| 4 | 1 from __future__ import division | 
|  | 2 import csv | 
|  | 3 from enum import Enum | 
|  | 4 import re | 
|  | 5 import sys | 
|  | 6 import numpy as np | 
|  | 7 import pandas as pd | 
|  | 8 import itertools as it | 
|  | 9 import scipy.stats as st | 
|  | 10 import lxml.etree as ET | 
|  | 11 import math | 
|  | 12 import utils.general_utils as utils | 
|  | 13 from PIL import Image | 
|  | 14 import os | 
|  | 15 import copy | 
|  | 16 import argparse | 
|  | 17 import pyvips | 
| 293 | 18 from PIL import Image | 
| 4 | 19 from typing import Tuple, Union, Optional, List, Dict | 
|  | 20 import matplotlib.pyplot as plt | 
|  | 21 | 
|  | 22 ERRORS = [] | 
|  | 23 ########################## argparse ########################################## | 
|  | 24 ARGS :argparse.Namespace | 
| 147 | 25 def process_args(args:List[str] = None) -> argparse.Namespace: | 
| 4 | 26     """ | 
|  | 27     Interfaces the script of a module with its frontend, making the user's choices for various parameters available as values in code. | 
|  | 28 | 
|  | 29     Args: | 
|  | 30         args : Always obtained (in file) from sys.argv | 
|  | 31 | 
|  | 32     Returns: | 
|  | 33         Namespace : An object containing the parsed arguments | 
|  | 34     """ | 
|  | 35     parser = argparse.ArgumentParser( | 
|  | 36         usage = "%(prog)s [options]", | 
|  | 37         description = "process some value's genes to create a comparison's map.") | 
|  | 38 | 
|  | 39     #General: | 
|  | 40     parser.add_argument( | 
|  | 41         '-td', '--tool_dir', | 
|  | 42         type = str, | 
|  | 43         required = True, | 
|  | 44         help = 'your tool directory') | 
|  | 45 | 
|  | 46     parser.add_argument('-on', '--control', type = str) | 
|  | 47     parser.add_argument('-ol', '--out_log', help = "Output log") | 
|  | 48 | 
|  | 49     #Computation details: | 
|  | 50     parser.add_argument( | 
|  | 51         '-co', '--comparison', | 
|  | 52         type = str, | 
| 293 | 53         default = 'manyvsmany', | 
| 4 | 54         choices = ['manyvsmany', 'onevsrest', 'onevsmany']) | 
| 293 | 55 | 
|  | 56     parser.add_argument( | 
|  | 57         '-te' ,'--test', | 
|  | 58         type = str, | 
|  | 59         default = 'ks', | 
|  | 60         choices = ['ks', 'ttest_p', 'ttest_ind', 'wilcoxon', 'mw'], | 
|  | 61         help = 'Statistical test to use (default: %(default)s)') | 
| 4 | 62 | 
|  | 63     parser.add_argument( | 
|  | 64         '-pv' ,'--pValue', | 
|  | 65         type = float, | 
|  | 66         default = 0.1, | 
|  | 67         help = 'P-Value threshold (default: %(default)s)') | 
| 295 | 68 | 
|  | 69     parser.add_argument( | 
|  | 70         '-adj' ,'--adjusted', | 
|  | 71         type = utils.Bool("adjusted"), default = False, | 
|  | 72         help = 'Apply the FDR (Benjamini-Hochberg) correction (default: %(default)s)') | 
| 4 | 73 | 
|  | 74     parser.add_argument( | 
|  | 75         '-fc', '--fChange', | 
|  | 76         type = float, | 
|  | 77         default = 1.5, | 
|  | 78         help = 'Fold-Change threshold (default: %(default)s)') | 
|  | 79 | 
|  | 80     parser.add_argument( | 
|  | 81         '-op', '--option', | 
|  | 82         type = str, | 
|  | 83         choices = ['datasets', 'dataset_class'], | 
|  | 84         help='dataset or dataset and class') | 
|  | 85 | 
|  | 86     parser.add_argument( | 
|  | 87         '-idf', '--input_data_fluxes', | 
|  | 88         type = str, | 
|  | 89         help = 'input dataset fluxes') | 
|  | 90 | 
|  | 91     parser.add_argument( | 
|  | 92         '-icf', '--input_class_fluxes', | 
|  | 93         type = str, | 
|  | 94         help = 'sample group specification fluxes') | 
|  | 95 | 
|  | 96     parser.add_argument( | 
|  | 97         '-idsf', '--input_datas_fluxes', | 
|  | 98         type = str, | 
|  | 99         nargs = '+', | 
|  | 100         help = 'input datasets fluxes') | 
|  | 101 | 
|  | 102     parser.add_argument( | 
|  | 103         '-naf', '--names_fluxes', | 
|  | 104         type = str, | 
|  | 105         nargs = '+', | 
|  | 106         help = 'input names fluxes') | 
|  | 107 | 
|  | 108     #Output: | 
|  | 109     parser.add_argument( | 
|  | 110         "-gs", "--generate_svg", | 
|  | 111         type = utils.Bool("generate_svg"), default = True, | 
|  | 112         help = "choose whether to generate svg") | 
|  | 113 | 
|  | 114     parser.add_argument( | 
|  | 115         "-gp", "--generate_pdf", | 
|  | 116         type = utils.Bool("generate_pdf"), default = True, | 
|  | 117         help = "choose whether to generate pdf") | 
|  | 118 | 
|  | 119     parser.add_argument( | 
|  | 120         '-cm', '--custom_map', | 
|  | 121         type = str, | 
|  | 122         help='custom map to use') | 
|  | 123 | 
|  | 124     parser.add_argument( | 
|  | 125         '-mc',  '--choice_map', | 
|  | 126         type = utils.Model, default = utils.Model.HMRcore, | 
|  | 127         choices = [utils.Model.HMRcore, utils.Model.ENGRO2, utils.Model.Custom]) | 
|  | 128 | 
|  | 129     parser.add_argument( | 
|  | 130         '-colorm',  '--color_map', | 
|  | 131         type = str, | 
|  | 132         choices = ["jet", "viridis"]) | 
| 147 | 133 | 
|  | 134     parser.add_argument( | 
|  | 135         '-idop', '--output_path', | 
|  | 136         type = str, | 
|  | 137         default='result', | 
|  | 138         help = 'output path for maps') | 
| 4 | 139 | 
| 147 | 140     args :argparse.Namespace = parser.parse_args(args) | 
| 185 | 141     args.net = True # TODO SICCOME I FLUSSI POSSONO ESSERE ANCHE NEGATIVI SONO SEMPRE CONSIDERATI NETTI | 
| 4 | 142 | 
|  | 143     return args | 
| 293 | 144 | 
| 4 | 145 ############################ dataset input #################################### | 
|  | 146 def read_dataset(data :str, name :str) -> pd.DataFrame: | 
|  | 147     """ | 
|  | 148     Tries to read the dataset from its path (data) as a tsv and turns it into a DataFrame. | 
|  | 149 | 
|  | 150     Args: | 
|  | 151         data : filepath of a dataset (from frontend input params or literals upon calling) | 
|  | 152         name : name associated with the dataset (from frontend input params or literals upon calling) | 
|  | 153 | 
|  | 154     Returns: | 
|  | 155         pd.DataFrame : dataset in a runtime operable shape | 
|  | 156 | 
|  | 157     Raises: | 
|  | 158         sys.exit : if there's no data (pd.errors.EmptyDataError) or if the dataset has less than 2 columns | 
|  | 159     """ | 
|  | 160     try: | 
|  | 161         dataset = pd.read_csv(data, sep = '\t', header = 0, engine='python') | 
|  | 162     except pd.errors.EmptyDataError: | 
|  | 163         sys.exit('Execution aborted: wrong format of ' + name + '\n') | 
|  | 164     if len(dataset.columns) < 2: | 
|  | 165         sys.exit('Execution aborted: wrong format of ' + name + '\n') | 
|  | 166     return dataset | 
|  | 167 | 
|  | 168 ############################ dataset name ##################################### | 
|  | 169 def name_dataset(name_data :str, count :int) -> str: | 
|  | 170     """ | 
|  | 171     Produces a unique name for a dataset based on what was provided by the user. The default name for any dataset is "Dataset", thus if the user didn't change it this function appends f"_{count}" to make it unique. | 
|  | 172 | 
|  | 173     Args: | 
|  | 174         name_data : name associated with the dataset (from frontend input params) | 
|  | 175         count : counter from 1 to make these names unique (external) | 
|  | 176 | 
|  | 177     Returns: | 
|  | 178         str : the name made unique | 
|  | 179     """ | 
|  | 180     if str(name_data) == 'Dataset': | 
|  | 181         return str(name_data) + '_' + str(count) | 
|  | 182     else: | 
|  | 183         return str(name_data) | 
|  | 184 | 
|  | 185 ############################ map_methods ###################################### | 
|  | 186 FoldChange = Union[float, int, str] # Union[float, Literal[0, "-INF", "INF"]] | 
|  | 187 def fold_change(avg1 :float, avg2 :float) -> FoldChange: | 
|  | 188     """ | 
|  | 189     Calculates the fold change between two gene expression values. | 
|  | 190 | 
|  | 191     Args: | 
|  | 192         avg1 : average expression value from one dataset avg2 : average expression value from the other dataset | 
|  | 193 | 
|  | 194     Returns: | 
|  | 195         FoldChange : | 
|  | 196             0 : when both input values are 0 | 
|  | 197             "-INF" : when avg1 is 0 | 
|  | 198             "INF" : when avg2 is 0 | 
|  | 199             float : for any other combination of values | 
|  | 200     """ | 
|  | 201     if avg1 == 0 and avg2 == 0: | 
|  | 202         return 0 | 
|  | 203     elif avg1 == 0: | 
|  | 204         return '-INF' | 
|  | 205     elif avg2 == 0: | 
|  | 206         return 'INF' | 
|  | 207     else: # (threshold_F_C - 1) / (abs(threshold_F_C) + 1) con threshold_F_C > 1 | 
|  | 208         return (avg1 - avg2) / (abs(avg1) + abs(avg2)) | 
|  | 209 | 
|  | 210 def getElementById(reactionId :str, metabMap :ET.ElementTree) -> utils.Result[ET.Element, utils.Result.ResultErr]: | 
|  | 211     """ | 
|  | 212     Finds any element in the given map with the given ID. ID uniqueness in an svg file is recommended but | 
|  | 213     not enforced, if more than one element with the exact ID is found only the first will be returned. | 
|  | 214 | 
|  | 215     Args: | 
|  | 216         reactionId (str): exact ID of the requested element. | 
|  | 217         metabMap (ET.ElementTree): metabolic map containing the element. | 
|  | 218 | 
|  | 219     Returns: | 
|  | 220         utils.Result[ET.Element, ResultErr]: result of the search, either the first match found or a ResultErr. | 
|  | 221     """ | 
|  | 222     return utils.Result.Ok( | 
|  | 223         f"//*[@id=\"{reactionId}\"]").map( | 
|  | 224         lambda xPath : metabMap.xpath(xPath)[0]).mapErr( | 
|  | 225         lambda _ : utils.Result.ResultErr(f"No elements with ID \"{reactionId}\" found in map")) | 
|  | 226         # ^^^ we shamelessly ignore the contents of the IndexError, it offers nothing to the user. | 
|  | 227 | 
|  | 228 def styleMapElement(element :ET.Element, styleStr :str) -> None: | 
|  | 229     currentStyles :str = element.get("style", "") | 
|  | 230     if re.search(r";stroke:[^;]+;stroke-width:[^;]+;stroke-dasharray:[^;]+$", currentStyles): | 
|  | 231         currentStyles = ';'.join(currentStyles.split(';')[:-3]) | 
|  | 232 | 
|  | 233     element.set("style", currentStyles + styleStr) | 
|  | 234 | 
|  | 235 class ReactionDirection(Enum): | 
|  | 236     Unknown = "" | 
|  | 237     Direct  = "_F" | 
|  | 238     Inverse = "_B" | 
|  | 239 | 
|  | 240     @classmethod | 
|  | 241     def fromDir(cls, s :str) -> "ReactionDirection": | 
|  | 242         # vvv as long as there's so few variants I actually condone the if spam: | 
|  | 243         if s == ReactionDirection.Direct.value:  return ReactionDirection.Direct | 
|  | 244         if s == ReactionDirection.Inverse.value: return ReactionDirection.Inverse | 
|  | 245         return ReactionDirection.Unknown | 
|  | 246 | 
|  | 247     @classmethod | 
|  | 248     def fromReactionId(cls, reactionId :str) -> "ReactionDirection": | 
|  | 249         return ReactionDirection.fromDir(reactionId[-2:]) | 
|  | 250 | 
|  | 251 def getArrowBodyElementId(reactionId :str) -> str: | 
|  | 252     if reactionId.endswith("_RV"): reactionId = reactionId[:-3] #TODO: standardize _RV | 
|  | 253     elif ReactionDirection.fromReactionId(reactionId) is not ReactionDirection.Unknown: reactionId = reactionId[:-2] | 
|  | 254     return f"R_{reactionId}" | 
|  | 255 | 
|  | 256 def getArrowHeadElementId(reactionId :str) -> Tuple[str, str]: | 
|  | 257     """ | 
|  | 258     We attempt extracting the direction information from the provided reaction ID, if unsuccessful we provide the IDs of both directions. | 
|  | 259 | 
|  | 260     Args: | 
|  | 261         reactionId : the provided reaction ID. | 
|  | 262 | 
|  | 263     Returns: | 
|  | 264         Tuple[str, str]: either a single str ID for the correct arrow head followed by an empty string or both options to try. | 
|  | 265     """ | 
|  | 266     if reactionId.endswith("_RV"): reactionId = reactionId[:-3] #TODO: standardize _RV | 
|  | 267     elif ReactionDirection.fromReactionId(reactionId) is not ReactionDirection.Unknown: return reactionId[:-3:-1] + reactionId[:-2], "" | 
|  | 268     return f"F_{reactionId}", f"B_{reactionId}" | 
|  | 269 | 
|  | 270 class ArrowColor(Enum): | 
|  | 271     """ | 
|  | 272     Encodes possible arrow colors based on their meaning in the enrichment process. | 
|  | 273     """ | 
| 302 | 274     Invalid       = "#BEBEBE" # gray, fold-change under treshold or not significant p-value | 
|  | 275     Transparent   = "#ffffff00" # transparent, to make some arrow segments disappear | 
| 4 | 276     UpRegulated   = "#ecac68" # red, up-regulated reaction | 
|  | 277     DownRegulated = "#6495ed" # blue, down-regulated reaction | 
|  | 278 | 
|  | 279     UpRegulatedInv = "#FF0000" | 
|  | 280     # ^^^ different shade of red (actually orange), up-regulated net value for a reversible reaction with | 
|  | 281     # conflicting enrichment in the two directions. | 
|  | 282 | 
|  | 283     DownRegulatedInv = "#0000FF" | 
|  | 284     # ^^^ different shade of blue (actually purple), down-regulated net value for a reversible reaction with | 
|  | 285     # conflicting enrichment in the two directions. | 
|  | 286 | 
|  | 287     @classmethod | 
|  | 288     def fromFoldChangeSign(cls, foldChange :float, *, useAltColor = False) -> "ArrowColor": | 
|  | 289         colors = (cls.DownRegulated, cls.DownRegulatedInv) if foldChange < 0 else (cls.UpRegulated, cls.UpRegulatedInv) | 
|  | 290         return colors[useAltColor] | 
|  | 291 | 
|  | 292     def __str__(self) -> str: return self.value | 
|  | 293 | 
|  | 294 class Arrow: | 
|  | 295     """ | 
|  | 296     Models the properties of a reaction arrow that change based on enrichment. | 
|  | 297     """ | 
|  | 298     MIN_W = 2 | 
|  | 299     MAX_W = 12 | 
|  | 300 | 
|  | 301     def __init__(self, width :int, col: ArrowColor, *, isDashed = False) -> None: | 
|  | 302         """ | 
|  | 303         (Private) Initializes an instance of Arrow. | 
|  | 304 | 
|  | 305         Args: | 
|  | 306             width : width of the arrow, ideally to be kept within Arrow.MIN_W and Arrow.MAX_W (not enforced). | 
|  | 307             col : color of the arrow. | 
|  | 308             isDashed : whether the arrow should be dashed, meaning the associated pValue resulted not significant. | 
|  | 309 | 
|  | 310         Returns: | 
|  | 311             None : practically, a Arrow instance. | 
|  | 312         """ | 
|  | 313         self.w    = width | 
|  | 314         self.col  = col | 
|  | 315         self.dash = isDashed | 
|  | 316 | 
|  | 317     def applyTo(self, reactionId :str, metabMap :ET.ElementTree, styleStr :str) -> None: | 
|  | 318         if getElementById(reactionId, metabMap).map(lambda el : styleMapElement(el, styleStr)).isErr: | 
|  | 319             ERRORS.append(reactionId) | 
|  | 320 | 
|  | 321     def styleReactionElements(self, metabMap :ET.ElementTree, reactionId :str, *, mindReactionDir = True) -> None: | 
|  | 322         if not mindReactionDir: | 
|  | 323             return self.applyTo(getArrowBodyElementId(reactionId), metabMap, self.toStyleStr()) | 
|  | 324 | 
|  | 325         # Now we style the arrow head(s): | 
|  | 326         idOpt1, idOpt2 = getArrowHeadElementId(reactionId) | 
|  | 327         self.applyTo(idOpt1, metabMap, self.toStyleStr(downSizedForTips = True)) | 
|  | 328         if idOpt2: self.applyTo(idOpt2, metabMap, self.toStyleStr(downSizedForTips = True)) | 
|  | 329 | 
|  | 330     def styleReactionElementsMeanMedian(self, metabMap :ET.ElementTree, reactionId :str, isNegative:bool) -> None: | 
|  | 331 | 
|  | 332         self.applyTo(getArrowBodyElementId(reactionId), metabMap, self.toStyleStr()) | 
|  | 333         idOpt1, idOpt2 = getArrowHeadElementId(reactionId) | 
|  | 334 | 
|  | 335         if(isNegative): | 
|  | 336             self.applyTo(idOpt2, metabMap, self.toStyleStr(downSizedForTips = True)) | 
|  | 337             self.col = ArrowColor.Transparent | 
|  | 338             self.applyTo(idOpt1, metabMap, self.toStyleStr(downSizedForTips = True)) #trasp | 
|  | 339         else: | 
|  | 340             self.applyTo(idOpt1, metabMap, self.toStyleStr(downSizedForTips = True)) | 
|  | 341             self.col = ArrowColor.Transparent | 
|  | 342             self.applyTo(idOpt2, metabMap, self.toStyleStr(downSizedForTips = True)) #trasp | 
|  | 343 | 
|  | 344 | 
|  | 345 | 
|  | 346     def getMapReactionId(self, reactionId :str, mindReactionDir :bool) -> str: | 
|  | 347         """ | 
|  | 348         Computes the reaction ID as encoded in the map for a given reaction ID from the dataset. | 
|  | 349 | 
|  | 350         Args: | 
|  | 351             reactionId: the reaction ID, as encoded in the dataset. | 
|  | 352             mindReactionDir: if True forward (F_) and backward (B_) directions will be encoded in the result. | 
|  | 353 | 
|  | 354         Returns: | 
|  | 355             str : the ID of an arrow's body or tips in the map. | 
|  | 356         """ | 
|  | 357         # we assume the reactionIds also don't encode reaction dir if they don't mind it when styling the map. | 
|  | 358         if not mindReactionDir: return "R_" + reactionId | 
|  | 359 | 
|  | 360         #TODO: this is clearly something we need to make consistent in fluxes | 
|  | 361         return (reactionId[:-3:-1] + reactionId[:-2]) if reactionId[:-2] in ["_F", "_B"] else f"F_{reactionId}" # "Pyr_F" --> "F_Pyr" | 
|  | 362 | 
|  | 363     def toStyleStr(self, *, downSizedForTips = False) -> str: | 
|  | 364         """ | 
|  | 365         Collapses the styles of this Arrow into a str, ready to be applied as part of the "style" property on an svg element. | 
|  | 366 | 
|  | 367         Returns: | 
|  | 368             str : the styles string. | 
|  | 369         """ | 
|  | 370         width = self.w | 
|  | 371         if downSizedForTips: width *= 0.8 | 
|  | 372         return f";stroke:{self.col};stroke-width:{width};stroke-dasharray:{'5,5' if self.dash else 'none'}" | 
|  | 373 | 
|  | 374 # vvv These constants could be inside the class itself a static properties, but python | 
|  | 375 # was built by brainless organisms so here we are! | 
|  | 376 INVALID_ARROW = Arrow(Arrow.MIN_W, ArrowColor.Invalid) | 
|  | 377 INSIGNIFICANT_ARROW = Arrow(Arrow.MIN_W, ArrowColor.Invalid, isDashed = True) | 
|  | 378 | 
|  | 379 def applyFluxesEnrichmentToMap(fluxesEnrichmentRes :Dict[str, Union[Tuple[float, FoldChange], Tuple[float, FoldChange, float, float]]], metabMap :ET.ElementTree, maxNumericZScore :float) -> None: | 
|  | 380     """ | 
|  | 381     Applies fluxes enrichment results to the provided metabolic map. | 
|  | 382 | 
|  | 383     Args: | 
|  | 384         fluxesEnrichmentRes : fluxes enrichment results. | 
|  | 385         metabMap : the metabolic map to edit. | 
|  | 386         maxNumericZScore : biggest finite z-score value found. | 
|  | 387 | 
|  | 388     Side effects: | 
|  | 389         metabMap : mut | 
|  | 390 | 
|  | 391     Returns: | 
|  | 392         None | 
|  | 393     """ | 
|  | 394     for reactionId, values in fluxesEnrichmentRes.items(): | 
|  | 395         pValue = values[0] | 
|  | 396         foldChange = values[1] | 
|  | 397         z_score = values[2] | 
|  | 398 | 
| 275 | 399         if math.isnan(pValue) or (isinstance(foldChange, float) and math.isnan(foldChange)): | 
|  | 400             continue | 
|  | 401 | 
| 4 | 402         if isinstance(foldChange, str): foldChange = float(foldChange) | 
| 498 | 403         if pValue > ARGS.pValue: # pValue above tresh: dashed arrow | 
| 4 | 404             INSIGNIFICANT_ARROW.styleReactionElements(metabMap, reactionId) | 
|  | 405             INSIGNIFICANT_ARROW.styleReactionElements(metabMap, reactionId, mindReactionDir = False) | 
|  | 406 | 
|  | 407             continue | 
|  | 408 | 
|  | 409         if abs(foldChange) <  (ARGS.fChange - 1) / (abs(ARGS.fChange) + 1): | 
|  | 410             INVALID_ARROW.styleReactionElements(metabMap, reactionId) | 
|  | 411             INVALID_ARROW.styleReactionElements(metabMap, reactionId, mindReactionDir = False) | 
|  | 412 | 
|  | 413             continue | 
|  | 414 | 
|  | 415         width = Arrow.MAX_W | 
| 293 | 416         if not math.isinf(z_score): | 
| 4 | 417             try: | 
| 293 | 418                 width = min( | 
|  | 419                     max(abs(z_score * Arrow.MAX_W) / maxNumericZScore, Arrow.MIN_W), | 
|  | 420                     Arrow.MAX_W) | 
| 4 | 421 | 
|  | 422             except ZeroDivisionError: pass | 
| 185 | 423         # TODO CHECK RV | 
| 4 | 424         #if not reactionId.endswith("_RV"): # RV stands for reversible reactions | 
| 197 | 425         #   Arrow(width, ArrowColor.fromFoldChangeSign(foldChange)).styleReactionElements(metabMap, reactionId) | 
|  | 426         #   continue | 
| 4 | 427 | 
|  | 428         #reactionId = reactionId[:-3] # Remove "_RV" | 
|  | 429 | 
|  | 430         inversionScore = (values[3] < 0) + (values[4] < 0) # Compacts the signs of averages into 1 easy to check score | 
|  | 431         if inversionScore == 2: foldChange *= -1 | 
|  | 432         # ^^^ Style the inverse direction with the opposite sign netValue | 
|  | 433 | 
|  | 434         # If the score is 1 (opposite signs) we use alternative colors vvv | 
|  | 435         arrow = Arrow(width, ArrowColor.fromFoldChangeSign(foldChange, useAltColor = inversionScore == 1)) | 
|  | 436 | 
|  | 437         # vvv These 2 if statements can both be true and can both happen | 
|  | 438         if ARGS.net: # style arrow head(s): | 
|  | 439             arrow.styleReactionElements(metabMap, reactionId + ("_B" if inversionScore == 2 else "_F")) | 
|  | 440             arrow.applyTo(("F_" if inversionScore == 2 else "B_") + reactionId, metabMap, f";stroke:{ArrowColor.Transparent};stroke-width:0;stroke-dasharray:None") | 
|  | 441 | 
| 186 | 442         arrow.styleReactionElements(metabMap, reactionId, mindReactionDir = False) | 
| 4 | 443 | 
|  | 444 | 
|  | 445 ############################ split class ###################################### | 
|  | 446 def split_class(classes :pd.DataFrame, resolve_rules :Dict[str, List[float]]) -> Dict[str, List[List[float]]]: | 
|  | 447     """ | 
|  | 448     Generates a :dict that groups together data from a :DataFrame based on classes the data is related to. | 
|  | 449 | 
|  | 450     Args: | 
|  | 451         classes : a :DataFrame of only string values, containing class information (rows) and keys to query the resolve_rules :dict | 
|  | 452         resolve_rules : a :dict containing :float data | 
|  | 453 | 
|  | 454     Returns: | 
|  | 455         dict : the dict with data grouped by class | 
|  | 456 | 
|  | 457     Side effects: | 
|  | 458         classes : mut | 
|  | 459     """ | 
|  | 460     class_pat :Dict[str, List[List[float]]] = {} | 
|  | 461     for i in range(len(classes)): | 
|  | 462         classe :str = classes.iloc[i, 1] | 
|  | 463         if pd.isnull(classe): continue | 
|  | 464 | 
|  | 465         l :List[List[float]] = [] | 
|  | 466         for j in range(i, len(classes)): | 
|  | 467             if classes.iloc[j, 1] == classe: | 
|  | 468                 pat_id :str = classes.iloc[j, 0] | 
|  | 469                 tmp = resolve_rules.get(pat_id, None) | 
|  | 470                 if tmp != None: | 
|  | 471                     l.append(tmp) | 
|  | 472                 classes.iloc[j, 1] = None | 
|  | 473 | 
|  | 474         if l: | 
|  | 475             class_pat[classe] = list(map(list, zip(*l))) | 
|  | 476             continue | 
|  | 477 | 
|  | 478         utils.logWarning( | 
|  | 479             f"Warning: no sample found in class \"{classe}\", the class has been disregarded", ARGS.out_log) | 
|  | 480 | 
|  | 481     return class_pat | 
|  | 482 | 
|  | 483 ############################ conversion ############################################## | 
|  | 484 #conversion from svg to png | 
|  | 485 def svg_to_png_with_background(svg_path :utils.FilePath, png_path :utils.FilePath, dpi :int = 72, scale :int = 1, size :Optional[float] = None) -> None: | 
|  | 486     """ | 
|  | 487     Internal utility to convert an SVG to PNG (forced opaque) to aid in PDF conversion. | 
|  | 488 | 
|  | 489     Args: | 
|  | 490         svg_path : path to SVG file | 
|  | 491         png_path : path for new PNG file | 
|  | 492         dpi : dots per inch of the generated PNG | 
|  | 493         scale : scaling factor for the generated PNG, computed internally when a size is provided | 
|  | 494         size : final effective width of the generated PNG | 
|  | 495 | 
|  | 496     Returns: | 
|  | 497         None | 
|  | 498     """ | 
|  | 499     if size: | 
|  | 500         image = pyvips.Image.new_from_file(svg_path.show(), dpi=dpi, scale=1) | 
|  | 501         scale = size / image.width | 
|  | 502         image = image.resize(scale) | 
|  | 503     else: | 
|  | 504         image = pyvips.Image.new_from_file(svg_path.show(), dpi=dpi, scale=scale) | 
|  | 505 | 
|  | 506     white_background = pyvips.Image.black(image.width, image.height).new_from_image([255, 255, 255]) | 
|  | 507     white_background = white_background.affine([scale, 0, 0, scale]) | 
|  | 508 | 
|  | 509     if white_background.bands != image.bands: | 
|  | 510         white_background = white_background.extract_band(0) | 
|  | 511 | 
|  | 512     composite_image = white_background.composite2(image, 'over') | 
|  | 513     composite_image.write_to_file(png_path.show()) | 
|  | 514 | 
|  | 515 #funzione unica, lascio fuori i file e li passo in input | 
|  | 516 #conversion from png to pdf | 
|  | 517 def convert_png_to_pdf(png_file :utils.FilePath, pdf_file :utils.FilePath) -> None: | 
|  | 518     """ | 
|  | 519     Internal utility to convert a PNG to PDF to aid from SVG conversion. | 
|  | 520 | 
|  | 521     Args: | 
|  | 522         png_file : path to PNG file | 
|  | 523         pdf_file : path to new PDF file | 
|  | 524 | 
|  | 525     Returns: | 
|  | 526         None | 
|  | 527     """ | 
|  | 528     image = Image.open(png_file.show()) | 
|  | 529     image = image.convert("RGB") | 
|  | 530     image.save(pdf_file.show(), "PDF", resolution=100.0) | 
|  | 531 | 
|  | 532 #function called to reduce redundancy in the code | 
|  | 533 def convert_to_pdf(file_svg :utils.FilePath, file_png :utils.FilePath, file_pdf :utils.FilePath) -> None: | 
|  | 534     """ | 
|  | 535     Converts the SVG map at the provided path to PDF. | 
|  | 536 | 
|  | 537     Args: | 
|  | 538         file_svg : path to SVG file | 
|  | 539         file_png : path to PNG file | 
|  | 540         file_pdf : path to new PDF file | 
|  | 541 | 
|  | 542     Returns: | 
|  | 543         None | 
|  | 544     """ | 
|  | 545     svg_to_png_with_background(file_svg, file_png) | 
|  | 546     try: | 
|  | 547         convert_png_to_pdf(file_png, file_pdf) | 
|  | 548         print(f'PDF file {file_pdf.filePath} successfully generated.') | 
|  | 549 | 
|  | 550     except Exception as e: | 
|  | 551         raise utils.DataErr(file_pdf.show(), f'Error generating PDF file: {e}') | 
|  | 552 | 
|  | 553 ############################ map ############################################## | 
|  | 554 def buildOutputPath(dataset1Name :str, dataset2Name = "rest", *, details = "", ext :utils.FileFormat) -> utils.FilePath: | 
|  | 555     """ | 
|  | 556     Builds a FilePath instance from the names of confronted datasets ready to point to a location in the | 
|  | 557     "result/" folder, used by this tool for output files in collections. | 
|  | 558 | 
|  | 559     Args: | 
|  | 560         dataset1Name : _description_ | 
|  | 561         dataset2Name : _description_. Defaults to "rest". | 
|  | 562         details : _description_ | 
|  | 563         ext : _description_ | 
|  | 564 | 
|  | 565     Returns: | 
|  | 566         utils.FilePath : _description_ | 
|  | 567     """ | 
|  | 568     # This function returns a util data structure but is extremely specific to this module. | 
|  | 569     # RAS also uses collections as output and as such might benefit from a method like this, but I'd wait | 
|  | 570     # TODO: until a third tool with multiple outputs appears before porting this to utils. | 
|  | 571     return utils.FilePath( | 
|  | 572         f"{dataset1Name}_vs_{dataset2Name}" + (f" ({details})" if details else ""), | 
|  | 573         # ^^^ yes this string is built every time even if the form is the same for the same 2 datasets in | 
|  | 574         # all output files: I don't care, this was never the performance bottleneck of the tool and | 
|  | 575         # there is no other net gain in saving and re-using the built string. | 
|  | 576         ext, | 
| 147 | 577         prefix = ARGS.output_path) | 
| 4 | 578 | 
|  | 579 FIELD_NOT_AVAILABLE = '/' | 
|  | 580 def writeToCsv(rows: List[list], fieldNames :List[str], outPath :utils.FilePath) -> None: | 
|  | 581     fieldsAmt = len(fieldNames) | 
|  | 582     with open(outPath.show(), "w", newline = "") as fd: | 
|  | 583         writer = csv.DictWriter(fd, fieldnames = fieldNames, delimiter = '\t') | 
|  | 584         writer.writeheader() | 
|  | 585 | 
|  | 586         for row in rows: | 
|  | 587             sizeMismatch = fieldsAmt - len(row) | 
|  | 588             if sizeMismatch > 0: row.extend([FIELD_NOT_AVAILABLE] * sizeMismatch) | 
|  | 589             writer.writerow({ field : data for field, data in zip(fieldNames, row) }) | 
|  | 590 | 
|  | 591 OldEnrichedScores = Dict[str, List[Union[float, FoldChange]]] #TODO: try to use Tuple whenever possible | 
|  | 592 def writeTabularResult(enrichedScores : OldEnrichedScores, outPath :utils.FilePath) -> None: | 
| 199 | 593     fieldNames = ["ids", "P_Value", "fold change", "z-score"] | 
| 4 | 594     fieldNames.extend(["average_1", "average_2"]) | 
|  | 595 | 
|  | 596     writeToCsv([ [reactId] + values for reactId, values in enrichedScores.items() ], fieldNames, outPath) | 
|  | 597 | 
|  | 598 def temp_thingsInCommon(tmp :Dict[str, List[Union[float, FoldChange]]], core_map :ET.ElementTree, max_z_score :float, dataset1Name :str, dataset2Name = "rest") -> None: | 
|  | 599     # this function compiles the things always in common between comparison modes after enrichment. | 
|  | 600     # TODO: organize, name better. | 
|  | 601     writeTabularResult(tmp, buildOutputPath(dataset1Name, dataset2Name, details = "Tabular Result", ext = utils.FileFormat.TSV)) | 
|  | 602     for reactId, enrichData in tmp.items(): tmp[reactId] = tuple(enrichData) | 
|  | 603     applyFluxesEnrichmentToMap(tmp, core_map, max_z_score) | 
|  | 604 | 
|  | 605 def computePValue(dataset1Data: List[float], dataset2Data: List[float]) -> Tuple[float, float]: | 
|  | 606     """ | 
|  | 607     Computes the statistical significance score (P-value) of the comparison between coherent data | 
|  | 608     from two datasets. The data is supposed to, in both datasets: | 
|  | 609     - be related to the same reaction ID; | 
|  | 610     - be ordered by sample, such that the item at position i in both lists is related to the | 
|  | 611       same sample or cell line. | 
|  | 612 | 
|  | 613     Args: | 
|  | 614         dataset1Data : data from the 1st dataset. | 
|  | 615         dataset2Data : data from the 2nd dataset. | 
|  | 616 | 
|  | 617     Returns: | 
|  | 618         tuple: (P-value, Z-score) | 
| 293 | 619             - P-value from the selected test on the provided data. | 
| 4 | 620             - Z-score of the difference between means of the two datasets. | 
|  | 621     """ | 
| 293 | 622 | 
|  | 623     match ARGS.test: | 
|  | 624         case "ks": | 
|  | 625             # Perform Kolmogorov-Smirnov test | 
|  | 626             _, p_value = st.ks_2samp(dataset1Data, dataset2Data) | 
|  | 627         case "ttest_p": | 
| 302 | 628             # Datasets should have same size | 
|  | 629             if len(dataset1Data) != len(dataset2Data): | 
|  | 630                 raise ValueError("Datasets must have the same size for paired t-test.") | 
| 293 | 631             # Perform t-test for paired samples | 
|  | 632             _, p_value = st.ttest_rel(dataset1Data, dataset2Data) | 
|  | 633         case "ttest_ind": | 
|  | 634             # Perform t-test for independent samples | 
|  | 635             _, p_value = st.ttest_ind(dataset1Data, dataset2Data) | 
|  | 636         case "wilcoxon": | 
| 302 | 637             # Datasets should have same size | 
|  | 638             if len(dataset1Data) != len(dataset2Data): | 
|  | 639                 raise ValueError("Datasets must have the same size for Wilcoxon signed-rank test.") | 
| 293 | 640             # Perform Wilcoxon signed-rank test | 
| 321 | 641             np.random.seed(42)  # Ensure reproducibility since zsplit method is used | 
|  | 642             _, p_value = st.wilcoxon(dataset1Data, dataset2Data, zero_method="zsplit") | 
| 293 | 643         case "mw": | 
|  | 644             # Perform Mann-Whitney U test | 
|  | 645             _, p_value = st.mannwhitneyu(dataset1Data, dataset2Data) | 
| 4 | 646 | 
|  | 647     # Calculate means and standard deviations | 
| 242 | 648     mean1 = np.nanmean(dataset1Data) | 
|  | 649     mean2 = np.nanmean(dataset2Data) | 
| 244 | 650     std1 = np.nanstd(dataset1Data, ddof=1) | 
|  | 651     std2 = np.nanstd(dataset2Data, ddof=1) | 
| 4 | 652 | 
|  | 653     n1 = len(dataset1Data) | 
|  | 654     n2 = len(dataset2Data) | 
|  | 655 | 
|  | 656     # Calculate Z-score | 
|  | 657     z_score = (mean1 - mean2) / np.sqrt((std1**2 / n1) + (std2**2 / n2)) | 
|  | 658 | 
|  | 659     return p_value, z_score | 
|  | 660 | 
|  | 661 def compareDatasetPair(dataset1Data :List[List[float]], dataset2Data :List[List[float]], ids :List[str]) -> Tuple[Dict[str, List[Union[float, FoldChange]]], float]: | 
|  | 662     #TODO: the following code still suffers from "dumbvarnames-osis" | 
| 295 | 663     comparisonResult :Dict[str, List[Union[float, FoldChange]]] = {} | 
| 4 | 664     count   = 0 | 
|  | 665     max_z_score = 0 | 
|  | 666     for l1, l2 in zip(dataset1Data, dataset2Data): | 
|  | 667         reactId = ids[count] | 
|  | 668         count += 1 | 
|  | 669         if not reactId: continue # we skip ids that have already been processed | 
|  | 670 | 
|  | 671         try: | 
|  | 672             p_value, z_score = computePValue(l1, l2) | 
|  | 673             avg1 = sum(l1) / len(l1) | 
|  | 674             avg2 = sum(l2) / len(l2) | 
| 197 | 675             f_c = fold_change(avg1, avg2) | 
| 293 | 676             if np.isfinite(z_score) and max_z_score < abs(z_score): max_z_score = abs(z_score) | 
| 211 | 677 | 
| 295 | 678             comparisonResult[reactId] = [float(p_value), f_c, z_score, avg1, avg2] | 
| 4 | 679         except (TypeError, ZeroDivisionError): continue | 
| 295 | 680 | 
|  | 681     # Apply multiple testing correction if set by the user | 
|  | 682     if ARGS.adjusted: | 
|  | 683 | 
| 302 | 684         # Retrieve the p-values from the comparisonResult dictionary, they have to be different from NaN | 
|  | 685         validPValues = [(reactId, result[0]) for reactId, result in comparisonResult.items() if not np.isnan(result[0])] | 
|  | 686 | 
|  | 687         if not validPValues: | 
|  | 688             return comparisonResult, max_z_score | 
| 295 | 689 | 
| 302 | 690         # Unpack the valid p-values | 
|  | 691         reactIds, pValues = zip(*validPValues) | 
|  | 692         # Adjust the p-values using the Benjamini-Hochberg method | 
|  | 693         adjustedPValues = st.false_discovery_control(pValues) | 
|  | 694         # Update the comparisonResult dictionary with the adjusted p-values | 
|  | 695         for reactId , adjustedPValue in zip(reactIds, adjustedPValues): | 
|  | 696             comparisonResult[reactId][0] = adjustedPValue | 
| 4 | 697 | 
| 295 | 698     return comparisonResult, max_z_score | 
| 4 | 699 | 
| 151 | 700 def computeEnrichment(class_pat :Dict[str, List[List[float]]], ids :List[str]) -> List[Tuple[str, str, dict, float]]: | 
| 4 | 701     """ | 
|  | 702     Compares clustered data based on a given comparison mode and applies enrichment-based styling on the | 
|  | 703     provided metabolic map. | 
|  | 704 | 
|  | 705     Args: | 
|  | 706         class_pat : the clustered data. | 
|  | 707         ids : ids for data association. | 
|  | 708 | 
|  | 709 | 
|  | 710     Returns: | 
| 148 | 711         List[Tuple[str, str, dict, float]]: List of tuples with pairs of dataset names, comparison dictionary, and max z-score. | 
| 4 | 712 | 
|  | 713     Raises: | 
|  | 714         sys.exit : if there are less than 2 classes for comparison | 
| 151 | 715 | 
| 4 | 716     """ | 
|  | 717     class_pat = { k.strip() : v for k, v in class_pat.items() } | 
|  | 718     #TODO: simplfy this stuff vvv and stop using sys.exit (raise the correct utils error) | 
|  | 719     if (not class_pat) or (len(class_pat.keys()) < 2): sys.exit('Execution aborted: classes provided for comparisons are less than two\n') | 
|  | 720 | 
| 148 | 721     enrichment_results = [] | 
|  | 722 | 
|  | 723 | 
| 4 | 724     if ARGS.comparison == "manyvsmany": | 
|  | 725         for i, j in it.combinations(class_pat.keys(), 2): | 
|  | 726             comparisonDict, max_z_score = compareDatasetPair(class_pat.get(i), class_pat.get(j), ids) | 
| 148 | 727             enrichment_results.append((i, j, comparisonDict, max_z_score)) | 
| 4 | 728 | 
|  | 729     elif ARGS.comparison == "onevsrest": | 
|  | 730         for single_cluster in class_pat.keys(): | 
| 148 | 731             rest = [item for k, v in class_pat.items() if k != single_cluster for item in v] | 
| 211 | 732 | 
| 4 | 733             comparisonDict, max_z_score = compareDatasetPair(class_pat.get(single_cluster), rest, ids) | 
| 148 | 734             enrichment_results.append((single_cluster, "rest", comparisonDict, max_z_score)) | 
| 4 | 735 | 
| 323 | 736     #elif ARGS.comparison == "onevsmany": | 
|  | 737     #    controlItems = class_pat.get(ARGS.control) | 
|  | 738     #    for otherDataset in class_pat.keys(): | 
|  | 739     #        if otherDataset == ARGS.control: | 
|  | 740     #            continue | 
|  | 741     #        comparisonDict, max_z_score = compareDatasetPair(controlItems, class_pat.get(otherDataset), ids) | 
|  | 742     #        enrichment_results.append((ARGS.control, otherDataset, comparisonDict, max_z_score)) | 
| 4 | 743     elif ARGS.comparison == "onevsmany": | 
|  | 744         controlItems = class_pat.get(ARGS.control) | 
|  | 745         for otherDataset in class_pat.keys(): | 
| 148 | 746             if otherDataset == ARGS.control: | 
|  | 747                 continue | 
| 323 | 748             comparisonDict, max_z_score = compareDatasetPair(class_pat.get(otherDataset),controlItems, ids) | 
|  | 749             enrichment_results.append(( otherDataset,ARGS.control, comparisonDict, max_z_score)) | 
|  | 750 | 
| 148 | 751     return enrichment_results | 
| 4 | 752 | 
|  | 753 def createOutputMaps(dataset1Name :str, dataset2Name :str, core_map :ET.ElementTree) -> None: | 
| 148 | 754     svgFilePath = buildOutputPath(dataset1Name, dataset2Name, details="SVG Map", ext=utils.FileFormat.SVG) | 
| 4 | 755     utils.writeSvg(svgFilePath, core_map) | 
|  | 756 | 
|  | 757     if ARGS.generate_pdf: | 
| 148 | 758         pngPath = buildOutputPath(dataset1Name, dataset2Name, details="PNG Map", ext=utils.FileFormat.PNG) | 
|  | 759         pdfPath = buildOutputPath(dataset1Name, dataset2Name, details="PDF Map", ext=utils.FileFormat.PDF) | 
|  | 760         convert_to_pdf(svgFilePath, pngPath, pdfPath) | 
| 4 | 761 | 
| 148 | 762     if not ARGS.generate_svg: | 
|  | 763         os.remove(svgFilePath.show()) | 
| 4 | 764 | 
|  | 765 ClassPat = Dict[str, List[List[float]]] | 
|  | 766 def getClassesAndIdsFromDatasets(datasetsPaths :List[str], datasetPath :str, classPath :str, names :List[str]) -> Tuple[List[str], ClassPat]: | 
|  | 767     # TODO: I suggest creating dicts with ids as keys instead of keeping class_pat and ids separate, | 
|  | 768     # for the sake of everyone's sanity. | 
|  | 769     class_pat :ClassPat = {} | 
|  | 770     if ARGS.option == 'datasets': | 
|  | 771         num = 1 #TODO: the dataset naming function could be a generator | 
|  | 772         for path, name in zip(datasetsPaths, names): | 
|  | 773             name = name_dataset(name, num) | 
|  | 774             resolve_rules_float, ids = getDatasetValues(path, name) | 
|  | 775             if resolve_rules_float != None: | 
|  | 776                 class_pat[name] = list(map(list, zip(*resolve_rules_float.values()))) | 
|  | 777 | 
|  | 778             num += 1 | 
|  | 779 | 
|  | 780     elif ARGS.option == "dataset_class": | 
|  | 781         classes = read_dataset(classPath, "class") | 
|  | 782         classes = classes.astype(str) | 
| 235 | 783         resolve_rules_float, ids = getDatasetValues(datasetPath, "Dataset Class (not actual name)") | 
| 293 | 784         #check if classes have match on ids | 
| 234 | 785         if not all(classes.iloc[:, 0].isin(ids)): | 
|  | 786             utils.logWarning( | 
|  | 787             "No match between classes and sample IDs", ARGS.out_log) | 
| 4 | 788         if resolve_rules_float != None: class_pat = split_class(classes, resolve_rules_float) | 
|  | 789 | 
|  | 790     return ids, class_pat | 
|  | 791     #^^^ TODO: this could be a match statement over an enum, make it happen future marea dev with python 3.12! (it's why I kept the ifs) | 
|  | 792 | 
|  | 793 #TODO: create these damn args as FilePath objects | 
|  | 794 def getDatasetValues(datasetPath :str, datasetName :str) -> Tuple[ClassPat, List[str]]: | 
|  | 795     """ | 
|  | 796     Opens the dataset at the given path and extracts the values (expected nullable numerics) and the IDs. | 
|  | 797 | 
|  | 798     Args: | 
|  | 799         datasetPath : path to the dataset | 
|  | 800         datasetName (str): dataset name, used in error reporting | 
|  | 801 | 
|  | 802     Returns: | 
|  | 803         Tuple[ClassPat, List[str]]: values and IDs extracted from the dataset | 
|  | 804     """ | 
|  | 805     dataset = read_dataset(datasetPath, datasetName) | 
| 240 | 806 | 
|  | 807     # Ensure the first column is treated as the reaction name | 
|  | 808     dataset = dataset.set_index(dataset.columns[0]) | 
|  | 809 | 
|  | 810     # Check if required reactions exist in the dataset | 
|  | 811     required_reactions = ['EX_lac__L_e', 'EX_glc__D_e', 'EX_gln__L_e', 'EX_glu__L_e'] | 
|  | 812     missing_reactions = [reaction for reaction in required_reactions if reaction not in dataset.index] | 
|  | 813 | 
|  | 814     if missing_reactions: | 
|  | 815         sys.exit(f'Execution aborted: Missing required reactions {missing_reactions} in {datasetName}\n') | 
|  | 816 | 
|  | 817     # Calculate new rows using safe division | 
|  | 818     lact_glc = np.divide( | 
| 241 | 819         np.clip(dataset.loc['EX_lac__L_e'].to_numpy(), a_min=0, a_max=None), | 
|  | 820         np.clip(dataset.loc['EX_glc__D_e'].to_numpy(), a_min=None, a_max=0), | 
|  | 821         out=np.full_like(dataset.loc['EX_lac__L_e'].to_numpy(), np.nan),  # Prepara un array con NaN come output di default | 
|  | 822         where=dataset.loc['EX_glc__D_e'].to_numpy() != 0  # Condizione per evitare la divisione per zero | 
| 240 | 823     ) | 
|  | 824     lact_gln = np.divide( | 
| 241 | 825         np.clip(dataset.loc['EX_lac__L_e'].to_numpy(), a_min=0, a_max=None), | 
|  | 826         np.clip(dataset.loc['EX_gln__L_e'].to_numpy(), a_min=None, a_max=0), | 
|  | 827         out=np.full_like(dataset.loc['EX_lac__L_e'].to_numpy(), np.nan), | 
|  | 828         where=dataset.loc['EX_gln__L_e'].to_numpy() != 0 | 
|  | 829     ) | 
|  | 830     lact_o2 = np.divide( | 
|  | 831         np.clip(dataset.loc['EX_lac__L_e'].to_numpy(), a_min=0, a_max=None), | 
|  | 832         np.clip(dataset.loc['EX_o2_e'].to_numpy(), a_min=None, a_max=0), | 
|  | 833         out=np.full_like(dataset.loc['EX_lac__L_e'].to_numpy(), np.nan), | 
|  | 834         where=dataset.loc['EX_o2_e'].to_numpy() != 0 | 
| 240 | 835     ) | 
|  | 836     glu_gln = np.divide( | 
| 241 | 837         dataset.loc['EX_glu__L_e'].to_numpy(), | 
|  | 838         np.clip(dataset.loc['EX_gln__L_e'].to_numpy(), a_min=None, a_max=0), | 
|  | 839         out=np.full_like(dataset.loc['EX_lac__L_e'].to_numpy(), np.nan), | 
|  | 840         where=dataset.loc['EX_gln__L_e'].to_numpy() != 0 | 
| 240 | 841     ) | 
|  | 842 | 
| 253 | 843 | 
| 246 | 844     values = {'lact_glc': lact_glc, 'lact_gln': lact_gln, 'lact_o2': lact_o2, 'glu_gln': glu_gln} | 
|  | 845 | 
|  | 846     # Sostituzione di inf e NaN con 0 se necessario | 
| 253 | 847     for key in values: | 
|  | 848         values[key] = np.nan_to_num(values[key], nan=0.0, posinf=0.0, neginf=0.0) | 
| 245 | 849 | 
| 246 | 850     # Creazione delle nuove righe da aggiungere al dataset | 
| 240 | 851     new_rows = pd.DataFrame({ | 
| 246 | 852         dataset.index.name: ['LactGlc', 'LactGln', 'LactO2', 'GluGln'], | 
|  | 853         **{col: [values['lact_glc'][i], values['lact_gln'][i], values['lact_o2'][i], values['glu_gln'][i]] | 
|  | 854            for i, col in enumerate(dataset.columns)} | 
| 240 | 855     }) | 
|  | 856 | 
| 293 | 857     #print(new_rows) | 
| 254 | 858 | 
| 246 | 859     # Ritorna il dataset originale con le nuove righe | 
| 240 | 860     dataset.reset_index(inplace=True) | 
|  | 861     dataset = pd.concat([dataset, new_rows], ignore_index=True) | 
|  | 862 | 
| 4 | 863     IDs = pd.Series.tolist(dataset.iloc[:, 0].astype(str)) | 
|  | 864 | 
|  | 865     dataset = dataset.drop(dataset.columns[0], axis = "columns").to_dict("list") | 
|  | 866     return { id : list(map(utils.Float("Dataset values, not an argument"), values)) for id, values in dataset.items() }, IDs | 
|  | 867 | 
|  | 868 def rgb_to_hex(rgb): | 
|  | 869     """ | 
|  | 870     Convert RGB values (0-1 range) to hexadecimal color format. | 
|  | 871 | 
|  | 872     Args: | 
|  | 873         rgb (numpy.ndarray): An array of RGB color components (in the range [0, 1]). | 
|  | 874 | 
|  | 875     Returns: | 
|  | 876         str: The color in hexadecimal format (e.g., '#ff0000' for red). | 
|  | 877     """ | 
|  | 878     # Convert RGB values (0-1 range) to hexadecimal format | 
|  | 879     rgb = (np.array(rgb) * 255).astype(int) | 
|  | 880     return '#{:02x}{:02x}{:02x}'.format(rgb[0], rgb[1], rgb[2]) | 
|  | 881 | 
|  | 882 def save_colormap_image(min_value: float, max_value: float, path: utils.FilePath, colorMap:str="viridis"): | 
|  | 883     """ | 
|  | 884     Create and save an image of the colormap showing the gradient and its range. | 
|  | 885 | 
|  | 886     Args: | 
|  | 887         min_value (float): The minimum value of the colormap range. | 
|  | 888         max_value (float): The maximum value of the colormap range. | 
|  | 889         filename (str): The filename for saving the image. | 
|  | 890     """ | 
|  | 891 | 
|  | 892     # Create a colormap using matplotlib | 
|  | 893     cmap = plt.get_cmap(colorMap) | 
|  | 894 | 
|  | 895     # Create a figure and axis | 
|  | 896     fig, ax = plt.subplots(figsize=(6, 1)) | 
|  | 897     fig.subplots_adjust(bottom=0.5) | 
|  | 898 | 
|  | 899     # Create a gradient image | 
|  | 900     gradient = np.linspace(0, 1, 256) | 
|  | 901     gradient = np.vstack((gradient, gradient)) | 
|  | 902 | 
|  | 903     # Add min and max value annotations | 
|  | 904     ax.text(0, 0.5, f'{np.round(min_value, 3)}', va='center', ha='right', transform=ax.transAxes, fontsize=12, color='black') | 
|  | 905     ax.text(1, 0.5, f'{np.round(max_value, 3)}', va='center', ha='left', transform=ax.transAxes, fontsize=12, color='black') | 
|  | 906 | 
|  | 907 | 
|  | 908     # Display the gradient image | 
|  | 909     ax.imshow(gradient, aspect='auto', cmap=cmap) | 
|  | 910     ax.set_axis_off() | 
|  | 911 | 
|  | 912     # Save the image | 
|  | 913     plt.savefig(path.show(), bbox_inches='tight', pad_inches=0) | 
|  | 914     plt.close() | 
|  | 915     pass | 
|  | 916 | 
|  | 917 def min_nonzero_abs(arr): | 
|  | 918     # Flatten the array and filter out zeros, then find the minimum of the remaining values | 
|  | 919     non_zero_elements = np.abs(arr)[np.abs(arr) > 0] | 
|  | 920     return np.min(non_zero_elements) if non_zero_elements.size > 0 else None | 
|  | 921 | 
|  | 922 def computeEnrichmentMeanMedian(metabMap: ET.ElementTree, class_pat: Dict[str, List[List[float]]], ids: List[str], colormap:str) -> None: | 
|  | 923     """ | 
|  | 924     Compute and visualize the metabolic map based on mean and median of the input fluxes. | 
| 168 | 925     The fluxes are normalised across classes/datasets and visualised using the given colormap. | 
| 4 | 926 | 
|  | 927     Args: | 
|  | 928         metabMap (ET.ElementTree): An XML tree representing the metabolic map. | 
|  | 929         class_pat (Dict[str, List[List[float]]]): A dictionary where keys are class names and values are lists of enrichment values. | 
|  | 930         ids (List[str]): A list of reaction IDs to be used for coloring arrows. | 
|  | 931 | 
|  | 932     Returns: | 
|  | 933         None | 
|  | 934     """ | 
|  | 935     # Create copies only if they are needed | 
|  | 936     metabMap_mean = copy.deepcopy(metabMap) | 
|  | 937     metabMap_median = copy.deepcopy(metabMap) | 
|  | 938 | 
|  | 939     # Compute medians and means | 
| 242 | 940     medians = {key: np.round(np.nanmedian(np.array(value), axis=1), 6) for key, value in class_pat.items()} | 
|  | 941     means = {key: np.round(np.nanmean(np.array(value), axis=1),6) for key, value in class_pat.items()} | 
| 4 | 942 | 
|  | 943     # Normalize medians and means | 
|  | 944     max_flux_medians = max(np.max(np.abs(arr)) for arr in medians.values()) | 
|  | 945     max_flux_means = max(np.max(np.abs(arr)) for arr in means.values()) | 
|  | 946 | 
| 168 | 947     min_flux_medians = min(min_nonzero_abs(arr) for arr in medians.values()) | 
|  | 948     min_flux_means = min(min_nonzero_abs(arr) for arr in means.values()) | 
| 4 | 949 | 
| 168 | 950     medians = {key: median/max_flux_medians for key, median in medians.items()} | 
|  | 951     means = {key: mean/max_flux_means for key, mean in means.items()} | 
| 4 | 952 | 
| 147 | 953     save_colormap_image(min_flux_medians, max_flux_medians, utils.FilePath("Color map median", ext=utils.FileFormat.PNG, prefix=ARGS.output_path), colormap) | 
|  | 954     save_colormap_image(min_flux_means, max_flux_means, utils.FilePath("Color map mean", ext=utils.FileFormat.PNG, prefix=ARGS.output_path), colormap) | 
| 4 | 955 | 
|  | 956     cmap = plt.get_cmap(colormap) | 
|  | 957 | 
| 240 | 958     min_width = 2.0  # Minimum arrow width | 
|  | 959     max_width = 15.0  # Maximum arrow width | 
|  | 960 | 
| 4 | 961     for key in class_pat: | 
|  | 962         # Create color mappings for median and mean | 
|  | 963         colors_median = { | 
| 168 | 964             rxn_id: rgb_to_hex(cmap(abs(medians[key][i]))) if medians[key][i] != 0 else '#bebebe'  #grey blocked | 
| 4 | 965             for i, rxn_id in enumerate(ids) | 
|  | 966         } | 
|  | 967 | 
|  | 968         colors_mean = { | 
| 168 | 969             rxn_id: rgb_to_hex(cmap(abs(means[key][i]))) if means[key][i] != 0 else '#bebebe'  #grey blocked | 
| 4 | 970             for i, rxn_id in enumerate(ids) | 
|  | 971         } | 
|  | 972 | 
|  | 973         for i, rxn_id in enumerate(ids): | 
| 240 | 974             # Calculate arrow width for median | 
|  | 975             width_median = np.interp(abs(medians[key][i]), [0, 1], [min_width, max_width]) | 
| 4 | 976             isNegative = medians[key][i] < 0 | 
| 240 | 977             apply_arrow(metabMap_median, rxn_id, colors_median[rxn_id], isNegative, width_median) | 
| 4 | 978 | 
| 240 | 979             # Calculate arrow width for mean | 
|  | 980             width_mean = np.interp(abs(means[key][i]), [0, 1], [min_width, max_width]) | 
| 4 | 981             isNegative = means[key][i] < 0 | 
| 240 | 982             apply_arrow(metabMap_mean, rxn_id, colors_mean[rxn_id], isNegative, width_mean) | 
| 4 | 983 | 
|  | 984         # Save and convert the SVG files | 
|  | 985         save_and_convert(metabMap_mean, "mean", key) | 
|  | 986         save_and_convert(metabMap_median, "median", key) | 
|  | 987 | 
| 240 | 988 def apply_arrow(metabMap, rxn_id, color, isNegative, width=5): | 
| 4 | 989     """ | 
|  | 990     Apply an arrow to a specific reaction in the metabolic map with a given color. | 
|  | 991 | 
|  | 992     Args: | 
|  | 993         metabMap (ET.ElementTree): An XML tree representing the metabolic map. | 
|  | 994         rxn_id (str): The ID of the reaction to which the arrow will be applied. | 
|  | 995         color (str): The color of the arrow in hexadecimal format. | 
| 240 | 996         isNegative (bool): A boolean indicating if the arrow represents a negative value. | 
|  | 997         width (int): The width of the arrow. | 
| 4 | 998 | 
|  | 999     Returns: | 
|  | 1000         None | 
|  | 1001     """ | 
| 240 | 1002     arrow = Arrow(width=width, col=color) | 
| 4 | 1003     arrow.styleReactionElementsMeanMedian(metabMap, rxn_id, isNegative) | 
|  | 1004     pass | 
|  | 1005 | 
|  | 1006 def save_and_convert(metabMap, map_type, key): | 
|  | 1007     """ | 
|  | 1008     Save the metabolic map as an SVG file and optionally convert it to PNG and PDF formats. | 
|  | 1009 | 
|  | 1010     Args: | 
|  | 1011         metabMap (ET.ElementTree): An XML tree representing the metabolic map. | 
|  | 1012         map_type (str): The type of map ('mean' or 'median'). | 
|  | 1013         key (str): The key identifying the specific map. | 
|  | 1014 | 
|  | 1015     Returns: | 
|  | 1016         None | 
|  | 1017     """ | 
| 147 | 1018     svgFilePath = utils.FilePath(f"SVG Map {map_type} - {key}", ext=utils.FileFormat.SVG, prefix=ARGS.output_path) | 
| 4 | 1019     utils.writeSvg(svgFilePath, metabMap) | 
|  | 1020     if ARGS.generate_pdf: | 
| 147 | 1021         pngPath = utils.FilePath(f"PNG Map {map_type} - {key}", ext=utils.FileFormat.PNG, prefix=ARGS.output_path) | 
|  | 1022         pdfPath = utils.FilePath(f"PDF Map {map_type} - {key}", ext=utils.FileFormat.PDF, prefix=ARGS.output_path) | 
| 4 | 1023         convert_to_pdf(svgFilePath, pngPath, pdfPath) | 
|  | 1024     if not ARGS.generate_svg: | 
|  | 1025         os.remove(svgFilePath.show()) | 
|  | 1026 | 
|  | 1027 ############################ MAIN ############################################# | 
| 147 | 1028 def main(args:List[str] = None) -> None: | 
| 4 | 1029     """ | 
|  | 1030     Initializes everything and sets the program in motion based on the fronted input arguments. | 
|  | 1031 | 
|  | 1032     Returns: | 
|  | 1033         None | 
|  | 1034 | 
|  | 1035     Raises: | 
|  | 1036         sys.exit : if a user-provided custom map is in the wrong format (ET.XMLSyntaxError, ET.XMLSchemaParseError) | 
|  | 1037     """ | 
|  | 1038 | 
|  | 1039     global ARGS | 
| 147 | 1040     ARGS = process_args(args) | 
| 4 | 1041 | 
| 240 | 1042     if ARGS.custom_map == 'None': | 
|  | 1043         ARGS.custom_map = None | 
|  | 1044 | 
| 147 | 1045     if os.path.isdir(ARGS.output_path) == False: os.makedirs(ARGS.output_path) | 
| 4 | 1046 | 
|  | 1047     core_map :ET.ElementTree = ARGS.choice_map.getMap( | 
|  | 1048         ARGS.tool_dir, | 
|  | 1049         utils.FilePath.fromStrPath(ARGS.custom_map) if ARGS.custom_map else None) | 
|  | 1050     # TODO: ^^^ ugly but fine for now, the argument is None if the model isn't custom because no file was given. | 
|  | 1051     # getMap will None-check the customPath and panic when the model IS custom but there's no file (good). A cleaner | 
|  | 1052     # solution can be derived from my comment in FilePath.fromStrPath | 
|  | 1053 | 
|  | 1054     ids, class_pat = getClassesAndIdsFromDatasets(ARGS.input_datas_fluxes, ARGS.input_data_fluxes, ARGS.input_class_fluxes, ARGS.names_fluxes) | 
|  | 1055 | 
|  | 1056     if(ARGS.choice_map == utils.Model.HMRcore): | 
|  | 1057         temp_map = utils.Model.HMRcore_no_legend | 
|  | 1058         computeEnrichmentMeanMedian(temp_map.getMap(ARGS.tool_dir), class_pat, ids, ARGS.color_map) | 
|  | 1059     elif(ARGS.choice_map == utils.Model.ENGRO2): | 
|  | 1060         temp_map = utils.Model.ENGRO2_no_legend | 
|  | 1061         computeEnrichmentMeanMedian(temp_map.getMap(ARGS.tool_dir), class_pat, ids, ARGS.color_map) | 
|  | 1062     else: | 
|  | 1063         computeEnrichmentMeanMedian(core_map, class_pat, ids, ARGS.color_map) | 
| 148 | 1064 | 
| 4 | 1065 | 
| 151 | 1066     enrichment_results = computeEnrichment(class_pat, ids) | 
| 148 | 1067     for i, j, comparisonDict, max_z_score in enrichment_results: | 
|  | 1068         map_copy = copy.deepcopy(core_map) | 
|  | 1069         temp_thingsInCommon(comparisonDict, map_copy, max_z_score, i, j) | 
|  | 1070         createOutputMaps(i, j, map_copy) | 
| 4 | 1071 | 
|  | 1072     if not ERRORS: return | 
|  | 1073     utils.logWarning( | 
|  | 1074         f"The following reaction IDs were mentioned in the dataset but weren't found in the map: {ERRORS}", | 
|  | 1075         ARGS.out_log) | 
|  | 1076 | 
|  | 1077     print('Execution succeded') | 
|  | 1078 | 
|  | 1079 ############################################################################### | 
|  | 1080 if __name__ == "__main__": | 
| 148 | 1081     main() | 
|  | 1082 |