| 121 | 1 import argparse | 
|  | 2 import utils.general_utils as utils | 
|  | 3 from typing import Optional, List | 
|  | 4 import os | 
|  | 5 import numpy as np | 
|  | 6 import pandas as pd | 
|  | 7 import cobra | 
|  | 8 import sys | 
|  | 9 import csv | 
|  | 10 from joblib import Parallel, delayed, cpu_count | 
|  | 11 | 
|  | 12 ################################# process args ############################### | 
|  | 13 def process_args(args :List[str]) -> argparse.Namespace: | 
|  | 14     """ | 
|  | 15     Processes command-line arguments. | 
|  | 16 | 
|  | 17     Args: | 
|  | 18         args (list): List of command-line arguments. | 
|  | 19 | 
|  | 20     Returns: | 
|  | 21         Namespace: An object containing parsed arguments. | 
|  | 22     """ | 
|  | 23     parser = argparse.ArgumentParser(usage = '%(prog)s [options]', | 
|  | 24                                      description = 'process some value\'s') | 
|  | 25 | 
|  | 26     parser.add_argument( | 
|  | 27         '-ms', '--model_selector', | 
|  | 28         type = utils.Model, default = utils.Model.ENGRO2, choices = [utils.Model.ENGRO2, utils.Model.Custom], | 
|  | 29         help = 'chose which type of model you want use') | 
|  | 30 | 
|  | 31     parser.add_argument("-mo", "--model", type = str, | 
|  | 32         help = "path to input file with custom rules, if provided") | 
|  | 33 | 
|  | 34     parser.add_argument("-mn", "--model_name", type = str, help = "custom mode name") | 
|  | 35 | 
|  | 36     parser.add_argument( | 
|  | 37         '-mes', '--medium_selector', | 
|  | 38         default = "allOpen", | 
|  | 39         help = 'chose which type of medium you want use') | 
|  | 40 | 
|  | 41     parser.add_argument("-meo", "--medium", type = str, | 
|  | 42         help = "path to input file with custom medium, if provided") | 
|  | 43 | 
|  | 44     parser.add_argument('-ol', '--out_log', | 
|  | 45                         help = "Output log") | 
|  | 46 | 
|  | 47     parser.add_argument('-td', '--tool_dir', | 
|  | 48                         type = str, | 
|  | 49                         required = True, | 
|  | 50                         help = 'your tool directory') | 
|  | 51 | 
|  | 52     parser.add_argument('-ir', '--input_ras', | 
|  | 53                         type=str, | 
|  | 54                         required = False, | 
|  | 55                         help = 'input ras') | 
|  | 56 | 
|  | 57     parser.add_argument('-rn', '--name', | 
|  | 58                 type=str, | 
|  | 59                 help = 'ras class names') | 
|  | 60 | 
|  | 61     parser.add_argument('-rs', '--ras_selector', | 
|  | 62                         required = True, | 
|  | 63                         type=utils.Bool("using_RAS"), | 
|  | 64                         help = 'ras selector') | 
|  | 65 | 
|  | 66     parser.add_argument('-cc', '--cell_class', | 
|  | 67                     type = str, | 
|  | 68                     help = 'output of cell class') | 
|  | 69 | 
|  | 70 | 
|  | 71     ARGS = parser.parse_args() | 
|  | 72     return ARGS | 
|  | 73 | 
|  | 74 ########################### warning ########################################### | 
|  | 75 def warning(s :str) -> None: | 
|  | 76     """ | 
|  | 77     Log a warning message to an output log file and print it to the console. | 
|  | 78 | 
|  | 79     Args: | 
|  | 80         s (str): The warning message to be logged and printed. | 
|  | 81 | 
|  | 82     Returns: | 
|  | 83       None | 
|  | 84     """ | 
|  | 85     with open(ARGS.out_log, 'a') as log: | 
|  | 86         log.write(s + "\n\n") | 
|  | 87     print(s) | 
|  | 88 | 
|  | 89 ############################ dataset input #################################### | 
|  | 90 def read_dataset(data :str, name :str) -> pd.DataFrame: | 
|  | 91     """ | 
|  | 92     Read a dataset from a CSV file and return it as a pandas DataFrame. | 
|  | 93 | 
|  | 94     Args: | 
|  | 95         data (str): Path to the CSV file containing the dataset. | 
|  | 96         name (str): Name of the dataset, used in error messages. | 
|  | 97 | 
|  | 98     Returns: | 
|  | 99         pandas.DataFrame: DataFrame containing the dataset. | 
|  | 100 | 
|  | 101     Raises: | 
|  | 102         pd.errors.EmptyDataError: If the CSV file is empty. | 
|  | 103         sys.exit: If the CSV file has the wrong format, the execution is aborted. | 
|  | 104     """ | 
|  | 105     try: | 
|  | 106         dataset = pd.read_csv(data, sep = '\t', header = 0, engine='python') | 
|  | 107     except pd.errors.EmptyDataError: | 
|  | 108         sys.exit('Execution aborted: wrong format of ' + name + '\n') | 
|  | 109     if len(dataset.columns) < 2: | 
|  | 110         sys.exit('Execution aborted: wrong format of ' + name + '\n') | 
|  | 111     return dataset | 
|  | 112 | 
|  | 113 | 
|  | 114 def apply_ras_bounds(model, ras_row, rxns_ids, mediumRxns_ids): | 
|  | 115     """ | 
|  | 116     Adjust the bounds of reactions in the model based on RAS values. | 
|  | 117 | 
|  | 118     Args: | 
|  | 119         model (cobra.Model): The metabolic model to be modified. | 
|  | 120         ras_row (pd.Series): A row from a RAS DataFrame containing scaling factors for reaction bounds. | 
|  | 121         rxns_ids (list of str): List of reaction IDs to which the scaling factors will be applied. | 
|  | 122         mediumRxns_ids (list of str): List of reaction IDs in the medium. Their RAS is set to zero, but they are already set in the model. | 
|  | 123     Returns: | 
|  | 124         None | 
|  | 125     """ | 
|  | 126     for reaction in ras_row.index: | 
|  | 127         scaling_factor = ras_row[reaction] | 
|  | 128         if(scaling_factor not in [np.nan, None]): | 
|  | 129             lower_bound=model.reactions.get_by_id(reaction).lower_bound | 
|  | 130             upper_bound=model.reactions.get_by_id(reaction).upper_bound | 
|  | 131             valMax=float((upper_bound)*scaling_factor) | 
|  | 132             valMin=float((lower_bound)*scaling_factor) | 
|  | 133             if upper_bound!=0 and lower_bound==0: | 
|  | 134                 model.reactions.get_by_id(reaction).upper_bound=valMax | 
|  | 135             if upper_bound==0 and lower_bound!=0: | 
|  | 136                 model.reactions.get_by_id(reaction).lower_bound=valMin | 
|  | 137             if upper_bound!=0 and lower_bound!=0: | 
|  | 138                 model.reactions.get_by_id(reaction).lower_bound=valMin | 
|  | 139                 model.reactions.get_by_id(reaction).upper_bound=valMax | 
|  | 140     pass | 
|  | 141 | 
|  | 142 def process_ras_cell(cellName, ras_row, model, rxns_ids, mediumRxns_ids, output_folder): | 
|  | 143     """ | 
|  | 144     Process a single RAS cell, apply bounds, and save the bounds to a CSV file. | 
|  | 145 | 
|  | 146     Args: | 
|  | 147         cellName (str): The name of the RAS cell (used for naming the output file). | 
|  | 148         ras_row (pd.Series): A row from a RAS DataFrame containing scaling factors for reaction bounds. | 
|  | 149         model (cobra.Model): The metabolic model to be modified. | 
|  | 150         rxns_ids (list of str): List of reaction IDs to which the scaling factors will be applied. | 
|  | 151         mediumRxns_ids (list of str): List of reaction IDs in the medium. Their RAS is set to zero, but they are already set in the model. | 
|  | 152         output_folder (str): Folder path where the output CSV file will be saved. | 
|  | 153 | 
|  | 154     Returns: | 
|  | 155         None | 
|  | 156     """ | 
|  | 157     model_new = model.copy() | 
|  | 158     apply_ras_bounds(model_new, ras_row, rxns_ids, mediumRxns_ids) | 
|  | 159     bounds = pd.DataFrame([(rxn.lower_bound, rxn.upper_bound) for rxn in model_new.reactions], index=rxns_ids, columns=["lower_bound", "upper_bound"]) | 
|  | 160     bounds.to_csv(output_folder + cellName + ".csv", sep='\t', index=True) | 
|  | 161     pass | 
|  | 162 | 
|  | 163 def generate_bounds(model: cobra.Model, medium: dict, ras=None, output_folder='output/') -> pd.DataFrame: | 
|  | 164     """ | 
|  | 165     Generate reaction bounds for a metabolic model based on medium conditions and optional RAS adjustments. | 
|  | 166 | 
|  | 167     Args: | 
|  | 168         model (cobra.Model): The metabolic model for which bounds will be generated. | 
|  | 169         medium (dict): A dictionary where keys are reaction IDs and values are the medium conditions. | 
|  | 170         ras (pd.DataFrame, optional): RAS pandas dataframe. Defaults to None. | 
|  | 171         output_folder (str, optional): Folder path where output CSV files will be saved. Defaults to 'output/'. | 
|  | 172 | 
|  | 173     Returns: | 
|  | 174         pd.DataFrame: DataFrame containing the bounds of reactions in the model. | 
|  | 175     """ | 
|  | 176     rxns_ids = [rxn.id for rxn in model.reactions] | 
|  | 177 | 
|  | 178     # Set medium conditions | 
|  | 179     for reaction, value in medium.items(): | 
|  | 180         if value is not None: | 
|  | 181             ## SOLO ENGRO2 | 
|  | 182             if(reaction != "EX_thbpt_e" and reaction != "EX_lac__L_e"): | 
|  | 183                 model.reactions.get_by_id(reaction).lower_bound = -float(value) | 
|  | 184             if(reaction == "EX_lac__L_e"): | 
|  | 185                 model.reactions.get_by_id(reaction).lower_bound = float(0.0) | 
|  | 186 | 
|  | 187     mediumRxns_ids = medium.keys() | 
|  | 188 | 
|  | 189     # Perform Flux Variability Analysis (FVA) on this medium | 
|  | 190     df_FVA = cobra.flux_analysis.flux_variability_analysis(model, fraction_of_optimum=0, processes=1).round(8) | 
|  | 191 | 
|  | 192     # Set FVA bounds | 
|  | 193     for reaction in rxns_ids: | 
|  | 194         model.reactions.get_by_id(reaction).lower_bound = float(df_FVA.loc[reaction, "minimum"]) | 
|  | 195         model.reactions.get_by_id(reaction).upper_bound = float(df_FVA.loc[reaction, "maximum"]) | 
|  | 196 | 
|  | 197     if ras is not None: | 
|  | 198         #Parallel(n_jobs=cpu_count())(delayed(process_ras_cell)(cellName, ras_row, model, rxns_ids, output_folder) for cellName, ras_row in ras.iterrows()) | 
|  | 199         for cellName, ras_row in ras.iterrows(): | 
|  | 200             process_ras_cell(cellName, ras_row, model, rxns_ids, mediumRxns_ids, output_folder) | 
|  | 201             break #just one cell for testing | 
|  | 202     else: | 
|  | 203         model_new = model.copy() | 
|  | 204         apply_ras_bounds(model_new, pd.Series([1]*len(rxns_ids), index=rxns_ids), rxns_ids, mediumRxns_ids) | 
|  | 205         bounds = pd.DataFrame([(rxn.lower_bound, rxn.upper_bound) for rxn in model_new.reactions], index=rxns_ids, columns=["lower_bound", "upper_bound"]) | 
|  | 206         bounds.to_csv(output_folder + "bounds.csv", sep='\t', index=True) | 
|  | 207     pass | 
|  | 208 | 
|  | 209 | 
|  | 210 | 
|  | 211 ############################# main ########################################### | 
|  | 212 def main() -> None: | 
|  | 213     """ | 
|  | 214     Initializes everything and sets the program in motion based on the fronted input arguments. | 
|  | 215 | 
|  | 216     Returns: | 
|  | 217         None | 
|  | 218     """ | 
|  | 219     if not os.path.exists('ras_to_bounds'): | 
|  | 220         os.makedirs('ras_to_bounds') | 
|  | 221 | 
|  | 222 | 
|  | 223     global ARGS | 
|  | 224     ARGS = process_args(sys.argv) | 
|  | 225 | 
|  | 226     ARGS.output_folder = 'ras_to_bounds/' | 
|  | 227 | 
|  | 228     if(ARGS.ras_selector == True): | 
|  | 229         ras_file_list = ARGS.input_ras.split(",") | 
|  | 230         ras_file_names = ARGS.name.split(",") | 
|  | 231         ras_class_names = [] | 
|  | 232         for file in ras_file_names: | 
|  | 233             ras_class_names.append(file.split(".")[0]) | 
|  | 234         ras_list = [] | 
|  | 235         class_assignments = pd.DataFrame(columns=["Patient_ID", "Class"]) | 
|  | 236         for ras_matrix, ras_class_name in zip(ras_file_list, ras_class_names): | 
|  | 237             ras = read_dataset(ras_matrix, "ras dataset") | 
|  | 238             ras.replace("None", None, inplace=True) | 
|  | 239             ras.set_index("Reactions", drop=True, inplace=True) | 
|  | 240             ras = ras.T | 
|  | 241             ras = ras.astype(float) | 
|  | 242             ras_list.append(ras) | 
|  | 243             for patient_id in ras.index: | 
|  | 244                 class_assignments.loc[class_assignments.shape[0]] = [patient_id, ras_class_name] | 
|  | 245 | 
|  | 246 | 
|  | 247         # Concatenate all ras DataFrames into a single DataFrame | 
|  | 248         ras_combined = pd.concat(ras_list, axis=0) | 
|  | 249         # Normalize the RAS values by max RAS | 
|  | 250         ras_combined = ras_combined.div(ras_combined.max(axis=0)) | 
|  | 251         #ras_combined = ras_combined.fillna(0) | 
|  | 252         #il ras c'è per tutti o non c'è per nessuno | 
|  | 253 | 
|  | 254 | 
|  | 255 | 
|  | 256     model_type :utils.Model = ARGS.model_selector | 
|  | 257     if model_type is utils.Model.Custom: | 
|  | 258         model = model_type.getCOBRAmodel(customPath = utils.FilePath.fromStrPath(ARGS.model), customExtension = utils.FilePath.fromStrPath(ARGS.model_name).ext) | 
|  | 259     else: | 
|  | 260         model = model_type.getCOBRAmodel(toolDir=ARGS.tool_dir) | 
|  | 261 | 
|  | 262     if(ARGS.medium_selector == "Custom"): | 
|  | 263         medium = read_dataset(ARGS.medium, "medium dataset") | 
|  | 264         medium.set_index(medium.columns[0], inplace=True) | 
|  | 265         medium = medium.astype(float) | 
|  | 266         medium = medium[medium.columns[0]].to_dict() | 
|  | 267     else: | 
|  | 268         df_mediums = pd.read_csv(ARGS.tool_dir + "/local/medium/medium.csv", index_col = 0) | 
|  | 269         ARGS.medium_selector = ARGS.medium_selector.replace("_", " ") | 
|  | 270         medium = df_mediums[[ARGS.medium_selector]] | 
|  | 271         medium = medium[ARGS.medium_selector].to_dict() | 
|  | 272 | 
|  | 273     if(ARGS.ras_selector == True): | 
|  | 274         generate_bounds(model, medium, ras = ras_combined, output_folder=ARGS.output_folder) | 
|  | 275         class_assignments.to_csv(ARGS.cell_class, sep = '\t', index = False) | 
|  | 276     else: | 
|  | 277         generate_bounds(model, medium, output_folder=ARGS.output_folder) | 
|  | 278 | 
|  | 279     pass | 
|  | 280 | 
|  | 281 ############################################################################## | 
|  | 282 if __name__ == "__main__": | 
|  | 283     main() |