClassPat]:
 | 
| 
 | 
   797     # TODO: I suggest creating dicts with ids as keys instead of keeping class_pat and ids separate,
 | 
| 
 | 
   798     # for the sake of everyone's sanity.
 | 
| 
 | 
   799     class_pat :ClassPat = {}
 | 
| 
 | 
   800     if ARGS.option == 'datasets':
 | 
| 
 | 
   801         num = 1 #TODO: the dataset naming function could be a generator
 | 
| 
 | 
   802         for path, name in zip(datasetsPaths, names):
 | 
| 
 | 
   803             name = name_dataset(name, num)
 | 
| 
 | 
   804             resolve_rules_float, ids = getDatasetValues(path, name)
 | 
| 
 | 
   805             if resolve_rules_float != None:
 | 
| 
 | 
   806                 class_pat[name] = list(map(list, zip(*resolve_rules_float.values())))
 | 
| 
 | 
   807         
 | 
| 
 | 
   808             num += 1
 | 
| 
 | 
   809     
 | 
| 
 | 
   810     elif ARGS.option == "dataset_class":
 | 
| 
 | 
   811         classes = read_dataset(classPath, "class")
 | 
| 
 | 
   812         classes = classes.astype(str)
 | 
| 
 | 
   813 
 | 
| 
 | 
   814         resolve_rules_float, ids = getDatasetValues(datasetPath, "Dataset Class (not actual name)")
 | 
| 
 | 
   815         if resolve_rules_float != None: class_pat = split_class(classes, resolve_rules_float)
 | 
| 
 | 
   816     
 | 
| 
 | 
   817     return ids, class_pat
 | 
| 
 | 
   818     #^^^ TODO: this could be a match statement over an enum, make it happen future marea dev with python 3.12! (it's why I kept the ifs)
 | 
| 
 | 
   819 
 | 
| 
 | 
   820 #TODO: create these damn args as FilePath objects
 | 
| 
 | 
   821 def getDatasetValues(datasetPath :str, datasetName :str) -> Tuple[ClassPat, List[str]]:
 | 
| 
 | 
   822     """
 | 
| 
 | 
   823     Opens the dataset at the given path and extracts the values (expected nullable numerics) and the IDs.
 | 
| 
 | 
   824 
 | 
| 
 | 
   825     Args:
 | 
| 
 | 
   826         datasetPath : path to the dataset
 | 
| 
 | 
   827         datasetName (str): dataset name, used in error reporting
 | 
| 
 | 
   828 
 | 
| 
 | 
   829     Returns:
 | 
| 
 | 
   830         Tuple[ClassPat, List[str]]: values and IDs extracted from the dataset
 | 
| 
 | 
   831     """
 | 
| 
 | 
   832     dataset = read_dataset(datasetPath, datasetName)
 | 
| 
 | 
   833     IDs = pd.Series.tolist(dataset.iloc[:, 0].astype(str))
 | 
| 
 | 
   834 
 | 
| 
 | 
   835     dataset = dataset.drop(dataset.columns[0], axis = "columns").to_dict("list")
 | 
| 
 | 
   836     return { id : list(map(utils.Float("Dataset values, not an argument"), values)) for id, values in dataset.items() }, IDs
 | 
| 
 | 
   837 
 | 
| 
 | 
   838 def rgb_to_hex(rgb):
 | 
| 
 | 
   839     """
 | 
| 
 | 
   840     Convert RGB values (0-1 range) to hexadecimal color format.
 | 
| 
 | 
   841 
 | 
| 
 | 
   842     Args:
 | 
| 
 | 
   843         rgb (numpy.ndarray): An array of RGB color components (in the range [0, 1]).
 | 
| 
 | 
   844 
 | 
| 
 | 
   845     Returns:
 | 
| 
 | 
   846         str: The color in hexadecimal format (e.g., '#ff0000' for red).
 | 
| 
 | 
   847     """
 | 
| 
 | 
   848     # Convert RGB values (0-1 range) to hexadecimal format
 | 
| 
 | 
   849     rgb = (np.array(rgb) * 255).astype(int)
 | 
| 
 | 
   850     return '#{:02x}{:02x}{:02x}'.format(rgb[0], rgb[1], rgb[2])
 | 
| 
 | 
   851 
 | 
| 
 | 
   852 
 | 
| 
 | 
   853 
 | 
| 
 | 
   854 def save_colormap_image(min_value: float, max_value: float, path: utils.FilePath, colorMap:str="viridis"):
 | 
| 
 | 
   855     """
 | 
| 
 | 
   856     Create and save an image of the colormap showing the gradient and its range.
 | 
| 
 | 
   857 
 | 
| 
 | 
   858     Args:
 | 
| 
 | 
   859         min_value (float): The minimum value of the colormap range.
 | 
| 
 | 
   860         max_value (float): The maximum value of the colormap range.
 | 
| 
 | 
   861         filename (str): The filename for saving the image.
 | 
| 
 | 
   862     """
 | 
| 
 | 
   863 
 | 
| 
 | 
   864     # Create a colormap using matplotlib
 | 
| 
 | 
   865     cmap = plt.get_cmap(colorMap)
 | 
| 
 | 
   866 
 | 
| 
 | 
   867     # Create a figure and axis
 | 
| 
 | 
   868     fig, ax = plt.subplots(figsize=(6, 1))
 | 
| 
 | 
   869     fig.subplots_adjust(bottom=0.5)
 | 
| 
 | 
   870 
 | 
| 
 | 
   871     # Create a gradient image
 | 
| 
 | 
   872     gradient = np.linspace(0, 1, 256)
 | 
| 
 | 
   873     gradient = np.vstack((gradient, gradient))
 | 
| 
 | 
   874 
 | 
| 
 | 
   875     # Add min and max value annotations
 | 
| 
 | 
   876     ax.text(0, 0.5, f'{np.round(min_value, 3)}', va='center', ha='right', transform=ax.transAxes, fontsize=12, color='black')
 | 
| 
 | 
   877     ax.text(1, 0.5, f'{np.round(max_value, 3)}', va='center', ha='left', transform=ax.transAxes, fontsize=12, color='black')
 | 
| 
 | 
   878 
 | 
| 
 | 
   879 
 | 
| 
 | 
   880     # Display the gradient image
 | 
| 
 | 
   881     ax.imshow(gradient, aspect='auto', cmap=cmap)
 | 
| 
 | 
   882     ax.set_axis_off()
 | 
| 
 | 
   883 
 | 
| 
 | 
   884     # Save the image
 | 
| 
 | 
   885     plt.savefig(path.show(), bbox_inches='tight', pad_inches=0)
 | 
| 
 | 
   886     plt.close()
 | 
| 
 | 
   887     pass
 | 
| 
 | 
   888 
 | 
| 
 | 
   889 def min_nonzero_abs(arr):
 | 
| 
 | 
   890     # Flatten the array and filter out zeros, then find the minimum of the remaining values
 | 
| 
 | 
   891     non_zero_elements = np.abs(arr)[np.abs(arr) > 0]
 | 
| 
 | 
   892     return np.min(non_zero_elements) if non_zero_elements.size > 0 else None
 | 
| 
 | 
   893 
 | 
| 
 | 
   894 def computeEnrichmentMeanMedian(metabMap: ET.ElementTree, class_pat: Dict[str, List[List[float]]], ids: List[str], colormap:str) -> None:
 | 
| 
 | 
   895     """
 | 
| 
 | 
   896     Compute and visualize the metabolic map based on mean and median of the input fluxes.
 | 
| 
 | 
   897     The fluxes are normalised across classes/datasets and visualised using the given colormap.
 | 
| 
 | 
   898 
 | 
| 
 | 
   899     Args:
 | 
| 
 | 
   900         metabMap (ET.ElementTree): An XML tree representing the metabolic map.
 | 
| 
 | 
   901         class_pat (Dict[str, List[List[float]]]): A dictionary where keys are class names and values are lists of enrichment values.
 | 
| 
 | 
   902         ids (List[str]): A list of reaction IDs to be used for coloring arrows.
 | 
| 
 | 
   903     
 | 
| 
 | 
   904     Returns:
 | 
| 
 | 
   905         None
 | 
| 
 | 
   906     """
 | 
| 
 | 
   907     # Create copies only if they are needed
 | 
| 
 | 
   908     metabMap_mean = copy.deepcopy(metabMap)
 | 
| 
 | 
   909     metabMap_median = copy.deepcopy(metabMap)
 | 
| 
 | 
   910 
 | 
| 
 | 
   911     # Compute medians and means
 | 
| 
 | 
   912     medians = {key: np.round(np.median(np.array(value), axis=1), 6) for key, value in class_pat.items()}
 | 
| 
 | 
   913     means = {key: np.round(np.mean(np.array(value), axis=1),6) for key, value in class_pat.items()}
 | 
| 
 | 
   914 
 | 
| 
 | 
   915     # Normalize medians and means
 | 
| 
 | 
   916     max_flux_medians = max(np.max(np.abs(arr)) for arr in medians.values())
 | 
| 
 | 
   917     max_flux_means = max(np.max(np.abs(arr)) for arr in means.values())
 | 
| 
 | 
   918 
 | 
| 
 | 
   919     min_flux_medians = min(min_nonzero_abs(arr) for arr in medians.values())
 | 
| 
 | 
   920     min_flux_means = min(min_nonzero_abs(arr) for arr in means.values())
 | 
| 
 | 
   921 
 | 
| 
 | 
   922     medians = {key: median/max_flux_medians for key, median in medians.items()}
 | 
| 
 | 
   923     means = {key: mean/max_flux_means for key, mean in means.items()}
 | 
| 
 | 
   924 
 | 
| 
 | 
   925     save_colormap_image(min_flux_medians, max_flux_medians, utils.FilePath("Color map median", ext=utils.FileFormat.PNG, prefix="result"), colormap)
 | 
| 
 | 
   926     save_colormap_image(min_flux_means, max_flux_means, utils.FilePath("Color map mean", ext=utils.FileFormat.PNG, prefix="result"), colormap)
 | 
| 
 | 
   927 
 | 
| 
 | 
   928     cmap = plt.get_cmap(colormap)
 | 
| 
 | 
   929 
 | 
| 
 | 
   930     for key in class_pat:
 | 
| 
 | 
   931         # Create color mappings for median and mean
 | 
| 
 | 
   932         colors_median = {
 | 
| 
 | 
   933             rxn_id: rgb_to_hex(cmap(abs(medians[key][i]))) if medians[key][i] != 0 else '#bebebe'  #grey blocked
 | 
| 
 | 
   934             for i, rxn_id in enumerate(ids)
 | 
| 
 | 
   935         }
 | 
| 
 | 
   936 
 | 
| 
 | 
   937         colors_mean = {
 | 
| 
 | 
   938             rxn_id: rgb_to_hex(cmap(abs(means[key][i]))) if means[key][i] != 0 else '#bebebe'  #grey blocked
 | 
| 
 | 
   939             for i, rxn_id in enumerate(ids)
 | 
| 
 | 
   940         }
 | 
| 
 | 
   941 
 | 
| 
 | 
   942         for i, rxn_id in enumerate(ids):
 | 
| 
 | 
   943             isNegative = medians[key][i] < 0
 | 
| 
 | 
   944 
 | 
| 
 | 
   945             # Apply median arrows
 | 
| 
 | 
   946             apply_arrow(metabMap_median, rxn_id, colors_median[rxn_id], isNegative)
 | 
| 
 | 
   947 
 | 
| 
 | 
   948             isNegative = means[key][i] < 0
 | 
| 
 | 
   949             # Apply mean arrows
 | 
| 
 | 
   950             apply_arrow(metabMap_mean, rxn_id, colors_mean[rxn_id], isNegative)
 | 
| 
 | 
   951 
 | 
| 
 | 
   952         # Save and convert the SVG files
 | 
| 
 | 
   953         save_and_convert(metabMap_mean, "mean", key)
 | 
| 
 | 
   954         save_and_convert(metabMap_median, "median", key)
 | 
| 
 | 
   955 
 | 
| 
 | 
   956 def apply_arrow(metabMap, rxn_id, color, isNegative):
 | 
| 
 | 
   957     """
 | 
| 
 | 
   958     Apply an arrow to a specific reaction in the metabolic map with a given color.
 | 
| 
 | 
   959 
 | 
| 
 | 
   960     Args:
 | 
| 
 | 
   961         metabMap (ET.ElementTree): An XML tree representing the metabolic map.
 | 
| 
 | 
   962         rxn_id (str): The ID of the reaction to which the arrow will be applied.
 | 
| 
 | 
   963         color (str): The color of the arrow in hexadecimal format.
 | 
| 
 | 
   964 
 | 
| 
 | 
   965     Returns:
 | 
| 
 | 
   966         None
 | 
| 
 | 
   967     """
 | 
| 
 | 
   968     arrow = Arrow(width=5, col=color)
 | 
| 
 | 
   969     arrow.styleReactionElementsMeanMedian(metabMap, rxn_id, isNegative)
 | 
| 
 | 
   970     pass
 | 
| 
 | 
   971 
 | 
| 
 | 
   972 def save_and_convert(metabMap, map_type, key):
 | 
| 
 | 
   973     """
 | 
| 
 | 
   974     Save the metabolic map as an SVG file and optionally convert it to PNG and PDF formats.
 | 
| 
 | 
   975 
 | 
| 
 | 
   976     Args:
 | 
| 
 | 
   977         metabMap (ET.ElementTree): An XML tree representing the metabolic map.
 | 
| 
 | 
   978         map_type (str): The type of map ('mean' or 'median').
 | 
| 
 | 
   979         key (str): The key identifying the specific map.
 | 
| 
 | 
   980 
 | 
| 
 | 
   981     Returns:
 | 
| 
 | 
   982         None
 | 
| 
 | 
   983     """
 | 
| 
 | 
   984     svgFilePath = utils.FilePath(f"SVG Map {map_type} - {key}", ext=utils.FileFormat.SVG, prefix="result")
 | 
| 
 | 
   985     utils.writeSvg(svgFilePath, metabMap)
 | 
| 
 | 
   986     if ARGS.generate_pdf:
 | 
| 
 | 
   987         pngPath = utils.FilePath(f"PNG Map {map_type} - {key}", ext=utils.FileFormat.PNG, prefix="result")
 | 
| 
 | 
   988         pdfPath = utils.FilePath(f"PDF Map {map_type} - {key}", ext=utils.FileFormat.PDF, prefix="result")
 | 
| 
 | 
   989         convert_to_pdf(svgFilePath, pngPath, pdfPath)
 | 
| 
 | 
   990     if not ARGS.generate_svg:
 | 
| 
 | 
   991         os.remove(svgFilePath.show())
 | 
| 
 | 
   992 
 | 
| 
 | 
   993 
 | 
| 
 | 
   994 
 | 
| 
 | 
   995     
 | 
| 
 | 
   996 ############################ MAIN #############################################
 | 
| 
 | 
   997 def main() -> None:
 | 
| 
 | 
   998     """
 | 
| 
 | 
   999     Initializes everything and sets the program in motion based on the fronted input arguments.
 | 
| 
 | 
  1000 
 | 
| 
 | 
  1001     Returns:
 | 
| 
 | 
  1002         None
 | 
| 
 | 
  1003     
 | 
| 
 | 
  1004     Raises:
 | 
| 
 | 
  1005         sys.exit : if a user-provided custom map is in the wrong format (ET.XMLSyntaxError, ET.XMLSchemaParseError)
 | 
| 
 | 
  1006     """
 | 
| 
 | 
  1007 
 | 
| 
 | 
  1008     global ARGS
 | 
| 
 | 
  1009     ARGS = process_args()
 | 
| 
 | 
  1010 
 | 
| 
 | 
  1011     if os.path.isdir('result') == False: os.makedirs('result')
 | 
| 
 | 
  1012     
 | 
| 
 | 
  1013     core_map :ET.ElementTree = ARGS.choice_map.getMap(
 | 
| 
 | 
  1014         ARGS.tool_dir,
 | 
| 
 | 
  1015         utils.FilePath.fromStrPath(ARGS.custom_map) if ARGS.custom_map else None)
 | 
| 
 | 
  1016     # TODO: ^^^ ugly but fine for now, the argument is None if the model isn't custom because no file was given.
 | 
| 
 | 
  1017     # getMap will None-check the customPath and panic when the model IS custom but there's no file (good). A cleaner
 | 
| 
 | 
  1018     # solution can be derived from my comment in FilePath.fromStrPath
 | 
| 
 | 
  1019 
 | 
| 
 | 
  1020     ids, class_pat = getClassesAndIdsFromDatasets(ARGS.input_datas_fluxes, ARGS.input_data_fluxes, ARGS.input_class_fluxes, ARGS.names_fluxes)
 | 
| 
 | 
  1021 
 | 
| 
 | 
  1022     if(ARGS.choice_map == utils.Model.HMRcore):
 | 
| 
 | 
  1023         temp_map = utils.Model.HMRcore_no_legend
 | 
| 
 | 
  1024         computeEnrichmentMeanMedian(temp_map.getMap(ARGS.tool_dir), class_pat, ids, ARGS.color_map)
 | 
| 
 | 
  1025     elif(ARGS.choice_map == utils.Model.ENGRO2):
 | 
| 
 | 
  1026         temp_map = utils.Model.ENGRO2_no_legend
 | 
| 
 | 
  1027         computeEnrichmentMeanMedian(temp_map.getMap(ARGS.tool_dir), class_pat, ids, ARGS.color_map)
 | 
| 
 | 
  1028     else:
 | 
| 
 | 
  1029         computeEnrichmentMeanMedian(core_map, class_pat, ids, ARGS.color_map)
 | 
| 
 | 
  1030     
 | 
| 
 | 
  1031 
 | 
| 
 | 
  1032     computeEnrichment(core_map, class_pat, ids)
 | 
| 
 | 
  1033     
 | 
| 
 | 
  1034     # create output files: TODO: this is the same comparison happening in "maps", find a better way to organize this
 | 
| 
 | 
  1035     if ARGS.comparison == "manyvsmany":
 | 
| 
 | 
  1036         for i, j in it.combinations(class_pat.keys(), 2): createOutputMaps(i, j, core_map)
 | 
| 
 | 
  1037         return
 | 
| 
 | 
  1038     
 | 
| 
 | 
  1039     if ARGS.comparison == "onevsrest":
 | 
| 
 | 
  1040         for single_cluster in class_pat.keys(): createOutputMaps(single_cluster, "rest", core_map)
 | 
| 
 | 
  1041         return
 | 
| 
 | 
  1042     
 | 
| 
 | 
  1043     for otherDataset in class_pat.keys():
 | 
| 
 | 
  1044         if otherDataset != ARGS.control: createOutputMaps(i, j, core_map)
 | 
| 
 | 
  1045 
 | 
| 
 | 
  1046     if not ERRORS: return
 | 
| 
 | 
  1047     utils.logWarning(
 | 
| 
 | 
  1048         f"The following reaction IDs were mentioned in the dataset but weren't found in the map: {ERRORS}",
 | 
| 
 | 
  1049         ARGS.out_log)
 | 
| 
 | 
  1050     
 | 
| 
 | 
  1051     print('Execution succeded')
 | 
| 
 | 
  1052 
 | 
| 
 | 
  1053 ###############################################################################
 | 
| 
 | 
  1054 if __name__ == "__main__":
 | 
| 
 | 
  1055     main() |