| 4 | 1 # -*- coding: utf-8 -*- | 
|  | 2 """ | 
|  | 3 Created on Mon Jun 3 19:51:00 2019 | 
|  | 4 @author: Narger | 
|  | 5 """ | 
|  | 6 | 
|  | 7 import sys | 
|  | 8 import argparse | 
|  | 9 import os | 
|  | 10 import numpy as np | 
|  | 11 import pandas as pd | 
|  | 12 from sklearn.datasets import make_blobs | 
|  | 13 from sklearn.cluster import KMeans, DBSCAN, AgglomerativeClustering | 
|  | 14 from sklearn.metrics import silhouette_samples, silhouette_score, cluster | 
|  | 15 import matplotlib | 
|  | 16 matplotlib.use('agg') | 
|  | 17 import matplotlib.pyplot as plt | 
|  | 18 import scipy.cluster.hierarchy as shc | 
|  | 19 import matplotlib.cm as cm | 
|  | 20 from typing import Optional, Dict, List | 
|  | 21 | 
|  | 22 ################################# process args ############################### | 
| 155 | 23 def process_args(args_in :List[str] = None) -> argparse.Namespace: | 
| 4 | 24     """ | 
|  | 25     Processes command-line arguments. | 
|  | 26 | 
|  | 27     Args: | 
|  | 28         args (list): List of command-line arguments. | 
|  | 29 | 
|  | 30     Returns: | 
|  | 31         Namespace: An object containing parsed arguments. | 
|  | 32     """ | 
|  | 33     parser = argparse.ArgumentParser(usage = '%(prog)s [options]', | 
|  | 34                                      description = 'process some value\'s' + | 
|  | 35                                      ' genes to create class.') | 
|  | 36 | 
|  | 37     parser.add_argument('-ol', '--out_log', | 
|  | 38                         help = "Output log") | 
|  | 39 | 
|  | 40     parser.add_argument('-in', '--input', | 
|  | 41                         type = str, | 
|  | 42                         help = 'input dataset') | 
|  | 43 | 
|  | 44     parser.add_argument('-cy', '--cluster_type', | 
|  | 45                         type = str, | 
|  | 46                         choices = ['kmeans', 'dbscan', 'hierarchy'], | 
|  | 47                         default = 'kmeans', | 
|  | 48                         help = 'choose clustering algorythm') | 
|  | 49 | 
|  | 50     parser.add_argument('-k1', '--k_min', | 
|  | 51                         type = int, | 
|  | 52                         default = 2, | 
|  | 53                         help = 'choose minimun cluster number to be generated') | 
|  | 54 | 
|  | 55     parser.add_argument('-k2', '--k_max', | 
|  | 56                         type = int, | 
|  | 57                         default = 7, | 
|  | 58                         help = 'choose maximum cluster number to be generated') | 
|  | 59 | 
|  | 60     parser.add_argument('-el', '--elbow', | 
|  | 61                         type = str, | 
|  | 62                         default = 'false', | 
|  | 63                         choices = ['true', 'false'], | 
|  | 64                         help = 'choose if you want to generate an elbow plot for kmeans') | 
|  | 65 | 
|  | 66     parser.add_argument('-si', '--silhouette', | 
|  | 67                         type = str, | 
|  | 68                         default = 'false', | 
|  | 69                         choices = ['true', 'false'], | 
|  | 70                         help = 'choose if you want silhouette plots') | 
|  | 71 | 
|  | 72     parser.add_argument('-td', '--tool_dir', | 
|  | 73                         type = str, | 
|  | 74                         required = True, | 
|  | 75                         help = 'your tool directory') | 
|  | 76 | 
|  | 77     parser.add_argument('-ms', '--min_samples', | 
|  | 78                         type = float, | 
|  | 79                         help = 'min samples for dbscan (optional)') | 
|  | 80 | 
|  | 81     parser.add_argument('-ep', '--eps', | 
|  | 82                         type = float, | 
|  | 83                         help = 'eps for dbscan (optional)') | 
|  | 84 | 
|  | 85     parser.add_argument('-bc', '--best_cluster', | 
|  | 86                         type = str, | 
|  | 87                         help = 'output of best cluster tsv') | 
|  | 88 | 
| 147 | 89     parser.add_argument( | 
|  | 90         '-idop', '--output_path', | 
|  | 91         type = str, | 
|  | 92         default='result', | 
|  | 93         help = 'output path for maps') | 
| 4 | 94 | 
| 155 | 95     args_in = parser.parse_args(args_in) | 
|  | 96     return args_in | 
| 4 | 97 | 
|  | 98 ########################### warning ########################################### | 
|  | 99 def warning(s :str) -> None: | 
|  | 100     """ | 
|  | 101     Log a warning message to an output log file and print it to the console. | 
|  | 102 | 
|  | 103     Args: | 
|  | 104         s (str): The warning message to be logged and printed. | 
|  | 105 | 
|  | 106     Returns: | 
|  | 107       None | 
|  | 108     """ | 
|  | 109     args = process_args(sys.argv) | 
|  | 110     with open(args.out_log, 'a') as log: | 
|  | 111         log.write(s + "\n\n") | 
|  | 112     print(s) | 
|  | 113 | 
|  | 114 ########################## read dataset ###################################### | 
|  | 115 def read_dataset(dataset :str) -> pd.DataFrame: | 
|  | 116     """ | 
|  | 117     Read dataset from a CSV file and return it as a Pandas DataFrame. | 
|  | 118 | 
|  | 119     Args: | 
|  | 120         dataset (str): the path to the dataset to convert into a DataFrame | 
|  | 121 | 
|  | 122     Returns: | 
|  | 123         pandas.DataFrame: The dataset loaded as a Pandas DataFrame. | 
|  | 124 | 
|  | 125     Raises: | 
|  | 126         pandas.errors.EmptyDataError: If the dataset file is empty. | 
|  | 127         sys.exit: If the dataset file has the wrong format (e.g., fewer than 2 columns) | 
|  | 128     """ | 
|  | 129     try: | 
|  | 130         dataset = pd.read_csv(dataset, sep = '\t', header = 0) | 
|  | 131     except pd.errors.EmptyDataError: | 
|  | 132         sys.exit('Execution aborted: wrong format of dataset\n') | 
|  | 133     if len(dataset.columns) < 2: | 
|  | 134         sys.exit('Execution aborted: wrong format of dataset\n') | 
|  | 135     return dataset | 
|  | 136 | 
|  | 137 ############################ rewrite_input ################################### | 
| 154 | 138 def rewrite_input(dataset :Dict) -> Dict[str, List[Optional[float]]]: | 
| 4 | 139     """ | 
|  | 140     Rewrite the dataset as a dictionary of lists instead of as a dictionary of dictionaries. | 
|  | 141 | 
|  | 142     Args: | 
|  | 143         dataset (pandas.DataFrame): The dataset to be rewritten. | 
|  | 144 | 
|  | 145     Returns: | 
|  | 146         dict: The rewritten dataset as a dictionary of lists. | 
|  | 147     """ | 
|  | 148     #Riscrivo il dataset come dizionario di liste, | 
|  | 149     #non come dizionario di dizionari | 
| 153 | 150     #dataset.pop('Reactions', None) | 
| 4 | 151 | 
|  | 152     for key, val in dataset.items(): | 
|  | 153         l = [] | 
|  | 154         for i in val: | 
|  | 155             if i == 'None': | 
|  | 156                 l.append(None) | 
|  | 157             else: | 
|  | 158                 l.append(float(i)) | 
|  | 159 | 
|  | 160         dataset[key] = l | 
|  | 161 | 
|  | 162     return dataset | 
|  | 163 | 
|  | 164 ############################## write to csv ################################## | 
|  | 165 def write_to_csv (dataset :pd.DataFrame, labels :List[str], name :str) -> None: | 
|  | 166     """ | 
|  | 167     Write dataset and predicted labels to a CSV file. | 
|  | 168 | 
|  | 169     Args: | 
|  | 170         dataset (pandas.DataFrame): The dataset to be written. | 
|  | 171         labels (list): The predicted labels for each data point. | 
|  | 172         name (str): The name of the output CSV file. | 
|  | 173 | 
|  | 174     Returns: | 
|  | 175         None | 
|  | 176     """ | 
|  | 177     #labels = predict | 
|  | 178     predict = [x+1 for x in labels] | 
|  | 179 | 
|  | 180     classe = (pd.DataFrame(list(zip(dataset.index, predict)))).astype(str) | 
|  | 181 | 
|  | 182     dest = name | 
|  | 183     classe.to_csv(dest, sep = '\t', index = False, | 
|  | 184                       header = ['Patient_ID', 'Class']) | 
|  | 185 | 
|  | 186 ########################### trova il massimo in lista ######################## | 
|  | 187 def max_index (lista :List[int]) -> int: | 
|  | 188     """ | 
|  | 189     Find the index of the maximum value in a list. | 
|  | 190 | 
|  | 191     Args: | 
|  | 192         lista (list): The list in which we search for the index of the maximum value. | 
|  | 193 | 
|  | 194     Returns: | 
|  | 195         int: The index of the maximum value in the list. | 
|  | 196     """ | 
|  | 197     best = -1 | 
|  | 198     best_index = 0 | 
|  | 199     for i in range(len(lista)): | 
|  | 200         if lista[i] > best: | 
|  | 201             best = lista [i] | 
|  | 202             best_index = i | 
|  | 203 | 
|  | 204     return best_index | 
|  | 205 | 
|  | 206 ################################ kmeans ##################################### | 
|  | 207 def kmeans (k_min: int, k_max: int, dataset: pd.DataFrame, elbow: str, silhouette: str, best_cluster: str) -> None: | 
|  | 208     """ | 
|  | 209     Perform k-means clustering on the given dataset, which is an algorithm used to partition a dataset into groups (clusters) based on their characteristics. | 
|  | 210     The goal is to divide the data into homogeneous groups, where the elements within each group are similar to each other and different from the elements in other groups. | 
|  | 211 | 
|  | 212     Args: | 
|  | 213         k_min (int): The minimum number of clusters to consider. | 
|  | 214         k_max (int): The maximum number of clusters to consider. | 
|  | 215         dataset (pandas.DataFrame): The dataset to perform clustering on. | 
|  | 216         elbow (str): Whether to generate an elbow plot for kmeans ('true' or 'false'). | 
|  | 217         silhouette (str): Whether to generate silhouette plots ('true' or 'false'). | 
|  | 218         best_cluster (str): The file path to save the output of the best cluster. | 
|  | 219 | 
|  | 220     Returns: | 
|  | 221         None | 
|  | 222     """ | 
| 147 | 223     if not os.path.exists(args.output_path): | 
|  | 224         os.makedirs(args.output_path) | 
| 4 | 225 | 
|  | 226 | 
|  | 227     if elbow == 'true': | 
|  | 228         elbow = True | 
|  | 229     else: | 
|  | 230         elbow = False | 
|  | 231 | 
|  | 232     if silhouette == 'true': | 
|  | 233         silhouette = True | 
|  | 234     else: | 
|  | 235         silhouette = False | 
|  | 236 | 
|  | 237     range_n_clusters = [i for i in range(k_min, k_max+1)] | 
|  | 238     distortions = [] | 
|  | 239     scores = [] | 
|  | 240     all_labels = [] | 
|  | 241 | 
|  | 242     clusterer = KMeans(n_clusters=1, random_state=10) | 
|  | 243     distortions.append(clusterer.fit(dataset).inertia_) | 
|  | 244 | 
|  | 245 | 
|  | 246     for n_clusters in range_n_clusters: | 
|  | 247         clusterer = KMeans(n_clusters=n_clusters, random_state=10) | 
|  | 248         cluster_labels = clusterer.fit_predict(dataset) | 
|  | 249 | 
|  | 250         all_labels.append(cluster_labels) | 
|  | 251         if n_clusters == 1: | 
|  | 252             silhouette_avg = 0 | 
|  | 253         else: | 
|  | 254             silhouette_avg = silhouette_score(dataset, cluster_labels) | 
|  | 255         scores.append(silhouette_avg) | 
|  | 256         distortions.append(clusterer.fit(dataset).inertia_) | 
|  | 257 | 
|  | 258     best = max_index(scores) + k_min | 
|  | 259 | 
|  | 260     for i in range(len(all_labels)): | 
|  | 261         prefix = '' | 
|  | 262         if (i + k_min == best): | 
|  | 263             prefix = '_BEST' | 
|  | 264 | 
| 147 | 265         write_to_csv(dataset, all_labels[i], f'{args.output_path}/kmeans_with_' + str(i + k_min) + prefix + '_clusters.tsv') | 
| 4 | 266 | 
|  | 267 | 
|  | 268         if (prefix == '_BEST'): | 
|  | 269             labels = all_labels[i] | 
|  | 270             predict = [x+1 for x in labels] | 
|  | 271             classe = (pd.DataFrame(list(zip(dataset.index, predict)))).astype(str) | 
|  | 272             classe.to_csv(best_cluster, sep = '\t', index = False, header = ['Patient_ID', 'Class']) | 
|  | 273 | 
|  | 274 | 
|  | 275 | 
|  | 276 | 
|  | 277         if silhouette: | 
| 147 | 278             silhouette_draw(dataset, all_labels[i], i + k_min, f'{args.output_path}/silhouette_with_' + str(i + k_min) + prefix + '_clusters.png') | 
| 4 | 279 | 
|  | 280 | 
|  | 281     if elbow: | 
|  | 282         elbow_plot(distortions, k_min,k_max) | 
|  | 283 | 
|  | 284 | 
|  | 285 | 
|  | 286 | 
|  | 287 | 
|  | 288 ############################## elbow_plot #################################### | 
|  | 289 def elbow_plot (distortions: List[float], k_min: int, k_max: int) -> None: | 
|  | 290     """ | 
|  | 291     Generate an elbow plot to visualize the distortion for different numbers of clusters. | 
|  | 292     The elbow plot is a graphical tool used in clustering analysis to help identifying the appropriate number of clusters by looking for the point where the rate of decrease | 
|  | 293     in distortion sharply decreases, indicating the optimal balance between model complexity and clustering quality. | 
|  | 294 | 
|  | 295     Args: | 
|  | 296         distortions (list): List of distortion values for different numbers of clusters. | 
|  | 297         k_min (int): The minimum number of clusters considered. | 
|  | 298         k_max (int): The maximum number of clusters considered. | 
|  | 299 | 
|  | 300     Returns: | 
|  | 301         None | 
|  | 302     """ | 
|  | 303     plt.figure(0) | 
|  | 304     x = list(range(k_min, k_max + 1)) | 
|  | 305     x.insert(0, 1) | 
|  | 306     plt.plot(x, distortions, marker = 'o') | 
|  | 307     plt.xlabel('Number of clusters (k)') | 
|  | 308     plt.ylabel('Distortion') | 
| 147 | 309     s = f'{args.output_path}/elbow_plot.png' | 
| 4 | 310     fig = plt.gcf() | 
|  | 311     fig.set_size_inches(18.5, 10.5, forward = True) | 
|  | 312     fig.savefig(s, dpi=100) | 
|  | 313 | 
|  | 314 | 
|  | 315 ############################## silhouette plot ############################### | 
|  | 316 def silhouette_draw(dataset: pd.DataFrame, labels: List[str], n_clusters: int, path:str) -> None: | 
|  | 317     """ | 
|  | 318     Generate a silhouette plot for the clustering results. | 
|  | 319     The silhouette coefficient is a measure used to evaluate the quality of clusters obtained from a clustering algorithmand it quantifies how similar an object is to its own cluster compared to other clusters. | 
|  | 320     The silhouette coefficient ranges from -1 to 1, where: | 
|  | 321     - A value close to +1 indicates that the object is well matched to its own cluster and poorly matched to neighboring clusters. This implies that the object is in a dense, well-separated cluster. | 
|  | 322     - A value close to 0 indicates that the object is close to the decision boundary between two neighboring clusters. | 
|  | 323     - A value close to -1 indicates that the object may have been assigned to the wrong cluster. | 
|  | 324 | 
|  | 325     Args: | 
|  | 326         dataset (pandas.DataFrame): The dataset used for clustering. | 
|  | 327         labels (list): The cluster labels assigned to each data point. | 
|  | 328         n_clusters (int): The number of clusters. | 
|  | 329         path (str): The path to save the silhouette plot image. | 
|  | 330 | 
|  | 331     Returns: | 
|  | 332         None | 
|  | 333     """ | 
|  | 334     if n_clusters == 1: | 
|  | 335         return None | 
|  | 336 | 
|  | 337     silhouette_avg = silhouette_score(dataset, labels) | 
|  | 338     warning("For n_clusters = " + str(n_clusters) + | 
|  | 339           " The average silhouette_score is: " + str(silhouette_avg)) | 
|  | 340 | 
|  | 341     plt.close('all') | 
|  | 342     # Create a subplot with 1 row and 2 columns | 
|  | 343     fig, (ax1) = plt.subplots(1, 1) | 
|  | 344 | 
|  | 345     fig.set_size_inches(18, 7) | 
|  | 346 | 
|  | 347     # The 1st subplot is the silhouette plot | 
|  | 348     # The silhouette coefficient can range from -1, 1 but in this example all | 
|  | 349     # lie within [-0.1, 1] | 
|  | 350     ax1.set_xlim([-1, 1]) | 
|  | 351     # The (n_clusters+1)*10 is for inserting blank space between silhouette | 
|  | 352     # plots of individual clusters, to demarcate them clearly. | 
|  | 353     ax1.set_ylim([0, len(dataset) + (n_clusters + 1) * 10]) | 
|  | 354 | 
|  | 355     # Compute the silhouette scores for each sample | 
|  | 356     sample_silhouette_values = silhouette_samples(dataset, labels) | 
|  | 357 | 
|  | 358     y_lower = 10 | 
|  | 359     for i in range(n_clusters): | 
|  | 360         # Aggregate the silhouette scores for samples belonging to | 
|  | 361         # cluster i, and sort them | 
|  | 362         ith_cluster_silhouette_values = \ | 
|  | 363         sample_silhouette_values[labels == i] | 
|  | 364 | 
|  | 365         ith_cluster_silhouette_values.sort() | 
|  | 366 | 
|  | 367         size_cluster_i = ith_cluster_silhouette_values.shape[0] | 
|  | 368         y_upper = y_lower + size_cluster_i | 
|  | 369 | 
|  | 370         color = cm.nipy_spectral(float(i) / n_clusters) | 
|  | 371         ax1.fill_betweenx(np.arange(y_lower, y_upper), | 
|  | 372                           0, ith_cluster_silhouette_values, | 
|  | 373                                      facecolor=color, edgecolor=color, alpha=0.7) | 
|  | 374 | 
|  | 375         # Label the silhouette plots with their cluster numbers at the middle | 
|  | 376         ax1.text(-0.05, y_lower + 0.5 * size_cluster_i, str(i)) | 
|  | 377 | 
|  | 378         # Compute the new y_lower for next plot | 
|  | 379         y_lower = y_upper + 10  # 10 for the 0 samples | 
|  | 380 | 
|  | 381         ax1.set_title("The silhouette plot for the various clusters.") | 
|  | 382         ax1.set_xlabel("The silhouette coefficient values") | 
|  | 383         ax1.set_ylabel("Cluster label") | 
|  | 384 | 
|  | 385         # The vertical line for average silhouette score of all the values | 
|  | 386         ax1.axvline(x=silhouette_avg, color="red", linestyle="--") | 
|  | 387 | 
|  | 388         ax1.set_yticks([])  # Clear the yaxis labels / ticks | 
|  | 389         ax1.set_xticks([-0.1, 0, 0.2, 0.4, 0.6, 0.8, 1]) | 
|  | 390 | 
|  | 391 | 
|  | 392         plt.suptitle(("Silhouette analysis for clustering on sample data " | 
|  | 393                           "with n_clusters = " + str(n_clusters) + "\nAverage silhouette_score = " + str(silhouette_avg)), fontsize=12, fontweight='bold') | 
|  | 394 | 
|  | 395 | 
|  | 396         plt.savefig(path, bbox_inches='tight') | 
|  | 397 | 
|  | 398 ######################## dbscan ############################################## | 
|  | 399 def dbscan(dataset: pd.DataFrame, eps: float, min_samples: float, best_cluster: str) -> None: | 
|  | 400     """ | 
|  | 401     Perform DBSCAN clustering on the given dataset, which is a clustering algorithm that groups together closely packed points based on the notion of density. | 
|  | 402 | 
|  | 403     Args: | 
|  | 404         dataset (pandas.DataFrame): The dataset to be clustered. | 
|  | 405         eps (float): The maximum distance between two samples for one to be considered as in the neighborhood of the other. | 
|  | 406         min_samples (float): The number of samples in a neighborhood for a point to be considered as a core point. | 
|  | 407         best_cluster (str): The file path to save the output of the best cluster. | 
|  | 408 | 
|  | 409     Returns: | 
|  | 410         None | 
|  | 411     """ | 
| 147 | 412     if not os.path.exists(args.output_path): | 
|  | 413         os.makedirs(args.output_path) | 
| 4 | 414 | 
|  | 415     if eps is not None: | 
|  | 416         clusterer = DBSCAN(eps = eps, min_samples = min_samples) | 
|  | 417     else: | 
|  | 418         clusterer = DBSCAN() | 
|  | 419 | 
|  | 420     clustering = clusterer.fit(dataset) | 
|  | 421 | 
|  | 422     core_samples_mask = np.zeros_like(clustering.labels_, dtype=bool) | 
|  | 423     core_samples_mask[clustering.core_sample_indices_] = True | 
|  | 424     labels = clustering.labels_ | 
|  | 425 | 
|  | 426     # Number of clusters in labels, ignoring noise if present. | 
|  | 427     n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0) | 
|  | 428 | 
|  | 429 | 
|  | 430     labels = labels | 
|  | 431     predict = [x+1 for x in labels] | 
|  | 432     classe = (pd.DataFrame(list(zip(dataset.index, predict)))).astype(str) | 
|  | 433     classe.to_csv(best_cluster, sep = '\t', index = False, header = ['Patient_ID', 'Class']) | 
|  | 434 | 
|  | 435 | 
|  | 436 ########################## hierachical ####################################### | 
|  | 437 def hierachical_agglomerative(dataset: pd.DataFrame, k_min: int, k_max: int, best_cluster: str, silhouette: str) -> None: | 
|  | 438     """ | 
|  | 439     Perform hierarchical agglomerative clustering on the given dataset. | 
|  | 440 | 
|  | 441     Args: | 
|  | 442         dataset (pandas.DataFrame): The dataset to be clustered. | 
|  | 443         k_min (int): The minimum number of clusters to consider. | 
|  | 444         k_max (int): The maximum number of clusters to consider. | 
|  | 445         best_cluster (str): The file path to save the output of the best cluster. | 
|  | 446         silhouette (str): Whether to generate silhouette plots ('true' or 'false'). | 
|  | 447 | 
|  | 448     Returns: | 
|  | 449         None | 
|  | 450     """ | 
| 147 | 451     if not os.path.exists(args.output_path): | 
|  | 452         os.makedirs(args.output_path) | 
| 4 | 453 | 
|  | 454     plt.figure(figsize=(10, 7)) | 
|  | 455     plt.title("Customer Dendograms") | 
|  | 456     shc.dendrogram(shc.linkage(dataset, method='ward'), labels=dataset.index.values.tolist()) | 
|  | 457     fig = plt.gcf() | 
| 147 | 458     fig.savefig(f'{args.output_path}/dendogram.png', dpi=200) | 
| 4 | 459 | 
|  | 460     range_n_clusters = [i for i in range(k_min, k_max+1)] | 
|  | 461 | 
|  | 462     scores = [] | 
|  | 463     labels = [] | 
|  | 464 | 
|  | 465     n_classi = dataset.shape[0] | 
|  | 466 | 
|  | 467     for n_clusters in range_n_clusters: | 
|  | 468         cluster = AgglomerativeClustering(n_clusters=n_clusters, affinity='euclidean', linkage='ward') | 
|  | 469         cluster.fit_predict(dataset) | 
|  | 470         cluster_labels = cluster.labels_ | 
|  | 471         labels.append(cluster_labels) | 
| 147 | 472         write_to_csv(dataset, cluster_labels, f'{args.output_path}/hierarchical_with_' + str(n_clusters) + '_clusters.tsv') | 
| 4 | 473 | 
|  | 474     best = max_index(scores) + k_min | 
|  | 475 | 
|  | 476     for i in range(len(labels)): | 
|  | 477         prefix = '' | 
|  | 478         if (i + k_min == best): | 
|  | 479             prefix = '_BEST' | 
|  | 480         if silhouette == 'true': | 
| 147 | 481             silhouette_draw(dataset, labels[i], i + k_min, f'{args.output_path}/silhouette_with_' + str(i + k_min) + prefix + '_clusters.png') | 
| 4 | 482 | 
|  | 483     for i in range(len(labels)): | 
|  | 484         if (i + k_min == best): | 
|  | 485             labels = labels[i] | 
|  | 486             predict = [x+1 for x in labels] | 
|  | 487             classe = (pd.DataFrame(list(zip(dataset.index, predict)))).astype(str) | 
|  | 488             classe.to_csv(best_cluster, sep = '\t', index = False, header = ['Patient_ID', 'Class']) | 
|  | 489 | 
|  | 490 | 
|  | 491 ############################# main ########################################### | 
| 147 | 492 def main(args_in:List[str] = None) -> None: | 
| 4 | 493     """ | 
|  | 494     Initializes everything and sets the program in motion based on the fronted input arguments. | 
|  | 495 | 
|  | 496     Returns: | 
|  | 497         None | 
|  | 498     """ | 
| 147 | 499     global args | 
|  | 500     args = process_args(args_in) | 
| 4 | 501 | 
| 147 | 502     if not os.path.exists(args.output_path): | 
|  | 503         os.makedirs(args.output_path) | 
| 4 | 504 | 
|  | 505     #Data read | 
|  | 506 | 
|  | 507     X = read_dataset(args.input) | 
| 154 | 508     X = X.iloc[:, 1:] | 
| 4 | 509     X = pd.DataFrame.to_dict(X, orient='list') | 
|  | 510     X = rewrite_input(X) | 
|  | 511     X = pd.DataFrame.from_dict(X, orient = 'index') | 
|  | 512 | 
|  | 513     for i in X.columns: | 
| 224 | 514         if any(val is None or np.isnan(val) for val in X[i]): | 
| 4 | 515             X = X.drop(columns=[i]) | 
|  | 516 | 
|  | 517     if args.k_max != None: | 
|  | 518        numero_classi = X.shape[0] | 
|  | 519        while args.k_max >= numero_classi: | 
|  | 520           err = 'Skipping k = ' + str(args.k_max) + ' since it is >= number of classes of dataset' | 
|  | 521           warning(err) | 
|  | 522           args.k_max = args.k_max - 1 | 
|  | 523 | 
|  | 524 | 
|  | 525     if args.cluster_type == 'kmeans': | 
|  | 526         kmeans(args.k_min, args.k_max, X, args.elbow, args.silhouette, args.best_cluster) | 
|  | 527 | 
|  | 528     if args.cluster_type == 'dbscan': | 
|  | 529         dbscan(X, args.eps, args.min_samples, args.best_cluster) | 
|  | 530 | 
|  | 531     if args.cluster_type == 'hierarchy': | 
|  | 532         hierachical_agglomerative(X, args.k_min, args.k_max, args.best_cluster, args.silhouette) | 
|  | 533 | 
|  | 534 ############################################################################## | 
|  | 535 if __name__ == "__main__": | 
|  | 536     main() |