| 
90
 | 
     1 import os
 | 
| 
 | 
     2 import csv
 | 
| 
 | 
     3 import cobra
 | 
| 
 | 
     4 import pickle
 | 
| 
 | 
     5 import argparse
 | 
| 
 | 
     6 import pandas as pd
 | 
| 
 | 
     7 import utils.general_utils as utils
 | 
| 
 | 
     8 import utils.rule_parsing  as rulesUtils
 | 
| 
 | 
     9 from typing import Optional, Tuple, Union, Dict
 | 
| 
 | 
    10 import utils.reaction_parsing as reactionUtils
 | 
| 
 | 
    11 
 | 
| 
 | 
    12 ARGS : argparse.Namespace
 | 
| 
 | 
    13 def process_args() -> argparse.Namespace:
 | 
| 
 | 
    14     """
 | 
| 
 | 
    15     Interfaces the script of a module with its frontend, making the user's choices for
 | 
| 
 | 
    16     various parameters available as values in code.
 | 
| 
 | 
    17 
 | 
| 
 | 
    18     Args:
 | 
| 
 | 
    19         args : Always obtained (in file) from sys.argv
 | 
| 
 | 
    20 
 | 
| 
 | 
    21     Returns:
 | 
| 
 | 
    22         Namespace : An object containing the parsed arguments
 | 
| 
 | 
    23     """
 | 
| 
 | 
    24     parser = argparse.ArgumentParser(
 | 
| 
 | 
    25         usage = "%(prog)s [options]",
 | 
| 
 | 
    26         description = "generate custom data from a given model")
 | 
| 
 | 
    27     
 | 
| 
 | 
    28     parser.add_argument("-ol", "--out_log", type = str, required = True, help = "Output log")
 | 
| 
 | 
    29 
 | 
| 
 | 
    30     parser.add_argument("-orules", "--out_rules", type = str, required = True, help = "Output rules")
 | 
| 
 | 
    31     parser.add_argument("-orxns", "--out_reactions", type = str, required = True, help = "Output reactions")
 | 
| 
 | 
    32     parser.add_argument("-omedium", "--out_medium", type = str, required = True, help = "Output medium")
 | 
| 
 | 
    33     parser.add_argument("-obnds", "--out_bounds", type = str, required = True, help = "Output bounds")
 | 
| 
 | 
    34 
 | 
| 
 | 
    35     parser.add_argument("-id", "--input",   type = str, required = True, help = "Input model")
 | 
| 
 | 
    36     parser.add_argument("-mn", "--name",    type = str, required = True, help = "Input model name")
 | 
| 
 | 
    37     # ^ I need this because galaxy converts my files into .dat but I need to know what extension they were in
 | 
| 
 | 
    38     
 | 
| 
 | 
    39     argsNamespace = parser.parse_args()
 | 
| 
 | 
    40     argsNamespace.out_dir = "result"
 | 
| 
 | 
    41     # ^ can't get this one to work from xml, there doesn't seem to be a way to get the directory attribute from the collection
 | 
| 
 | 
    42 
 | 
| 
 | 
    43     return argsNamespace
 | 
| 
 | 
    44 
 | 
| 
 | 
    45 ################################- INPUT DATA LOADING -################################
 | 
| 
 | 
    46 def load_custom_model(file_path :utils.FilePath, ext :Optional[utils.FileFormat] = None) -> cobra.Model:
 | 
| 
 | 
    47     """
 | 
| 
 | 
    48     Loads a custom model from a file, either in JSON or XML format.
 | 
| 
 | 
    49 
 | 
| 
 | 
    50     Args:
 | 
| 
 | 
    51         file_path : The path to the file containing the custom model.
 | 
| 
 | 
    52         ext : explicit file extension. Necessary for standard use in galaxy because of its weird behaviour.
 | 
| 
 | 
    53 
 | 
| 
 | 
    54     Raises:
 | 
| 
 | 
    55         DataErr : if the file is in an invalid format or cannot be opened for whatever reason.    
 | 
| 
 | 
    56     
 | 
| 
 | 
    57     Returns:
 | 
| 
 | 
    58         cobra.Model : the model, if successfully opened.
 | 
| 
 | 
    59     """
 | 
| 
 | 
    60     ext = ext if ext else file_path.ext
 | 
| 
 | 
    61     try:
 | 
| 
 | 
    62         if ext is utils.FileFormat.XML:
 | 
| 
 | 
    63             return cobra.io.read_sbml_model(file_path.show())
 | 
| 
 | 
    64         
 | 
| 
 | 
    65         if ext is utils.FileFormat.JSON:
 | 
| 
 | 
    66             return cobra.io.load_json_model(file_path.show())
 | 
| 
 | 
    67 
 | 
| 
 | 
    68     except Exception as e: raise utils.DataErr(file_path, e.__str__())
 | 
| 
 | 
    69     raise utils.DataErr(file_path,
 | 
| 
 | 
    70         f"Formato \"{file_path.ext}\" non riconosciuto, sono supportati solo file JSON e XML")
 | 
| 
 | 
    71 
 | 
| 
 | 
    72 ################################- DATA GENERATION -################################
 | 
| 
 | 
    73 ReactionId = str
 | 
| 
 | 
    74 def generate_rules(model: cobra.Model, *, asParsed = True) -> Union[Dict[ReactionId, rulesUtils.OpList], Dict[ReactionId, str]]:
 | 
| 
 | 
    75     """
 | 
| 
 | 
    76     Generates a dictionary mapping reaction ids to rules from the model.
 | 
| 
 | 
    77 
 | 
| 
 | 
    78     Args:
 | 
| 
 | 
    79         model : the model to derive data from.
 | 
| 
 | 
    80         asParsed : if True parses the rules to an optimized runtime format, otherwise leaves them as strings.
 | 
| 
 | 
    81 
 | 
| 
 | 
    82     Returns:
 | 
| 
 | 
    83         Dict[ReactionId, rulesUtils.OpList] : the generated dictionary of parsed rules.
 | 
| 
 | 
    84         Dict[ReactionId, str] : the generated dictionary of raw rules.
 | 
| 
 | 
    85     """
 | 
| 
 | 
    86     # Is the below approach convoluted? yes
 | 
| 
 | 
    87     # Ok but is it inefficient? probably
 | 
| 
 | 
    88     # Ok but at least I don't have to repeat the check at every rule (I'm clinically insane)
 | 
| 
 | 
    89     _ruleGetter   =  lambda reaction : reaction.gene_reaction_rule
 | 
| 
 | 
    90     ruleExtractor = (lambda reaction :
 | 
| 
 | 
    91         rulesUtils.parseRuleToNestedList(_ruleGetter(reaction))) if asParsed else _ruleGetter
 | 
| 
 | 
    92 
 | 
| 
 | 
    93     return {
 | 
| 
 | 
    94         reaction.id : ruleExtractor(reaction)
 | 
| 
 | 
    95         for reaction in model.reactions
 | 
| 
 | 
    96         if reaction.gene_reaction_rule }
 | 
| 
 | 
    97 
 | 
| 
 | 
    98 def generate_reactions(model :cobra.Model, *, asParsed = True) -> Dict[ReactionId, str]:
 | 
| 
 | 
    99     """
 | 
| 
 | 
   100     Generates a dictionary mapping reaction ids to reaction formulas from the model.
 | 
| 
 | 
   101 
 | 
| 
 | 
   102     Args:
 | 
| 
 | 
   103         model : the model to derive data from.
 | 
| 
 | 
   104         asParsed : if True parses the reactions to an optimized runtime format, otherwise leaves them as they are.
 | 
| 
 | 
   105 
 | 
| 
 | 
   106     Returns:
 | 
| 
 | 
   107         Dict[ReactionId, str] : the generated dictionary.
 | 
| 
 | 
   108     """
 | 
| 
 | 
   109 
 | 
| 
 | 
   110     unparsedReactions = {
 | 
| 
 | 
   111         reaction.id : reaction.reaction
 | 
| 
 | 
   112         for reaction in model.reactions
 | 
| 
 | 
   113         if reaction.reaction 
 | 
| 
 | 
   114     }
 | 
| 
 | 
   115 
 | 
| 
 | 
   116     if not asParsed: return unparsedReactions
 | 
| 
 | 
   117     
 | 
| 
 | 
   118     return reactionUtils.create_reaction_dict(unparsedReactions)
 | 
| 
 | 
   119 
 | 
| 
 | 
   120 def get_medium(model:cobra.Model) -> pd.DataFrame:
 | 
| 
 | 
   121     trueMedium=[]
 | 
| 
 | 
   122     for r in model.reactions:
 | 
| 
 | 
   123         positiveCoeff=0
 | 
| 
 | 
   124         for m in r.metabolites:
 | 
| 
 | 
   125             if r.get_coefficient(m.id)>0:
 | 
| 
 | 
   126                 positiveCoeff=1;
 | 
| 
 | 
   127         if (positiveCoeff==0 and r.lower_bound<0):
 | 
| 
 | 
   128             trueMedium.append(r.id)
 | 
| 
 | 
   129 
 | 
| 
 | 
   130     df_medium = pd.DataFrame()
 | 
| 
 | 
   131     df_medium["reaction"] = trueMedium
 | 
| 
 | 
   132     return df_medium
 | 
| 
 | 
   133 
 | 
| 
 | 
   134 def generate_bounds(model:cobra.Model) -> pd.DataFrame:
 | 
| 
 | 
   135 
 | 
| 
 | 
   136     rxns = []
 | 
| 
 | 
   137     for reaction in model.reactions:
 | 
| 
 | 
   138         rxns.append(reaction.id)
 | 
| 
 | 
   139 
 | 
| 
 | 
   140     bounds = pd.DataFrame(columns = ["lower_bound", "upper_bound"], index=rxns)
 | 
| 
 | 
   141 
 | 
| 
 | 
   142     for reaction in model.reactions:
 | 
| 
 | 
   143         bounds.loc[reaction.id] = [reaction.lower_bound, reaction.upper_bound]
 | 
| 
 | 
   144     return bounds
 | 
| 
 | 
   145 
 | 
| 
 | 
   146 
 | 
| 
 | 
   147 ###############################- FILE SAVING -################################
 | 
| 
 | 
   148 def save_as_csv_filePath(data :dict, file_path :utils.FilePath, fieldNames :Tuple[str, str]) -> None:
 | 
| 
 | 
   149     """
 | 
| 
 | 
   150     Saves any dictionary-shaped data in a .csv file created at the given file_path as FilePath.
 | 
| 
 | 
   151 
 | 
| 
 | 
   152     Args:
 | 
| 
 | 
   153         data : the data to be written to the file.
 | 
| 
 | 
   154         file_path : the path to the .csv file.
 | 
| 
 | 
   155         fieldNames : the names of the fields (columns) in the .csv file.
 | 
| 
 | 
   156     
 | 
| 
 | 
   157     Returns:
 | 
| 
 | 
   158         None
 | 
| 
 | 
   159     """
 | 
| 
 | 
   160     with open(file_path.show(), 'w', newline='') as csvfile:
 | 
| 
 | 
   161         writer = csv.DictWriter(csvfile, fieldnames = fieldNames, dialect="excel-tab")
 | 
| 
 | 
   162         writer.writeheader()
 | 
| 
 | 
   163 
 | 
| 
 | 
   164         for key, value in data.items():
 | 
| 
 | 
   165             writer.writerow({ fieldNames[0] : key, fieldNames[1] : value })
 | 
| 
 | 
   166 
 | 
| 
 | 
   167 def save_as_csv(data :dict, file_path :str, fieldNames :Tuple[str, str]) -> None:
 | 
| 
 | 
   168     """
 | 
| 
 | 
   169     Saves any dictionary-shaped data in a .csv file created at the given file_path as string.
 | 
| 
 | 
   170 
 | 
| 
 | 
   171     Args:
 | 
| 
 | 
   172         data : the data to be written to the file.
 | 
| 
 | 
   173         file_path : the path to the .csv file.
 | 
| 
 | 
   174         fieldNames : the names of the fields (columns) in the .csv file.
 | 
| 
 | 
   175     
 | 
| 
 | 
   176     Returns:
 | 
| 
 | 
   177         None
 | 
| 
 | 
   178     """
 | 
| 
 | 
   179     with open(file_path, 'w', newline='') as csvfile:
 | 
| 
 | 
   180         writer = csv.DictWriter(csvfile, fieldnames = fieldNames, dialect="excel-tab")
 | 
| 
 | 
   181         writer.writeheader()
 | 
| 
 | 
   182 
 | 
| 
 | 
   183         for key, value in data.items():
 | 
| 
 | 
   184             writer.writerow({ fieldNames[0] : key, fieldNames[1] : value })
 | 
| 
 | 
   185 
 | 
| 
 | 
   186 ###############################- ENTRY POINT -################################
 | 
| 
 | 
   187 def main() -> None:
 | 
| 
 | 
   188     """
 | 
| 
 | 
   189     Initializes everything and sets the program in motion based on the fronted input arguments.
 | 
| 
 | 
   190     
 | 
| 
 | 
   191     Returns:
 | 
| 
 | 
   192         None
 | 
| 
 | 
   193     """
 | 
| 
 | 
   194     # get args from frontend (related xml)
 | 
| 
 | 
   195     global ARGS
 | 
| 
 | 
   196     ARGS = process_args()
 | 
| 
 | 
   197 
 | 
| 
 | 
   198     # this is the worst thing I've seen so far, congrats to the former MaREA devs for suggesting this!
 | 
| 
 | 
   199     if os.path.isdir(ARGS.out_dir) == False: os.makedirs(ARGS.out_dir)
 | 
| 
 | 
   200 
 | 
| 
 | 
   201     # load custom model
 | 
| 
 | 
   202     model = load_custom_model(
 | 
| 
 | 
   203         utils.FilePath.fromStrPath(ARGS.input), utils.FilePath.fromStrPath(ARGS.name).ext)
 | 
| 
 | 
   204 
 | 
| 
 | 
   205     # generate data
 | 
| 
 | 
   206     rules = generate_rules(model, asParsed = False)
 | 
| 
 | 
   207     reactions = generate_reactions(model, asParsed = False)
 | 
| 
 | 
   208     bounds = generate_bounds(model)
 | 
| 
 | 
   209     medium = get_medium(model)
 | 
| 
 | 
   210 
 | 
| 
 | 
   211     # save files out of collection: path coming from xml
 | 
| 
 | 
   212     save_as_csv(rules, ARGS.out_rules, ("ReactionID", "Rule"))
 | 
| 
 | 
   213     save_as_csv(reactions, ARGS.out_reactions, ("ReactionID", "Reaction"))
 | 
| 
 | 
   214     bounds.to_csv(ARGS.out_bounds, sep = '\t')
 | 
| 
 | 
   215     medium.to_csv(ARGS.out_medium, sep = '\t')
 | 
| 
 | 
   216 
 | 
| 
 | 
   217 if __name__ == '__main__':
 | 
| 
 | 
   218     main() |