| 4 | 1 from __future__ import division | 
|  | 2 import csv | 
|  | 3 from enum import Enum | 
|  | 4 import re | 
|  | 5 import sys | 
|  | 6 import numpy as np | 
|  | 7 import pandas as pd | 
|  | 8 import itertools as it | 
|  | 9 import scipy.stats as st | 
|  | 10 import lxml.etree as ET | 
|  | 11 import math | 
|  | 12 import utils.general_utils as utils | 
|  | 13 from PIL import Image | 
|  | 14 import os | 
|  | 15 import copy | 
|  | 16 import argparse | 
|  | 17 import pyvips | 
|  | 18 from PIL import Image, ImageDraw, ImageFont | 
|  | 19 from typing import Tuple, Union, Optional, List, Dict | 
|  | 20 import matplotlib.pyplot as plt | 
|  | 21 | 
|  | 22 ERRORS = [] | 
|  | 23 ########################## argparse ########################################## | 
|  | 24 ARGS :argparse.Namespace | 
|  | 25 def process_args() -> argparse.Namespace: | 
|  | 26     """ | 
|  | 27     Interfaces the script of a module with its frontend, making the user's choices for various parameters available as values in code. | 
|  | 28 | 
|  | 29     Args: | 
|  | 30         args : Always obtained (in file) from sys.argv | 
|  | 31 | 
|  | 32     Returns: | 
|  | 33         Namespace : An object containing the parsed arguments | 
|  | 34     """ | 
|  | 35     parser = argparse.ArgumentParser( | 
|  | 36         usage = "%(prog)s [options]", | 
|  | 37         description = "process some value's genes to create a comparison's map.") | 
|  | 38 | 
|  | 39     #General: | 
|  | 40     parser.add_argument( | 
|  | 41         '-td', '--tool_dir', | 
|  | 42         type = str, | 
|  | 43         required = True, | 
|  | 44         help = 'your tool directory') | 
|  | 45 | 
|  | 46     parser.add_argument('-on', '--control', type = str) | 
|  | 47     parser.add_argument('-ol', '--out_log', help = "Output log") | 
|  | 48 | 
|  | 49     #Computation details: | 
|  | 50     parser.add_argument( | 
|  | 51         '-co', '--comparison', | 
|  | 52         type = str, | 
|  | 53         default = '1vs1', | 
|  | 54         choices = ['manyvsmany', 'onevsrest', 'onevsmany']) | 
|  | 55 | 
|  | 56     parser.add_argument( | 
|  | 57         '-pv' ,'--pValue', | 
|  | 58         type = float, | 
|  | 59         default = 0.1, | 
|  | 60         help = 'P-Value threshold (default: %(default)s)') | 
|  | 61 | 
|  | 62     parser.add_argument( | 
|  | 63         '-fc', '--fChange', | 
|  | 64         type = float, | 
|  | 65         default = 1.5, | 
|  | 66         help = 'Fold-Change threshold (default: %(default)s)') | 
|  | 67 | 
|  | 68 | 
|  | 69     parser.add_argument( | 
|  | 70         '-op', '--option', | 
|  | 71         type = str, | 
|  | 72         choices = ['datasets', 'dataset_class'], | 
|  | 73         help='dataset or dataset and class') | 
|  | 74 | 
|  | 75     parser.add_argument( | 
|  | 76         '-idf', '--input_data_fluxes', | 
|  | 77         type = str, | 
|  | 78         help = 'input dataset fluxes') | 
|  | 79 | 
|  | 80     parser.add_argument( | 
|  | 81         '-icf', '--input_class_fluxes', | 
|  | 82         type = str, | 
|  | 83         help = 'sample group specification fluxes') | 
|  | 84 | 
|  | 85     parser.add_argument( | 
|  | 86         '-idsf', '--input_datas_fluxes', | 
|  | 87         type = str, | 
|  | 88         nargs = '+', | 
|  | 89         help = 'input datasets fluxes') | 
|  | 90 | 
|  | 91     parser.add_argument( | 
|  | 92         '-naf', '--names_fluxes', | 
|  | 93         type = str, | 
|  | 94         nargs = '+', | 
|  | 95         help = 'input names fluxes') | 
|  | 96 | 
|  | 97     #Output: | 
|  | 98     parser.add_argument( | 
|  | 99         "-gs", "--generate_svg", | 
|  | 100         type = utils.Bool("generate_svg"), default = True, | 
|  | 101         help = "choose whether to generate svg") | 
|  | 102 | 
|  | 103     parser.add_argument( | 
|  | 104         "-gp", "--generate_pdf", | 
|  | 105         type = utils.Bool("generate_pdf"), default = True, | 
|  | 106         help = "choose whether to generate pdf") | 
|  | 107 | 
|  | 108     parser.add_argument( | 
|  | 109         '-cm', '--custom_map', | 
|  | 110         type = str, | 
|  | 111         help='custom map to use') | 
|  | 112 | 
|  | 113     parser.add_argument( | 
|  | 114         '-mc',  '--choice_map', | 
|  | 115         type = utils.Model, default = utils.Model.HMRcore, | 
|  | 116         choices = [utils.Model.HMRcore, utils.Model.ENGRO2, utils.Model.Custom]) | 
|  | 117 | 
|  | 118     parser.add_argument( | 
|  | 119         '-colorm',  '--color_map', | 
|  | 120         type = str, | 
|  | 121         choices = ["jet", "viridis"]) | 
|  | 122 | 
|  | 123     args :argparse.Namespace = parser.parse_args() | 
|  | 124     args.net = True | 
|  | 125 | 
|  | 126     return args | 
|  | 127 | 
|  | 128 ############################ dataset input #################################### | 
|  | 129 def read_dataset(data :str, name :str) -> pd.DataFrame: | 
|  | 130     """ | 
|  | 131     Tries to read the dataset from its path (data) as a tsv and turns it into a DataFrame. | 
|  | 132 | 
|  | 133     Args: | 
|  | 134         data : filepath of a dataset (from frontend input params or literals upon calling) | 
|  | 135         name : name associated with the dataset (from frontend input params or literals upon calling) | 
|  | 136 | 
|  | 137     Returns: | 
|  | 138         pd.DataFrame : dataset in a runtime operable shape | 
|  | 139 | 
|  | 140     Raises: | 
|  | 141         sys.exit : if there's no data (pd.errors.EmptyDataError) or if the dataset has less than 2 columns | 
|  | 142     """ | 
|  | 143     try: | 
|  | 144         dataset = pd.read_csv(data, sep = '\t', header = 0, engine='python') | 
|  | 145     except pd.errors.EmptyDataError: | 
|  | 146         sys.exit('Execution aborted: wrong format of ' + name + '\n') | 
|  | 147     if len(dataset.columns) < 2: | 
|  | 148         sys.exit('Execution aborted: wrong format of ' + name + '\n') | 
|  | 149     return dataset | 
|  | 150 | 
|  | 151 ############################ dataset name ##################################### | 
|  | 152 def name_dataset(name_data :str, count :int) -> str: | 
|  | 153     """ | 
|  | 154     Produces a unique name for a dataset based on what was provided by the user. The default name for any dataset is "Dataset", thus if the user didn't change it this function appends f"_{count}" to make it unique. | 
|  | 155 | 
|  | 156     Args: | 
|  | 157         name_data : name associated with the dataset (from frontend input params) | 
|  | 158         count : counter from 1 to make these names unique (external) | 
|  | 159 | 
|  | 160     Returns: | 
|  | 161         str : the name made unique | 
|  | 162     """ | 
|  | 163     if str(name_data) == 'Dataset': | 
|  | 164         return str(name_data) + '_' + str(count) | 
|  | 165     else: | 
|  | 166         return str(name_data) | 
|  | 167 | 
|  | 168 ############################ map_methods ###################################### | 
|  | 169 FoldChange = Union[float, int, str] # Union[float, Literal[0, "-INF", "INF"]] | 
|  | 170 def fold_change(avg1 :float, avg2 :float) -> FoldChange: | 
|  | 171     """ | 
|  | 172     Calculates the fold change between two gene expression values. | 
|  | 173 | 
|  | 174     Args: | 
|  | 175         avg1 : average expression value from one dataset avg2 : average expression value from the other dataset | 
|  | 176 | 
|  | 177     Returns: | 
|  | 178         FoldChange : | 
|  | 179             0 : when both input values are 0 | 
|  | 180             "-INF" : when avg1 is 0 | 
|  | 181             "INF" : when avg2 is 0 | 
|  | 182             float : for any other combination of values | 
|  | 183     """ | 
|  | 184     if avg1 == 0 and avg2 == 0: | 
|  | 185         return 0 | 
|  | 186     elif avg1 == 0: | 
|  | 187         return '-INF' | 
|  | 188     elif avg2 == 0: | 
|  | 189         return 'INF' | 
|  | 190     else: # (threshold_F_C - 1) / (abs(threshold_F_C) + 1) con threshold_F_C > 1 | 
|  | 191         return (avg1 - avg2) / (abs(avg1) + abs(avg2)) | 
|  | 192 | 
|  | 193 def fix_style(l :str, col :Optional[str], width :str, dash :str) -> str: | 
|  | 194     """ | 
|  | 195     Produces a "fixed" style string to assign to a reaction arrow in the SVG map, assigning style properties to the corresponding values passed as input params. | 
|  | 196 | 
|  | 197     Args: | 
|  | 198         l : current style string of an SVG element | 
|  | 199         col : new value for the "stroke" style property | 
|  | 200         width : new value for the "stroke-width" style property | 
|  | 201         dash : new value for the "stroke-dasharray" style property | 
|  | 202 | 
|  | 203     Returns: | 
|  | 204         str : the fixed style string | 
|  | 205     """ | 
|  | 206     tmp = l.split(';') | 
|  | 207     flag_col = False | 
|  | 208     flag_width = False | 
|  | 209     flag_dash = False | 
|  | 210     for i in range(len(tmp)): | 
|  | 211         if tmp[i].startswith('stroke:'): | 
|  | 212             tmp[i] = 'stroke:' + col | 
|  | 213             flag_col = True | 
|  | 214         if tmp[i].startswith('stroke-width:'): | 
|  | 215             tmp[i] = 'stroke-width:' + width | 
|  | 216             flag_width = True | 
|  | 217         if tmp[i].startswith('stroke-dasharray:'): | 
|  | 218             tmp[i] = 'stroke-dasharray:' + dash | 
|  | 219             flag_dash = True | 
|  | 220     if not flag_col: | 
|  | 221         tmp.append('stroke:' + col) | 
|  | 222     if not flag_width: | 
|  | 223         tmp.append('stroke-width:' + width) | 
|  | 224     if not flag_dash: | 
|  | 225         tmp.append('stroke-dasharray:' + dash) | 
|  | 226     return ';'.join(tmp) | 
|  | 227 | 
|  | 228 # The type of d values is collapsed, losing precision, because the dict containst lists instead of tuples, please fix! | 
|  | 229 def fix_map(d :Dict[str, List[Union[float, FoldChange]]], core_map :ET.ElementTree, threshold_P_V :float, threshold_F_C :float, max_z_score :float) -> ET.ElementTree: | 
|  | 230     """ | 
|  | 231     Edits the selected SVG map based on the p-value and fold change data (d) and some significance thresholds also passed as inputs. | 
|  | 232 | 
|  | 233     Args: | 
|  | 234         d : dictionary mapping a p-value and a fold-change value (values) to each reaction ID as encoded in the SVG map (keys) | 
|  | 235         core_map : SVG map to modify | 
|  | 236         threshold_P_V : threshold for a p-value to be considered significant | 
|  | 237         threshold_F_C : threshold for a fold change value to be considered significant | 
|  | 238         max_z_score : highest z-score (absolute value) | 
|  | 239 | 
|  | 240     Returns: | 
|  | 241         ET.ElementTree : the modified core_map | 
|  | 242 | 
|  | 243     Side effects: | 
|  | 244         core_map : mut | 
|  | 245     """ | 
|  | 246     maxT = 12 | 
|  | 247     minT = 2 | 
|  | 248     grey = '#BEBEBE' | 
|  | 249     blue = '#6495ed' | 
|  | 250     red = '#ecac68' | 
|  | 251     for el in core_map.iter(): | 
|  | 252         el_id = str(el.get('id')) | 
|  | 253         if el_id.startswith('R_'): | 
|  | 254             tmp = d.get(el_id[2:]) | 
|  | 255             if tmp != None: | 
|  | 256                 p_val :float = tmp[0] | 
|  | 257                 f_c = tmp[1] | 
|  | 258                 z_score = tmp[2] | 
|  | 259                 if p_val < threshold_P_V: | 
|  | 260                     if not isinstance(f_c, str): | 
|  | 261                         if abs(f_c) < ((threshold_F_C - 1) / (abs(threshold_F_C) + 1)): # | 
|  | 262                             col = grey | 
|  | 263                             width = str(minT) | 
|  | 264                         else: | 
|  | 265                             if f_c < 0: | 
|  | 266                                 col = blue | 
|  | 267                             elif f_c > 0: | 
|  | 268                                 col = red | 
|  | 269                             width = str(max((abs(z_score) * maxT) / max_z_score, minT)) | 
|  | 270                     else: | 
|  | 271                         if f_c == '-INF': | 
|  | 272                             col = blue | 
|  | 273                         elif f_c == 'INF': | 
|  | 274                             col = red | 
|  | 275                         width = str(maxT) | 
|  | 276                     dash = 'none' | 
|  | 277                 else: | 
|  | 278                     dash = '5,5' | 
|  | 279                     col = grey | 
|  | 280                     width = str(minT) | 
|  | 281                 el.set('style', fix_style(el.get('style', ""), col, width, dash)) | 
|  | 282     return core_map | 
|  | 283 | 
|  | 284 def getElementById(reactionId :str, metabMap :ET.ElementTree) -> utils.Result[ET.Element, utils.Result.ResultErr]: | 
|  | 285     """ | 
|  | 286     Finds any element in the given map with the given ID. ID uniqueness in an svg file is recommended but | 
|  | 287     not enforced, if more than one element with the exact ID is found only the first will be returned. | 
|  | 288 | 
|  | 289     Args: | 
|  | 290         reactionId (str): exact ID of the requested element. | 
|  | 291         metabMap (ET.ElementTree): metabolic map containing the element. | 
|  | 292 | 
|  | 293     Returns: | 
|  | 294         utils.Result[ET.Element, ResultErr]: result of the search, either the first match found or a ResultErr. | 
|  | 295     """ | 
|  | 296     return utils.Result.Ok( | 
|  | 297         f"//*[@id=\"{reactionId}\"]").map( | 
|  | 298         lambda xPath : metabMap.xpath(xPath)[0]).mapErr( | 
|  | 299         lambda _ : utils.Result.ResultErr(f"No elements with ID \"{reactionId}\" found in map")) | 
|  | 300         # ^^^ we shamelessly ignore the contents of the IndexError, it offers nothing to the user. | 
|  | 301 | 
|  | 302 def styleMapElement(element :ET.Element, styleStr :str) -> None: | 
|  | 303     currentStyles :str = element.get("style", "") | 
|  | 304     if re.search(r";stroke:[^;]+;stroke-width:[^;]+;stroke-dasharray:[^;]+$", currentStyles): | 
|  | 305         currentStyles = ';'.join(currentStyles.split(';')[:-3]) | 
|  | 306 | 
|  | 307     element.set("style", currentStyles + styleStr) | 
|  | 308 | 
|  | 309 class ReactionDirection(Enum): | 
|  | 310     Unknown = "" | 
|  | 311     Direct  = "_F" | 
|  | 312     Inverse = "_B" | 
|  | 313 | 
|  | 314     @classmethod | 
|  | 315     def fromDir(cls, s :str) -> "ReactionDirection": | 
|  | 316         # vvv as long as there's so few variants I actually condone the if spam: | 
|  | 317         if s == ReactionDirection.Direct.value:  return ReactionDirection.Direct | 
|  | 318         if s == ReactionDirection.Inverse.value: return ReactionDirection.Inverse | 
|  | 319         return ReactionDirection.Unknown | 
|  | 320 | 
|  | 321     @classmethod | 
|  | 322     def fromReactionId(cls, reactionId :str) -> "ReactionDirection": | 
|  | 323         return ReactionDirection.fromDir(reactionId[-2:]) | 
|  | 324 | 
|  | 325 def getArrowBodyElementId(reactionId :str) -> str: | 
|  | 326     if reactionId.endswith("_RV"): reactionId = reactionId[:-3] #TODO: standardize _RV | 
|  | 327     elif ReactionDirection.fromReactionId(reactionId) is not ReactionDirection.Unknown: reactionId = reactionId[:-2] | 
|  | 328     return f"R_{reactionId}" | 
|  | 329 | 
|  | 330 def getArrowHeadElementId(reactionId :str) -> Tuple[str, str]: | 
|  | 331     """ | 
|  | 332     We attempt extracting the direction information from the provided reaction ID, if unsuccessful we provide the IDs of both directions. | 
|  | 333 | 
|  | 334     Args: | 
|  | 335         reactionId : the provided reaction ID. | 
|  | 336 | 
|  | 337     Returns: | 
|  | 338         Tuple[str, str]: either a single str ID for the correct arrow head followed by an empty string or both options to try. | 
|  | 339     """ | 
|  | 340     if reactionId.endswith("_RV"): reactionId = reactionId[:-3] #TODO: standardize _RV | 
|  | 341     elif ReactionDirection.fromReactionId(reactionId) is not ReactionDirection.Unknown: return reactionId[:-3:-1] + reactionId[:-2], "" | 
|  | 342     return f"F_{reactionId}", f"B_{reactionId}" | 
|  | 343 | 
|  | 344 class ArrowColor(Enum): | 
|  | 345     """ | 
|  | 346     Encodes possible arrow colors based on their meaning in the enrichment process. | 
|  | 347     """ | 
|  | 348     Invalid       = "#BEBEBE" # gray, fold-change under treshold | 
|  | 349     Transparent   = "#ffffff00" # white, not significant p-value | 
|  | 350     UpRegulated   = "#ecac68" # red, up-regulated reaction | 
|  | 351     DownRegulated = "#6495ed" # blue, down-regulated reaction | 
|  | 352 | 
|  | 353     UpRegulatedInv = "#FF0000" | 
|  | 354     # ^^^ different shade of red (actually orange), up-regulated net value for a reversible reaction with | 
|  | 355     # conflicting enrichment in the two directions. | 
|  | 356 | 
|  | 357     DownRegulatedInv = "#0000FF" | 
|  | 358     # ^^^ different shade of blue (actually purple), down-regulated net value for a reversible reaction with | 
|  | 359     # conflicting enrichment in the two directions. | 
|  | 360 | 
|  | 361     @classmethod | 
|  | 362     def fromFoldChangeSign(cls, foldChange :float, *, useAltColor = False) -> "ArrowColor": | 
|  | 363         colors = (cls.DownRegulated, cls.DownRegulatedInv) if foldChange < 0 else (cls.UpRegulated, cls.UpRegulatedInv) | 
|  | 364         return colors[useAltColor] | 
|  | 365 | 
|  | 366     def __str__(self) -> str: return self.value | 
|  | 367 | 
|  | 368 class Arrow: | 
|  | 369     """ | 
|  | 370     Models the properties of a reaction arrow that change based on enrichment. | 
|  | 371     """ | 
|  | 372     MIN_W = 2 | 
|  | 373     MAX_W = 12 | 
|  | 374 | 
|  | 375     def __init__(self, width :int, col: ArrowColor, *, isDashed = False) -> None: | 
|  | 376         """ | 
|  | 377         (Private) Initializes an instance of Arrow. | 
|  | 378 | 
|  | 379         Args: | 
|  | 380             width : width of the arrow, ideally to be kept within Arrow.MIN_W and Arrow.MAX_W (not enforced). | 
|  | 381             col : color of the arrow. | 
|  | 382             isDashed : whether the arrow should be dashed, meaning the associated pValue resulted not significant. | 
|  | 383 | 
|  | 384         Returns: | 
|  | 385             None : practically, a Arrow instance. | 
|  | 386         """ | 
|  | 387         self.w    = width | 
|  | 388         self.col  = col | 
|  | 389         self.dash = isDashed | 
|  | 390 | 
|  | 391     def applyTo(self, reactionId :str, metabMap :ET.ElementTree, styleStr :str) -> None: | 
|  | 392         if getElementById(reactionId, metabMap).map(lambda el : styleMapElement(el, styleStr)).isErr: | 
|  | 393             ERRORS.append(reactionId) | 
|  | 394 | 
|  | 395     def styleReactionElements(self, metabMap :ET.ElementTree, reactionId :str, *, mindReactionDir = True) -> None: | 
|  | 396         if not mindReactionDir: | 
|  | 397             return self.applyTo(getArrowBodyElementId(reactionId), metabMap, self.toStyleStr()) | 
|  | 398 | 
|  | 399         # Now we style the arrow head(s): | 
|  | 400         idOpt1, idOpt2 = getArrowHeadElementId(reactionId) | 
|  | 401         self.applyTo(idOpt1, metabMap, self.toStyleStr(downSizedForTips = True)) | 
|  | 402         if idOpt2: self.applyTo(idOpt2, metabMap, self.toStyleStr(downSizedForTips = True)) | 
|  | 403 | 
|  | 404     def styleReactionElementsMeanMedian(self, metabMap :ET.ElementTree, reactionId :str, isNegative:bool) -> None: | 
|  | 405 | 
|  | 406         self.applyTo(getArrowBodyElementId(reactionId), metabMap, self.toStyleStr()) | 
|  | 407         idOpt1, idOpt2 = getArrowHeadElementId(reactionId) | 
|  | 408 | 
|  | 409         if(isNegative): | 
|  | 410             self.applyTo(idOpt2, metabMap, self.toStyleStr(downSizedForTips = True)) | 
|  | 411             self.col = ArrowColor.Transparent | 
|  | 412             self.applyTo(idOpt1, metabMap, self.toStyleStr(downSizedForTips = True)) #trasp | 
|  | 413         else: | 
|  | 414             self.applyTo(idOpt1, metabMap, self.toStyleStr(downSizedForTips = True)) | 
|  | 415             self.col = ArrowColor.Transparent | 
|  | 416             self.applyTo(idOpt2, metabMap, self.toStyleStr(downSizedForTips = True)) #trasp | 
|  | 417 | 
|  | 418 | 
|  | 419 | 
|  | 420     def getMapReactionId(self, reactionId :str, mindReactionDir :bool) -> str: | 
|  | 421         """ | 
|  | 422         Computes the reaction ID as encoded in the map for a given reaction ID from the dataset. | 
|  | 423 | 
|  | 424         Args: | 
|  | 425             reactionId: the reaction ID, as encoded in the dataset. | 
|  | 426             mindReactionDir: if True forward (F_) and backward (B_) directions will be encoded in the result. | 
|  | 427 | 
|  | 428         Returns: | 
|  | 429             str : the ID of an arrow's body or tips in the map. | 
|  | 430         """ | 
|  | 431         # we assume the reactionIds also don't encode reaction dir if they don't mind it when styling the map. | 
|  | 432         if not mindReactionDir: return "R_" + reactionId | 
|  | 433 | 
|  | 434         #TODO: this is clearly something we need to make consistent in fluxes | 
|  | 435         return (reactionId[:-3:-1] + reactionId[:-2]) if reactionId[:-2] in ["_F", "_B"] else f"F_{reactionId}" # "Pyr_F" --> "F_Pyr" | 
|  | 436 | 
|  | 437     def toStyleStr(self, *, downSizedForTips = False) -> str: | 
|  | 438         """ | 
|  | 439         Collapses the styles of this Arrow into a str, ready to be applied as part of the "style" property on an svg element. | 
|  | 440 | 
|  | 441         Returns: | 
|  | 442             str : the styles string. | 
|  | 443         """ | 
|  | 444         width = self.w | 
|  | 445         if downSizedForTips: width *= 0.8 | 
|  | 446         return f";stroke:{self.col};stroke-width:{width};stroke-dasharray:{'5,5' if self.dash else 'none'}" | 
|  | 447 | 
|  | 448 # vvv These constants could be inside the class itself a static properties, but python | 
|  | 449 # was built by brainless organisms so here we are! | 
|  | 450 INVALID_ARROW = Arrow(Arrow.MIN_W, ArrowColor.Invalid) | 
|  | 451 INSIGNIFICANT_ARROW = Arrow(Arrow.MIN_W, ArrowColor.Invalid, isDashed = True) | 
|  | 452 | 
|  | 453 def applyFluxesEnrichmentToMap(fluxesEnrichmentRes :Dict[str, Union[Tuple[float, FoldChange], Tuple[float, FoldChange, float, float]]], metabMap :ET.ElementTree, maxNumericZScore :float) -> None: | 
|  | 454     """ | 
|  | 455     Applies fluxes enrichment results to the provided metabolic map. | 
|  | 456 | 
|  | 457     Args: | 
|  | 458         fluxesEnrichmentRes : fluxes enrichment results. | 
|  | 459         metabMap : the metabolic map to edit. | 
|  | 460         maxNumericZScore : biggest finite z-score value found. | 
|  | 461 | 
|  | 462     Side effects: | 
|  | 463         metabMap : mut | 
|  | 464 | 
|  | 465     Returns: | 
|  | 466         None | 
|  | 467     """ | 
|  | 468     for reactionId, values in fluxesEnrichmentRes.items(): | 
|  | 469         pValue = values[0] | 
|  | 470         foldChange = values[1] | 
|  | 471         z_score = values[2] | 
|  | 472 | 
|  | 473         if isinstance(foldChange, str): foldChange = float(foldChange) | 
|  | 474         if pValue >= ARGS.pValue: # pValue above tresh: dashed arrow | 
|  | 475             INSIGNIFICANT_ARROW.styleReactionElements(metabMap, reactionId) | 
|  | 476             INSIGNIFICANT_ARROW.styleReactionElements(metabMap, reactionId, mindReactionDir = False) | 
|  | 477 | 
|  | 478             continue | 
|  | 479 | 
|  | 480         if abs(foldChange) <  (ARGS.fChange - 1) / (abs(ARGS.fChange) + 1): | 
|  | 481             INVALID_ARROW.styleReactionElements(metabMap, reactionId) | 
|  | 482             INVALID_ARROW.styleReactionElements(metabMap, reactionId, mindReactionDir = False) | 
|  | 483 | 
|  | 484             continue | 
|  | 485 | 
|  | 486         width = Arrow.MAX_W | 
|  | 487         if not math.isinf(foldChange): | 
|  | 488             try: | 
|  | 489                 width = max(abs(z_score * Arrow.MAX_W) / maxNumericZScore, Arrow.MIN_W) | 
|  | 490 | 
|  | 491             except ZeroDivisionError: pass | 
|  | 492 | 
|  | 493         #if not reactionId.endswith("_RV"): # RV stands for reversible reactions | 
|  | 494         #    Arrow(width, ArrowColor.fromFoldChangeSign(foldChange)).styleReactionElements(metabMap, reactionId) | 
|  | 495         #    continue | 
|  | 496 | 
|  | 497         #reactionId = reactionId[:-3] # Remove "_RV" | 
|  | 498 | 
|  | 499         inversionScore = (values[3] < 0) + (values[4] < 0) # Compacts the signs of averages into 1 easy to check score | 
|  | 500         if inversionScore == 2: foldChange *= -1 | 
|  | 501         # ^^^ Style the inverse direction with the opposite sign netValue | 
|  | 502 | 
|  | 503         # If the score is 1 (opposite signs) we use alternative colors vvv | 
|  | 504         arrow = Arrow(width, ArrowColor.fromFoldChangeSign(foldChange, useAltColor = inversionScore == 1)) | 
|  | 505 | 
|  | 506         # vvv These 2 if statements can both be true and can both happen | 
|  | 507         if ARGS.net: # style arrow head(s): | 
|  | 508             arrow.styleReactionElements(metabMap, reactionId + ("_B" if inversionScore == 2 else "_F")) | 
|  | 509             arrow.applyTo(("F_" if inversionScore == 2 else "B_") + reactionId, metabMap, f";stroke:{ArrowColor.Transparent};stroke-width:0;stroke-dasharray:None") | 
|  | 510 | 
|  | 511         arrow.styleReactionElements(metabMap, reactionId, mindReactionDir = False) | 
|  | 512 | 
|  | 513 | 
|  | 514 ############################ split class ###################################### | 
|  | 515 def split_class(classes :pd.DataFrame, resolve_rules :Dict[str, List[float]]) -> Dict[str, List[List[float]]]: | 
|  | 516     """ | 
|  | 517     Generates a :dict that groups together data from a :DataFrame based on classes the data is related to. | 
|  | 518 | 
|  | 519     Args: | 
|  | 520         classes : a :DataFrame of only string values, containing class information (rows) and keys to query the resolve_rules :dict | 
|  | 521         resolve_rules : a :dict containing :float data | 
|  | 522 | 
|  | 523     Returns: | 
|  | 524         dict : the dict with data grouped by class | 
|  | 525 | 
|  | 526     Side effects: | 
|  | 527         classes : mut | 
|  | 528     """ | 
|  | 529     class_pat :Dict[str, List[List[float]]] = {} | 
|  | 530     for i in range(len(classes)): | 
|  | 531         classe :str = classes.iloc[i, 1] | 
|  | 532         if pd.isnull(classe): continue | 
|  | 533 | 
|  | 534         l :List[List[float]] = [] | 
|  | 535         for j in range(i, len(classes)): | 
|  | 536             if classes.iloc[j, 1] == classe: | 
|  | 537                 pat_id :str = classes.iloc[j, 0] | 
|  | 538                 tmp = resolve_rules.get(pat_id, None) | 
|  | 539                 if tmp != None: | 
|  | 540                     l.append(tmp) | 
|  | 541                 classes.iloc[j, 1] = None | 
|  | 542 | 
|  | 543         if l: | 
|  | 544             class_pat[classe] = list(map(list, zip(*l))) | 
|  | 545             continue | 
|  | 546 | 
|  | 547         utils.logWarning( | 
|  | 548             f"Warning: no sample found in class \"{classe}\", the class has been disregarded", ARGS.out_log) | 
|  | 549 | 
|  | 550     return class_pat | 
|  | 551 | 
|  | 552 ############################ conversion ############################################## | 
|  | 553 #conversion from svg to png | 
|  | 554 def svg_to_png_with_background(svg_path :utils.FilePath, png_path :utils.FilePath, dpi :int = 72, scale :int = 1, size :Optional[float] = None) -> None: | 
|  | 555     """ | 
|  | 556     Internal utility to convert an SVG to PNG (forced opaque) to aid in PDF conversion. | 
|  | 557 | 
|  | 558     Args: | 
|  | 559         svg_path : path to SVG file | 
|  | 560         png_path : path for new PNG file | 
|  | 561         dpi : dots per inch of the generated PNG | 
|  | 562         scale : scaling factor for the generated PNG, computed internally when a size is provided | 
|  | 563         size : final effective width of the generated PNG | 
|  | 564 | 
|  | 565     Returns: | 
|  | 566         None | 
|  | 567     """ | 
|  | 568     if size: | 
|  | 569         image = pyvips.Image.new_from_file(svg_path.show(), dpi=dpi, scale=1) | 
|  | 570         scale = size / image.width | 
|  | 571         image = image.resize(scale) | 
|  | 572     else: | 
|  | 573         image = pyvips.Image.new_from_file(svg_path.show(), dpi=dpi, scale=scale) | 
|  | 574 | 
|  | 575     white_background = pyvips.Image.black(image.width, image.height).new_from_image([255, 255, 255]) | 
|  | 576     white_background = white_background.affine([scale, 0, 0, scale]) | 
|  | 577 | 
|  | 578     if white_background.bands != image.bands: | 
|  | 579         white_background = white_background.extract_band(0) | 
|  | 580 | 
|  | 581     composite_image = white_background.composite2(image, 'over') | 
|  | 582     composite_image.write_to_file(png_path.show()) | 
|  | 583 | 
|  | 584 #funzione unica, lascio fuori i file e li passo in input | 
|  | 585 #conversion from png to pdf | 
|  | 586 def convert_png_to_pdf(png_file :utils.FilePath, pdf_file :utils.FilePath) -> None: | 
|  | 587     """ | 
|  | 588     Internal utility to convert a PNG to PDF to aid from SVG conversion. | 
|  | 589 | 
|  | 590     Args: | 
|  | 591         png_file : path to PNG file | 
|  | 592         pdf_file : path to new PDF file | 
|  | 593 | 
|  | 594     Returns: | 
|  | 595         None | 
|  | 596     """ | 
|  | 597     image = Image.open(png_file.show()) | 
|  | 598     image = image.convert("RGB") | 
|  | 599     image.save(pdf_file.show(), "PDF", resolution=100.0) | 
|  | 600 | 
|  | 601 #function called to reduce redundancy in the code | 
|  | 602 def convert_to_pdf(file_svg :utils.FilePath, file_png :utils.FilePath, file_pdf :utils.FilePath) -> None: | 
|  | 603     """ | 
|  | 604     Converts the SVG map at the provided path to PDF. | 
|  | 605 | 
|  | 606     Args: | 
|  | 607         file_svg : path to SVG file | 
|  | 608         file_png : path to PNG file | 
|  | 609         file_pdf : path to new PDF file | 
|  | 610 | 
|  | 611     Returns: | 
|  | 612         None | 
|  | 613     """ | 
|  | 614     svg_to_png_with_background(file_svg, file_png) | 
|  | 615     try: | 
|  | 616         convert_png_to_pdf(file_png, file_pdf) | 
|  | 617         print(f'PDF file {file_pdf.filePath} successfully generated.') | 
|  | 618 | 
|  | 619     except Exception as e: | 
|  | 620         raise utils.DataErr(file_pdf.show(), f'Error generating PDF file: {e}') | 
|  | 621 | 
|  | 622 ############################ map ############################################## | 
|  | 623 def buildOutputPath(dataset1Name :str, dataset2Name = "rest", *, details = "", ext :utils.FileFormat) -> utils.FilePath: | 
|  | 624     """ | 
|  | 625     Builds a FilePath instance from the names of confronted datasets ready to point to a location in the | 
|  | 626     "result/" folder, used by this tool for output files in collections. | 
|  | 627 | 
|  | 628     Args: | 
|  | 629         dataset1Name : _description_ | 
|  | 630         dataset2Name : _description_. Defaults to "rest". | 
|  | 631         details : _description_ | 
|  | 632         ext : _description_ | 
|  | 633 | 
|  | 634     Returns: | 
|  | 635         utils.FilePath : _description_ | 
|  | 636     """ | 
|  | 637     # This function returns a util data structure but is extremely specific to this module. | 
|  | 638     # RAS also uses collections as output and as such might benefit from a method like this, but I'd wait | 
|  | 639     # TODO: until a third tool with multiple outputs appears before porting this to utils. | 
|  | 640     return utils.FilePath( | 
|  | 641         f"{dataset1Name}_vs_{dataset2Name}" + (f" ({details})" if details else ""), | 
|  | 642         # ^^^ yes this string is built every time even if the form is the same for the same 2 datasets in | 
|  | 643         # all output files: I don't care, this was never the performance bottleneck of the tool and | 
|  | 644         # there is no other net gain in saving and re-using the built string. | 
|  | 645         ext, | 
|  | 646         prefix = "result") | 
|  | 647 | 
|  | 648 FIELD_NOT_AVAILABLE = '/' | 
|  | 649 def writeToCsv(rows: List[list], fieldNames :List[str], outPath :utils.FilePath) -> None: | 
|  | 650     fieldsAmt = len(fieldNames) | 
|  | 651     with open(outPath.show(), "w", newline = "") as fd: | 
|  | 652         writer = csv.DictWriter(fd, fieldnames = fieldNames, delimiter = '\t') | 
|  | 653         writer.writeheader() | 
|  | 654 | 
|  | 655         for row in rows: | 
|  | 656             sizeMismatch = fieldsAmt - len(row) | 
|  | 657             if sizeMismatch > 0: row.extend([FIELD_NOT_AVAILABLE] * sizeMismatch) | 
|  | 658             writer.writerow({ field : data for field, data in zip(fieldNames, row) }) | 
|  | 659 | 
|  | 660 OldEnrichedScores = Dict[str, List[Union[float, FoldChange]]] #TODO: try to use Tuple whenever possible | 
|  | 661 def writeTabularResult(enrichedScores : OldEnrichedScores, outPath :utils.FilePath) -> None: | 
|  | 662     fieldNames = ["ids", "P_Value", "fold change"] | 
|  | 663     fieldNames.extend(["average_1", "average_2"]) | 
|  | 664 | 
|  | 665     writeToCsv([ [reactId] + values for reactId, values in enrichedScores.items() ], fieldNames, outPath) | 
|  | 666 | 
|  | 667 def temp_thingsInCommon(tmp :Dict[str, List[Union[float, FoldChange]]], core_map :ET.ElementTree, max_z_score :float, dataset1Name :str, dataset2Name = "rest") -> None: | 
|  | 668     # this function compiles the things always in common between comparison modes after enrichment. | 
|  | 669     # TODO: organize, name better. | 
|  | 670     writeTabularResult(tmp, buildOutputPath(dataset1Name, dataset2Name, details = "Tabular Result", ext = utils.FileFormat.TSV)) | 
|  | 671     for reactId, enrichData in tmp.items(): tmp[reactId] = tuple(enrichData) | 
|  | 672     applyFluxesEnrichmentToMap(tmp, core_map, max_z_score) | 
|  | 673 | 
|  | 674 def computePValue(dataset1Data: List[float], dataset2Data: List[float]) -> Tuple[float, float]: | 
|  | 675     """ | 
|  | 676     Computes the statistical significance score (P-value) of the comparison between coherent data | 
|  | 677     from two datasets. The data is supposed to, in both datasets: | 
|  | 678     - be related to the same reaction ID; | 
|  | 679     - be ordered by sample, such that the item at position i in both lists is related to the | 
|  | 680       same sample or cell line. | 
|  | 681 | 
|  | 682     Args: | 
|  | 683         dataset1Data : data from the 1st dataset. | 
|  | 684         dataset2Data : data from the 2nd dataset. | 
|  | 685 | 
|  | 686     Returns: | 
|  | 687         tuple: (P-value, Z-score) | 
|  | 688             - P-value from a Kolmogorov-Smirnov test on the provided data. | 
|  | 689             - Z-score of the difference between means of the two datasets. | 
|  | 690     """ | 
|  | 691     # Perform Kolmogorov-Smirnov test | 
|  | 692     ks_statistic, p_value = st.ks_2samp(dataset1Data, dataset2Data) | 
|  | 693 | 
|  | 694     # Calculate means and standard deviations | 
|  | 695     mean1 = np.mean(dataset1Data) | 
|  | 696     mean2 = np.mean(dataset2Data) | 
|  | 697     std1 = np.std(dataset1Data, ddof=1) | 
|  | 698     std2 = np.std(dataset2Data, ddof=1) | 
|  | 699 | 
|  | 700     n1 = len(dataset1Data) | 
|  | 701     n2 = len(dataset2Data) | 
|  | 702 | 
|  | 703     # Calculate Z-score | 
|  | 704     z_score = (mean1 - mean2) / np.sqrt((std1**2 / n1) + (std2**2 / n2)) | 
|  | 705 | 
|  | 706     return p_value, z_score | 
|  | 707 | 
|  | 708 def compareDatasetPair(dataset1Data :List[List[float]], dataset2Data :List[List[float]], ids :List[str]) -> Tuple[Dict[str, List[Union[float, FoldChange]]], float]: | 
|  | 709     #TODO: the following code still suffers from "dumbvarnames-osis" | 
|  | 710     tmp :Dict[str, List[Union[float, FoldChange]]] = {} | 
|  | 711     count   = 0 | 
|  | 712     max_z_score = 0 | 
|  | 713 | 
|  | 714     for l1, l2 in zip(dataset1Data, dataset2Data): | 
|  | 715         reactId = ids[count] | 
|  | 716         count += 1 | 
|  | 717         if not reactId: continue # we skip ids that have already been processed | 
|  | 718 | 
|  | 719         try: | 
|  | 720             p_value, z_score = computePValue(l1, l2) | 
|  | 721             avg1 = sum(l1) / len(l1) | 
|  | 722             avg2 = sum(l2) / len(l2) | 
|  | 723             avg = fold_change(avg1, avg2) | 
|  | 724             if not isinstance(z_score, str) and max_z_score < abs(z_score): max_z_score = abs(z_score) | 
|  | 725             tmp[reactId] = [float(p_value), avg, z_score, avg1, avg2] | 
|  | 726         except (TypeError, ZeroDivisionError): continue | 
|  | 727 | 
|  | 728     return tmp, max_z_score | 
|  | 729 | 
|  | 730 def computeEnrichment(metabMap :ET.ElementTree, class_pat :Dict[str, List[List[float]]], ids :List[str]) -> None: | 
|  | 731     """ | 
|  | 732     Compares clustered data based on a given comparison mode and applies enrichment-based styling on the | 
|  | 733     provided metabolic map. | 
|  | 734 | 
|  | 735     Args: | 
|  | 736         metabMap : SVG map to modify. | 
|  | 737         class_pat : the clustered data. | 
|  | 738         ids : ids for data association. | 
|  | 739 | 
|  | 740 | 
|  | 741     Returns: | 
|  | 742         None | 
|  | 743 | 
|  | 744     Raises: | 
|  | 745         sys.exit : if there are less than 2 classes for comparison | 
|  | 746 | 
|  | 747     Side effects: | 
|  | 748         metabMap : mut | 
|  | 749         ids : mut | 
|  | 750     """ | 
|  | 751     class_pat = { k.strip() : v for k, v in class_pat.items() } | 
|  | 752     #TODO: simplfy this stuff vvv and stop using sys.exit (raise the correct utils error) | 
|  | 753     if (not class_pat) or (len(class_pat.keys()) < 2): sys.exit('Execution aborted: classes provided for comparisons are less than two\n') | 
|  | 754 | 
|  | 755     if ARGS.comparison == "manyvsmany": | 
|  | 756         for i, j in it.combinations(class_pat.keys(), 2): | 
|  | 757             #TODO: these 2 functions are always called in pair and in this order and need common data, | 
|  | 758             # some clever refactoring would be appreciated. | 
|  | 759             comparisonDict, max_z_score = compareDatasetPair(class_pat.get(i), class_pat.get(j), ids) | 
|  | 760             temp_thingsInCommon(comparisonDict, metabMap, max_z_score, i, j) | 
|  | 761 | 
|  | 762     elif ARGS.comparison == "onevsrest": | 
|  | 763         for single_cluster in class_pat.keys(): | 
|  | 764             t :List[List[List[float]]] = [] | 
|  | 765             for k in class_pat.keys(): | 
|  | 766                 if k != single_cluster: | 
|  | 767                    t.append(class_pat.get(k)) | 
|  | 768 | 
|  | 769             rest :List[List[float]] = [] | 
|  | 770             for i in t: | 
|  | 771                 rest = rest + i | 
|  | 772 | 
|  | 773             comparisonDict, max_z_score = compareDatasetPair(class_pat.get(single_cluster), rest, ids) | 
|  | 774             temp_thingsInCommon(comparisonDict, metabMap, max_z_score, single_cluster) | 
|  | 775 | 
|  | 776     elif ARGS.comparison == "onevsmany": | 
|  | 777         controlItems = class_pat.get(ARGS.control) | 
|  | 778         for otherDataset in class_pat.keys(): | 
|  | 779             if otherDataset == ARGS.control: continue | 
|  | 780 | 
|  | 781             comparisonDict, max_z_score = compareDatasetPair(controlItems, class_pat.get(otherDataset), ids) | 
|  | 782             temp_thingsInCommon(comparisonDict, metabMap, max_z_score, ARGS.control, otherDataset) | 
|  | 783 | 
|  | 784 def createOutputMaps(dataset1Name :str, dataset2Name :str, core_map :ET.ElementTree) -> None: | 
|  | 785     svgFilePath = buildOutputPath(dataset1Name, dataset2Name, details = "SVG Map", ext = utils.FileFormat.SVG) | 
|  | 786     utils.writeSvg(svgFilePath, core_map) | 
|  | 787 | 
|  | 788     if ARGS.generate_pdf: | 
|  | 789         pngPath = buildOutputPath(dataset1Name, dataset2Name, details = "PNG Map", ext = utils.FileFormat.PNG) | 
|  | 790         pdfPath = buildOutputPath(dataset1Name, dataset2Name, details = "PDF Map", ext = utils.FileFormat.PDF) | 
|  | 791         convert_to_pdf(svgFilePath, pngPath, pdfPath) | 
|  | 792 | 
|  | 793     if not ARGS.generate_svg: os.remove(svgFilePath.show()) | 
|  | 794 | 
|  | 795 ClassPat = Dict[str, List[List[float]]] | 
|  | 796 def getClassesAndIdsFromDatasets(datasetsPaths :List[str], datasetPath :str, classPath :str, names :List[str]) -> Tuple[List[str], ClassPat]: | 
|  | 797     # TODO: I suggest creating dicts with ids as keys instead of keeping class_pat and ids separate, | 
|  | 798     # for the sake of everyone's sanity. | 
|  | 799     class_pat :ClassPat = {} | 
|  | 800     if ARGS.option == 'datasets': | 
|  | 801         num = 1 #TODO: the dataset naming function could be a generator | 
|  | 802         for path, name in zip(datasetsPaths, names): | 
|  | 803             name = name_dataset(name, num) | 
|  | 804             resolve_rules_float, ids = getDatasetValues(path, name) | 
|  | 805             if resolve_rules_float != None: | 
|  | 806                 class_pat[name] = list(map(list, zip(*resolve_rules_float.values()))) | 
|  | 807 | 
|  | 808             num += 1 | 
|  | 809 | 
|  | 810     elif ARGS.option == "dataset_class": | 
|  | 811         classes = read_dataset(classPath, "class") | 
|  | 812         classes = classes.astype(str) | 
|  | 813 | 
|  | 814         resolve_rules_float, ids = getDatasetValues(datasetPath, "Dataset Class (not actual name)") | 
|  | 815         if resolve_rules_float != None: class_pat = split_class(classes, resolve_rules_float) | 
|  | 816 | 
|  | 817     return ids, class_pat | 
|  | 818     #^^^ TODO: this could be a match statement over an enum, make it happen future marea dev with python 3.12! (it's why I kept the ifs) | 
|  | 819 | 
|  | 820 #TODO: create these damn args as FilePath objects | 
|  | 821 def getDatasetValues(datasetPath :str, datasetName :str) -> Tuple[ClassPat, List[str]]: | 
|  | 822     """ | 
|  | 823     Opens the dataset at the given path and extracts the values (expected nullable numerics) and the IDs. | 
|  | 824 | 
|  | 825     Args: | 
|  | 826         datasetPath : path to the dataset | 
|  | 827         datasetName (str): dataset name, used in error reporting | 
|  | 828 | 
|  | 829     Returns: | 
|  | 830         Tuple[ClassPat, List[str]]: values and IDs extracted from the dataset | 
|  | 831     """ | 
|  | 832     dataset = read_dataset(datasetPath, datasetName) | 
|  | 833     IDs = pd.Series.tolist(dataset.iloc[:, 0].astype(str)) | 
|  | 834 | 
|  | 835     dataset = dataset.drop(dataset.columns[0], axis = "columns").to_dict("list") | 
|  | 836     return { id : list(map(utils.Float("Dataset values, not an argument"), values)) for id, values in dataset.items() }, IDs | 
|  | 837 | 
|  | 838 def rgb_to_hex(rgb): | 
|  | 839     """ | 
|  | 840     Convert RGB values (0-1 range) to hexadecimal color format. | 
|  | 841 | 
|  | 842     Args: | 
|  | 843         rgb (numpy.ndarray): An array of RGB color components (in the range [0, 1]). | 
|  | 844 | 
|  | 845     Returns: | 
|  | 846         str: The color in hexadecimal format (e.g., '#ff0000' for red). | 
|  | 847     """ | 
|  | 848     # Convert RGB values (0-1 range) to hexadecimal format | 
|  | 849     rgb = (np.array(rgb) * 255).astype(int) | 
|  | 850     return '#{:02x}{:02x}{:02x}'.format(rgb[0], rgb[1], rgb[2]) | 
|  | 851 | 
|  | 852 | 
|  | 853 | 
|  | 854 def save_colormap_image(min_value: float, max_value: float, path: utils.FilePath, colorMap:str="viridis"): | 
|  | 855     """ | 
|  | 856     Create and save an image of the colormap showing the gradient and its range. | 
|  | 857 | 
|  | 858     Args: | 
|  | 859         min_value (float): The minimum value of the colormap range. | 
|  | 860         max_value (float): The maximum value of the colormap range. | 
|  | 861         filename (str): The filename for saving the image. | 
|  | 862     """ | 
|  | 863 | 
|  | 864     # Create a colormap using matplotlib | 
|  | 865     cmap = plt.get_cmap(colorMap) | 
|  | 866 | 
|  | 867     # Create a figure and axis | 
|  | 868     fig, ax = plt.subplots(figsize=(6, 1)) | 
|  | 869     fig.subplots_adjust(bottom=0.5) | 
|  | 870 | 
|  | 871     # Create a gradient image | 
|  | 872     gradient = np.linspace(0, 1, 256) | 
|  | 873     gradient = np.vstack((gradient, gradient)) | 
|  | 874 | 
|  | 875     # Add min and max value annotations | 
|  | 876     ax.text(0, 0.5, f'{np.round(min_value, 3)}', va='center', ha='right', transform=ax.transAxes, fontsize=12, color='black') | 
|  | 877     ax.text(1, 0.5, f'{np.round(max_value, 3)}', va='center', ha='left', transform=ax.transAxes, fontsize=12, color='black') | 
|  | 878 | 
|  | 879 | 
|  | 880     # Display the gradient image | 
|  | 881     ax.imshow(gradient, aspect='auto', cmap=cmap) | 
|  | 882     ax.set_axis_off() | 
|  | 883 | 
|  | 884     # Save the image | 
|  | 885     plt.savefig(path.show(), bbox_inches='tight', pad_inches=0) | 
|  | 886     plt.close() | 
|  | 887     pass | 
|  | 888 | 
|  | 889 def min_nonzero_abs(arr): | 
|  | 890     # Flatten the array and filter out zeros, then find the minimum of the remaining values | 
|  | 891     non_zero_elements = np.abs(arr)[np.abs(arr) > 0] | 
|  | 892     return np.min(non_zero_elements) if non_zero_elements.size > 0 else None | 
|  | 893 | 
|  | 894 def computeEnrichmentMeanMedian(metabMap: ET.ElementTree, class_pat: Dict[str, List[List[float]]], ids: List[str], colormap:str) -> None: | 
|  | 895     """ | 
|  | 896     Compute and visualize the metabolic map based on mean and median of the input fluxes. | 
|  | 897     The fluxes are normalised across classes/datasets and visualised using the given colormap. | 
|  | 898 | 
|  | 899     Args: | 
|  | 900         metabMap (ET.ElementTree): An XML tree representing the metabolic map. | 
|  | 901         class_pat (Dict[str, List[List[float]]]): A dictionary where keys are class names and values are lists of enrichment values. | 
|  | 902         ids (List[str]): A list of reaction IDs to be used for coloring arrows. | 
|  | 903 | 
|  | 904     Returns: | 
|  | 905         None | 
|  | 906     """ | 
|  | 907     # Create copies only if they are needed | 
|  | 908     metabMap_mean = copy.deepcopy(metabMap) | 
|  | 909     metabMap_median = copy.deepcopy(metabMap) | 
|  | 910 | 
|  | 911     # Compute medians and means | 
|  | 912     medians = {key: np.round(np.median(np.array(value), axis=1), 6) for key, value in class_pat.items()} | 
|  | 913     means = {key: np.round(np.mean(np.array(value), axis=1),6) for key, value in class_pat.items()} | 
|  | 914 | 
|  | 915     # Normalize medians and means | 
|  | 916     max_flux_medians = max(np.max(np.abs(arr)) for arr in medians.values()) | 
|  | 917     max_flux_means = max(np.max(np.abs(arr)) for arr in means.values()) | 
|  | 918 | 
|  | 919     min_flux_medians = min(min_nonzero_abs(arr) for arr in medians.values()) | 
|  | 920     min_flux_means = min(min_nonzero_abs(arr) for arr in means.values()) | 
|  | 921 | 
|  | 922     medians = {key: median/max_flux_medians for key, median in medians.items()} | 
|  | 923     means = {key: mean/max_flux_means for key, mean in means.items()} | 
|  | 924 | 
|  | 925     save_colormap_image(min_flux_medians, max_flux_medians, utils.FilePath("Color map median", ext=utils.FileFormat.PNG, prefix="result"), colormap) | 
|  | 926     save_colormap_image(min_flux_means, max_flux_means, utils.FilePath("Color map mean", ext=utils.FileFormat.PNG, prefix="result"), colormap) | 
|  | 927 | 
|  | 928     cmap = plt.get_cmap(colormap) | 
|  | 929 | 
|  | 930     for key in class_pat: | 
|  | 931         # Create color mappings for median and mean | 
|  | 932         colors_median = { | 
|  | 933             rxn_id: rgb_to_hex(cmap(abs(medians[key][i]))) if medians[key][i] != 0 else '#bebebe'  #grey blocked | 
|  | 934             for i, rxn_id in enumerate(ids) | 
|  | 935         } | 
|  | 936 | 
|  | 937         colors_mean = { | 
|  | 938             rxn_id: rgb_to_hex(cmap(abs(means[key][i]))) if means[key][i] != 0 else '#bebebe'  #grey blocked | 
|  | 939             for i, rxn_id in enumerate(ids) | 
|  | 940         } | 
|  | 941 | 
|  | 942         for i, rxn_id in enumerate(ids): | 
|  | 943             isNegative = medians[key][i] < 0 | 
|  | 944 | 
|  | 945             # Apply median arrows | 
|  | 946             apply_arrow(metabMap_median, rxn_id, colors_median[rxn_id], isNegative) | 
|  | 947 | 
|  | 948             isNegative = means[key][i] < 0 | 
|  | 949             # Apply mean arrows | 
|  | 950             apply_arrow(metabMap_mean, rxn_id, colors_mean[rxn_id], isNegative) | 
|  | 951 | 
|  | 952         # Save and convert the SVG files | 
|  | 953         save_and_convert(metabMap_mean, "mean", key) | 
|  | 954         save_and_convert(metabMap_median, "median", key) | 
|  | 955 | 
|  | 956 def apply_arrow(metabMap, rxn_id, color, isNegative): | 
|  | 957     """ | 
|  | 958     Apply an arrow to a specific reaction in the metabolic map with a given color. | 
|  | 959 | 
|  | 960     Args: | 
|  | 961         metabMap (ET.ElementTree): An XML tree representing the metabolic map. | 
|  | 962         rxn_id (str): The ID of the reaction to which the arrow will be applied. | 
|  | 963         color (str): The color of the arrow in hexadecimal format. | 
|  | 964 | 
|  | 965     Returns: | 
|  | 966         None | 
|  | 967     """ | 
|  | 968     arrow = Arrow(width=5, col=color) | 
|  | 969     arrow.styleReactionElementsMeanMedian(metabMap, rxn_id, isNegative) | 
|  | 970     pass | 
|  | 971 | 
|  | 972 def save_and_convert(metabMap, map_type, key): | 
|  | 973     """ | 
|  | 974     Save the metabolic map as an SVG file and optionally convert it to PNG and PDF formats. | 
|  | 975 | 
|  | 976     Args: | 
|  | 977         metabMap (ET.ElementTree): An XML tree representing the metabolic map. | 
|  | 978         map_type (str): The type of map ('mean' or 'median'). | 
|  | 979         key (str): The key identifying the specific map. | 
|  | 980 | 
|  | 981     Returns: | 
|  | 982         None | 
|  | 983     """ | 
|  | 984     svgFilePath = utils.FilePath(f"SVG Map {map_type} - {key}", ext=utils.FileFormat.SVG, prefix="result") | 
|  | 985     utils.writeSvg(svgFilePath, metabMap) | 
|  | 986     if ARGS.generate_pdf: | 
|  | 987         pngPath = utils.FilePath(f"PNG Map {map_type} - {key}", ext=utils.FileFormat.PNG, prefix="result") | 
|  | 988         pdfPath = utils.FilePath(f"PDF Map {map_type} - {key}", ext=utils.FileFormat.PDF, prefix="result") | 
|  | 989         convert_to_pdf(svgFilePath, pngPath, pdfPath) | 
|  | 990     if not ARGS.generate_svg: | 
|  | 991         os.remove(svgFilePath.show()) | 
|  | 992 | 
|  | 993 | 
|  | 994 | 
|  | 995 | 
|  | 996 ############################ MAIN ############################################# | 
|  | 997 def main() -> None: | 
|  | 998     """ | 
|  | 999     Initializes everything and sets the program in motion based on the fronted input arguments. | 
|  | 1000 | 
|  | 1001     Returns: | 
|  | 1002         None | 
|  | 1003 | 
|  | 1004     Raises: | 
|  | 1005         sys.exit : if a user-provided custom map is in the wrong format (ET.XMLSyntaxError, ET.XMLSchemaParseError) | 
|  | 1006     """ | 
|  | 1007 | 
|  | 1008     global ARGS | 
|  | 1009     ARGS = process_args() | 
|  | 1010 | 
|  | 1011     if os.path.isdir('result') == False: os.makedirs('result') | 
|  | 1012 | 
|  | 1013     core_map :ET.ElementTree = ARGS.choice_map.getMap( | 
|  | 1014         ARGS.tool_dir, | 
|  | 1015         utils.FilePath.fromStrPath(ARGS.custom_map) if ARGS.custom_map else None) | 
|  | 1016     # TODO: ^^^ ugly but fine for now, the argument is None if the model isn't custom because no file was given. | 
|  | 1017     # getMap will None-check the customPath and panic when the model IS custom but there's no file (good). A cleaner | 
|  | 1018     # solution can be derived from my comment in FilePath.fromStrPath | 
|  | 1019 | 
|  | 1020     ids, class_pat = getClassesAndIdsFromDatasets(ARGS.input_datas_fluxes, ARGS.input_data_fluxes, ARGS.input_class_fluxes, ARGS.names_fluxes) | 
|  | 1021 | 
|  | 1022     if(ARGS.choice_map == utils.Model.HMRcore): | 
|  | 1023         temp_map = utils.Model.HMRcore_no_legend | 
|  | 1024         computeEnrichmentMeanMedian(temp_map.getMap(ARGS.tool_dir), class_pat, ids, ARGS.color_map) | 
|  | 1025     elif(ARGS.choice_map == utils.Model.ENGRO2): | 
|  | 1026         temp_map = utils.Model.ENGRO2_no_legend | 
|  | 1027         computeEnrichmentMeanMedian(temp_map.getMap(ARGS.tool_dir), class_pat, ids, ARGS.color_map) | 
|  | 1028     else: | 
|  | 1029         computeEnrichmentMeanMedian(core_map, class_pat, ids, ARGS.color_map) | 
|  | 1030 | 
|  | 1031 | 
|  | 1032     computeEnrichment(core_map, class_pat, ids) | 
|  | 1033 | 
|  | 1034     # create output files: TODO: this is the same comparison happening in "maps", find a better way to organize this | 
|  | 1035     if ARGS.comparison == "manyvsmany": | 
|  | 1036         for i, j in it.combinations(class_pat.keys(), 2): createOutputMaps(i, j, core_map) | 
|  | 1037         return | 
|  | 1038 | 
|  | 1039     if ARGS.comparison == "onevsrest": | 
|  | 1040         for single_cluster in class_pat.keys(): createOutputMaps(single_cluster, "rest", core_map) | 
|  | 1041         return | 
|  | 1042 | 
|  | 1043     for otherDataset in class_pat.keys(): | 
|  | 1044         if otherDataset != ARGS.control: createOutputMaps(i, j, core_map) | 
|  | 1045 | 
|  | 1046     if not ERRORS: return | 
|  | 1047     utils.logWarning( | 
|  | 1048         f"The following reaction IDs were mentioned in the dataset but weren't found in the map: {ERRORS}", | 
|  | 1049         ARGS.out_log) | 
|  | 1050 | 
|  | 1051     print('Execution succeded') | 
|  | 1052 | 
|  | 1053 ############################################################################### | 
|  | 1054 if __name__ == "__main__": | 
|  | 1055     main() |