| 4 | 1 import argparse | 
|  | 2 import utils.general_utils as utils | 
|  | 3 from typing import Optional, List | 
|  | 4 import os | 
|  | 5 import numpy as np | 
|  | 6 import pandas as pd | 
|  | 7 import cobra | 
|  | 8 import utils.CBS_backend as CBS_backend | 
|  | 9 from joblib import Parallel, delayed, cpu_count | 
|  | 10 from cobra.sampling import OptGPSampler | 
|  | 11 import sys | 
|  | 12 | 
|  | 13 ################################# process args ############################### | 
| 147 | 14 def process_args(args :List[str] = None) -> argparse.Namespace: | 
| 4 | 15     """ | 
|  | 16     Processes command-line arguments. | 
|  | 17 | 
|  | 18     Args: | 
|  | 19         args (list): List of command-line arguments. | 
|  | 20 | 
|  | 21     Returns: | 
|  | 22         Namespace: An object containing parsed arguments. | 
|  | 23     """ | 
|  | 24     parser = argparse.ArgumentParser(usage = '%(prog)s [options]', | 
|  | 25                                      description = 'process some value\'s') | 
|  | 26 | 
|  | 27     parser.add_argument('-ol', '--out_log', | 
|  | 28                         help = "Output log") | 
|  | 29 | 
|  | 30     parser.add_argument('-td', '--tool_dir', | 
|  | 31                         type = str, | 
|  | 32                         required = True, | 
|  | 33                         help = 'your tool directory') | 
|  | 34 | 
|  | 35     parser.add_argument('-in', '--input', | 
|  | 36                         required = True, | 
|  | 37                         type=str, | 
|  | 38                         help = 'inputs bounds') | 
|  | 39 | 
|  | 40     parser.add_argument('-ni', '--names', | 
|  | 41                         required = True, | 
|  | 42                         type=str, | 
|  | 43                         help = 'cell names') | 
|  | 44 | 
|  | 45     parser.add_argument( | 
|  | 46         '-ms', '--model_selector', | 
|  | 47         type = utils.Model, default = utils.Model.ENGRO2, choices = [utils.Model.ENGRO2, utils.Model.Custom], | 
|  | 48         help = 'chose which type of model you want use') | 
|  | 49 | 
|  | 50     parser.add_argument("-mo", "--model", type = str) | 
|  | 51 | 
|  | 52     parser.add_argument("-mn", "--model_name", type = str, help = "custom mode name") | 
|  | 53 | 
|  | 54     parser.add_argument('-a', '--algorithm', | 
|  | 55                         type = str, | 
|  | 56                         choices = ['OPTGP', 'CBS'], | 
|  | 57                         required = True, | 
|  | 58                         help = 'choose sampling algorithm') | 
|  | 59 | 
|  | 60     parser.add_argument('-th', '--thinning', | 
|  | 61                         type = int, | 
|  | 62                         default= 100, | 
|  | 63                         required=False, | 
|  | 64                         help = 'choose thinning') | 
|  | 65 | 
|  | 66     parser.add_argument('-ns', '--n_samples', | 
|  | 67                         type = int, | 
|  | 68                         required = True, | 
|  | 69                         help = 'choose how many samples') | 
|  | 70 | 
|  | 71     parser.add_argument('-sd', '--seed', | 
|  | 72                         type = int, | 
|  | 73                         required = True, | 
|  | 74                         help = 'seed') | 
|  | 75 | 
|  | 76     parser.add_argument('-nb', '--n_batches', | 
|  | 77                         type = int, | 
|  | 78                         required = True, | 
|  | 79                         help = 'choose how many batches') | 
|  | 80 | 
|  | 81     parser.add_argument('-ot', '--output_type', | 
|  | 82                         type = str, | 
|  | 83                         required = True, | 
|  | 84                         help = 'output type') | 
|  | 85 | 
|  | 86     parser.add_argument('-ota', '--output_type_analysis', | 
|  | 87                         type = str, | 
|  | 88                         required = False, | 
|  | 89                         help = 'output type analysis') | 
|  | 90 | 
| 159 | 91     parser.add_argument('-idop', '--output_path', | 
|  | 92                         type = str, | 
|  | 93                         default='flux_simulation', | 
|  | 94                         help = 'output path for maps') | 
| 147 | 95 | 
|  | 96     ARGS = parser.parse_args(args) | 
| 4 | 97     return ARGS | 
|  | 98 | 
|  | 99 ########################### warning ########################################### | 
|  | 100 def warning(s :str) -> None: | 
|  | 101     """ | 
|  | 102     Log a warning message to an output log file and print it to the console. | 
|  | 103 | 
|  | 104     Args: | 
|  | 105         s (str): The warning message to be logged and printed. | 
|  | 106 | 
|  | 107     Returns: | 
|  | 108       None | 
|  | 109     """ | 
|  | 110     with open(ARGS.out_log, 'a') as log: | 
|  | 111         log.write(s + "\n\n") | 
|  | 112     print(s) | 
|  | 113 | 
|  | 114 | 
|  | 115 def write_to_file(dataset: pd.DataFrame, name: str, keep_index:bool=False)->None: | 
|  | 116     dataset.index.name = 'Reactions' | 
| 161 | 117     dataset.to_csv(ARGS.output_path + "/" + name + ".csv", sep = '\t', index = keep_index) | 
| 4 | 118 | 
|  | 119 ############################ dataset input #################################### | 
|  | 120 def read_dataset(data :str, name :str) -> pd.DataFrame: | 
|  | 121     """ | 
|  | 122     Read a dataset from a CSV file and return it as a pandas DataFrame. | 
|  | 123 | 
|  | 124     Args: | 
|  | 125         data (str): Path to the CSV file containing the dataset. | 
|  | 126         name (str): Name of the dataset, used in error messages. | 
|  | 127 | 
|  | 128     Returns: | 
|  | 129         pandas.DataFrame: DataFrame containing the dataset. | 
|  | 130 | 
|  | 131     Raises: | 
|  | 132         pd.errors.EmptyDataError: If the CSV file is empty. | 
|  | 133         sys.exit: If the CSV file has the wrong format, the execution is aborted. | 
|  | 134     """ | 
|  | 135     try: | 
|  | 136         dataset = pd.read_csv(data, sep = '\t', header = 0, index_col=0, engine='python') | 
|  | 137     except pd.errors.EmptyDataError: | 
|  | 138         sys.exit('Execution aborted: wrong format of ' + name + '\n') | 
|  | 139     if len(dataset.columns) < 2: | 
|  | 140         sys.exit('Execution aborted: wrong format of ' + name + '\n') | 
|  | 141     return dataset | 
|  | 142 | 
|  | 143 | 
|  | 144 | 
|  | 145 def OPTGP_sampler(model:cobra.Model, model_name:str, n_samples:int=1000, thinning:int=100, n_batches:int=1, seed:int=0)-> None: | 
|  | 146     """ | 
|  | 147     Samples from the OPTGP (Optimal Global Perturbation) algorithm and saves the results to CSV files. | 
|  | 148 | 
|  | 149     Args: | 
|  | 150         model (cobra.Model): The COBRA model to sample from. | 
|  | 151         model_name (str): The name of the model, used in naming output files. | 
|  | 152         n_samples (int, optional): Number of samples per batch. Default is 1000. | 
|  | 153         thinning (int, optional): Thinning parameter for the sampler. Default is 100. | 
|  | 154         n_batches (int, optional): Number of batches to run. Default is 1. | 
|  | 155         seed (int, optional): Random seed for reproducibility. Default is 0. | 
|  | 156 | 
|  | 157     Returns: | 
|  | 158         None | 
|  | 159     """ | 
|  | 160 | 
|  | 161     for i in range(0, n_batches): | 
|  | 162         optgp = OptGPSampler(model, thinning, seed) | 
|  | 163         samples = optgp.sample(n_samples) | 
| 161 | 164         samples.to_csv(ARGS.output_path + "/" +  model_name + '_'+ str(i)+'_OPTGP.csv', index=False) | 
| 4 | 165         seed+=1 | 
|  | 166     samplesTotal = pd.DataFrame() | 
|  | 167     for i in range(0, n_batches): | 
| 161 | 168         samples_batch = pd.read_csv(ARGS.output_path + "/"  +  model_name + '_'+ str(i)+'_OPTGP.csv') | 
| 4 | 169         samplesTotal = pd.concat([samplesTotal, samples_batch], ignore_index = True) | 
|  | 170 | 
|  | 171     write_to_file(samplesTotal.T, model_name, True) | 
|  | 172 | 
|  | 173     for i in range(0, n_batches): | 
| 161 | 174         os.remove(ARGS.output_path + "/" +   model_name + '_'+ str(i)+'_OPTGP.csv') | 
| 4 | 175     pass | 
|  | 176 | 
|  | 177 | 
|  | 178 def CBS_sampler(model:cobra.Model, model_name:str, n_samples:int=1000, n_batches:int=1, seed:int=0)-> None: | 
|  | 179     """ | 
|  | 180     Samples using the CBS (Constraint-based Sampling) algorithm and saves the results to CSV files. | 
|  | 181 | 
|  | 182     Args: | 
|  | 183         model (cobra.Model): The COBRA model to sample from. | 
|  | 184         model_name (str): The name of the model, used in naming output files. | 
|  | 185         n_samples (int, optional): Number of samples per batch. Default is 1000. | 
|  | 186         n_batches (int, optional): Number of batches to run. Default is 1. | 
|  | 187         seed (int, optional): Random seed for reproducibility. Default is 0. | 
|  | 188 | 
|  | 189     Returns: | 
|  | 190         None | 
|  | 191     """ | 
|  | 192 | 
|  | 193     df_FVA = cobra.flux_analysis.flux_variability_analysis(model,fraction_of_optimum=0).round(6) | 
|  | 194 | 
|  | 195     df_coefficients = CBS_backend.randomObjectiveFunction(model, n_samples*n_batches, df_FVA, seed=seed) | 
|  | 196 | 
|  | 197     for i in range(0, n_batches): | 
|  | 198         samples = pd.DataFrame(columns =[reaction.id for reaction in model.reactions], index = range(n_samples)) | 
|  | 199         try: | 
|  | 200             CBS_backend.randomObjectiveFunctionSampling(model, n_samples, df_coefficients.iloc[:,i*n_samples:(i+1)*n_samples], samples) | 
|  | 201         except Exception as e: | 
|  | 202             utils.logWarning( | 
|  | 203             "Warning: GLPK solver has failed for " + model_name + ". Trying with COBRA interface. Error:" + str(e), | 
|  | 204             ARGS.out_log) | 
|  | 205             CBS_backend.randomObjectiveFunctionSampling_cobrapy(model, n_samples, df_coefficients.iloc[:,i*n_samples:(i+1)*n_samples], | 
|  | 206                                                     samples) | 
| 161 | 207         utils.logWarning(ARGS.output_path + "/" +  model_name + '_'+ str(i)+'_CBS.csv', ARGS.out_log) | 
|  | 208         samples.to_csv(ARGS.output_path + "/" +  model_name + '_'+ str(i)+'_CBS.csv', index=False) | 
| 4 | 209 | 
|  | 210     samplesTotal = pd.DataFrame() | 
|  | 211     for i in range(0, n_batches): | 
| 161 | 212         samples_batch = pd.read_csv(ARGS.output_path + "/"  +  model_name + '_'+ str(i)+'_CBS.csv') | 
| 4 | 213         samplesTotal = pd.concat([samplesTotal, samples_batch], ignore_index = True) | 
|  | 214 | 
|  | 215     write_to_file(samplesTotal.T, model_name, True) | 
|  | 216 | 
|  | 217     for i in range(0, n_batches): | 
| 161 | 218         os.remove(ARGS.output_path + "/" + model_name + '_'+ str(i)+'_CBS.csv') | 
| 4 | 219     pass | 
|  | 220 | 
|  | 221 | 
|  | 222 def model_sampler(model_input_original:cobra.Model, bounds_path:str, cell_name:str)-> List[pd.DataFrame]: | 
|  | 223     """ | 
|  | 224     Prepares the model with bounds from the dataset and performs sampling and analysis based on the selected algorithm. | 
|  | 225 | 
|  | 226     Args: | 
|  | 227         model_input_original (cobra.Model): The original COBRA model. | 
|  | 228         bounds_path (str): Path to the CSV file containing the bounds dataset. | 
|  | 229         cell_name (str): Name of the cell, used to generate filenames for output. | 
|  | 230 | 
|  | 231     Returns: | 
|  | 232         List[pd.DataFrame]: A list of DataFrames containing statistics and analysis results. | 
|  | 233     """ | 
|  | 234 | 
|  | 235     model_input = model_input_original.copy() | 
|  | 236     bounds_df = read_dataset(bounds_path, "bounds dataset") | 
|  | 237     for rxn_index, row in bounds_df.iterrows(): | 
|  | 238         model_input.reactions.get_by_id(rxn_index).lower_bound = row.lower_bound | 
|  | 239         model_input.reactions.get_by_id(rxn_index).upper_bound = row.upper_bound | 
|  | 240 | 
| 208 | 241     #name = '.'.join(cell_name.rsplit('.', 1)[:-1]) | 
|  | 242     name = cell_name | 
| 4 | 243 | 
|  | 244     if ARGS.algorithm == 'OPTGP': | 
|  | 245         OPTGP_sampler(model_input, name, ARGS.n_samples, ARGS.thinning, ARGS.n_batches, ARGS.seed) | 
|  | 246 | 
|  | 247     elif ARGS.algorithm == 'CBS': | 
|  | 248         CBS_sampler(model_input,  name, ARGS.n_samples, ARGS.n_batches, ARGS.seed) | 
|  | 249 | 
|  | 250     df_mean, df_median, df_quantiles = fluxes_statistics(name, ARGS.output_types) | 
|  | 251 | 
|  | 252     if("fluxes" not in ARGS.output_types): | 
| 161 | 253         os.remove(ARGS.output_path + "/"  +  name + '.csv') | 
| 4 | 254 | 
|  | 255     returnList = [] | 
|  | 256     returnList.append(df_mean) | 
|  | 257     returnList.append(df_median) | 
|  | 258     returnList.append(df_quantiles) | 
|  | 259 | 
|  | 260     df_pFBA, df_FVA, df_sensitivity = fluxes_analysis(model_input, name, ARGS.output_type_analysis) | 
|  | 261 | 
|  | 262     if("pFBA" in ARGS.output_type_analysis): | 
|  | 263         returnList.append(df_pFBA) | 
|  | 264     if("FVA" in ARGS.output_type_analysis): | 
|  | 265         returnList.append(df_FVA) | 
|  | 266     if("sensitivity" in ARGS.output_type_analysis): | 
|  | 267         returnList.append(df_sensitivity) | 
|  | 268 | 
|  | 269     return returnList | 
|  | 270 | 
|  | 271 def fluxes_statistics(model_name: str,  output_types:List)-> List[pd.DataFrame]: | 
|  | 272     """ | 
|  | 273     Computes statistics (mean, median, quantiles) for the fluxes. | 
|  | 274 | 
|  | 275     Args: | 
|  | 276         model_name (str): Name of the model, used in filename for input. | 
|  | 277         output_types (List[str]): Types of statistics to compute (mean, median, quantiles). | 
|  | 278 | 
|  | 279     Returns: | 
|  | 280         List[pd.DataFrame]: List of DataFrames containing mean, median, and quantiles statistics. | 
|  | 281     """ | 
|  | 282 | 
|  | 283     df_mean = pd.DataFrame() | 
|  | 284     df_median= pd.DataFrame() | 
|  | 285     df_quantiles= pd.DataFrame() | 
|  | 286 | 
| 161 | 287     df_samples = pd.read_csv(ARGS.output_path + "/"  +  model_name + '.csv', sep = '\t', index_col = 0).T | 
| 4 | 288     df_samples = df_samples.round(8) | 
|  | 289 | 
|  | 290     for output_type in output_types: | 
|  | 291         if(output_type == "mean"): | 
|  | 292             df_mean = df_samples.mean() | 
|  | 293             df_mean = df_mean.to_frame().T | 
|  | 294             df_mean = df_mean.reset_index(drop=True) | 
|  | 295             df_mean.index = [model_name] | 
|  | 296         elif(output_type == "median"): | 
|  | 297             df_median = df_samples.median() | 
|  | 298             df_median = df_median.to_frame().T | 
|  | 299             df_median = df_median.reset_index(drop=True) | 
|  | 300             df_median.index = [model_name] | 
|  | 301         elif(output_type == "quantiles"): | 
|  | 302             newRow = [] | 
|  | 303             cols = [] | 
|  | 304             for rxn in df_samples.columns: | 
|  | 305                 quantiles = df_samples[rxn].quantile([0.25, 0.50, 0.75]) | 
|  | 306                 newRow.append(quantiles[0.25]) | 
|  | 307                 cols.append(rxn + "_q1") | 
|  | 308                 newRow.append(quantiles[0.5]) | 
|  | 309                 cols.append(rxn + "_q2") | 
|  | 310                 newRow.append(quantiles[0.75]) | 
|  | 311                 cols.append(rxn + "_q3") | 
|  | 312             df_quantiles = pd.DataFrame(columns=cols) | 
|  | 313             df_quantiles.loc[0] = newRow | 
|  | 314             df_quantiles = df_quantiles.reset_index(drop=True) | 
|  | 315             df_quantiles.index = [model_name] | 
|  | 316 | 
|  | 317     return df_mean, df_median, df_quantiles | 
|  | 318 | 
|  | 319 def fluxes_analysis(model:cobra.Model,  model_name:str, output_types:List)-> List[pd.DataFrame]: | 
|  | 320     """ | 
|  | 321     Performs flux analysis including pFBA, FVA, and sensitivity analysis. | 
|  | 322 | 
|  | 323     Args: | 
|  | 324         model (cobra.Model): The COBRA model to analyze. | 
|  | 325         model_name (str): Name of the model, used in filenames for output. | 
|  | 326         output_types (List[str]): Types of analysis to perform (pFBA, FVA, sensitivity). | 
|  | 327 | 
|  | 328     Returns: | 
|  | 329         List[pd.DataFrame]: List of DataFrames containing pFBA, FVA, and sensitivity analysis results. | 
|  | 330     """ | 
|  | 331 | 
|  | 332     df_pFBA = pd.DataFrame() | 
|  | 333     df_FVA= pd.DataFrame() | 
|  | 334     df_sensitivity= pd.DataFrame() | 
|  | 335 | 
|  | 336     for output_type in output_types: | 
|  | 337         if(output_type == "pFBA"): | 
|  | 338             model.objective = "Biomass" | 
|  | 339             solution = cobra.flux_analysis.pfba(model) | 
|  | 340             fluxes = solution.fluxes | 
|  | 341             df_pFBA.loc[0,[rxn._id for rxn in model.reactions]] = fluxes.tolist() | 
|  | 342             df_pFBA = df_pFBA.reset_index(drop=True) | 
|  | 343             df_pFBA.index = [model_name] | 
|  | 344             df_pFBA = df_pFBA.astype(float).round(6) | 
|  | 345         elif(output_type == "FVA"): | 
|  | 346             fva = cobra.flux_analysis.flux_variability_analysis(model, fraction_of_optimum=0, processes=1).round(8) | 
|  | 347             columns = [] | 
|  | 348             for rxn in fva.index.to_list(): | 
|  | 349                 columns.append(rxn + "_min") | 
|  | 350                 columns.append(rxn + "_max") | 
|  | 351             df_FVA= pd.DataFrame(columns = columns) | 
|  | 352             for index_rxn, row in fva.iterrows(): | 
|  | 353                 df_FVA.loc[0, index_rxn+ "_min"] = fva.loc[index_rxn, "minimum"] | 
|  | 354                 df_FVA.loc[0, index_rxn+ "_max"] = fva.loc[index_rxn, "maximum"] | 
|  | 355             df_FVA = df_FVA.reset_index(drop=True) | 
|  | 356             df_FVA.index = [model_name] | 
|  | 357             df_FVA = df_FVA.astype(float).round(6) | 
|  | 358         elif(output_type == "sensitivity"): | 
|  | 359             model.objective = "Biomass" | 
|  | 360             solution_original = model.optimize().objective_value | 
|  | 361             reactions = model.reactions | 
|  | 362             single = cobra.flux_analysis.single_reaction_deletion(model) | 
|  | 363             newRow = [] | 
|  | 364             df_sensitivity = pd.DataFrame(columns = [rxn.id for rxn in reactions], index = [model_name]) | 
|  | 365             for rxn in reactions: | 
|  | 366                 newRow.append(single.knockout[rxn.id].growth.values[0]/solution_original) | 
|  | 367             df_sensitivity.loc[model_name] = newRow | 
|  | 368             df_sensitivity = df_sensitivity.astype(float).round(6) | 
|  | 369     return df_pFBA, df_FVA, df_sensitivity | 
|  | 370 | 
|  | 371 ############################# main ########################################### | 
| 147 | 372 def main(args :List[str] = None) -> None: | 
| 4 | 373     """ | 
|  | 374     Initializes everything and sets the program in motion based on the fronted input arguments. | 
|  | 375 | 
|  | 376     Returns: | 
|  | 377         None | 
|  | 378     """ | 
|  | 379 | 
|  | 380     num_processors = cpu_count() | 
|  | 381 | 
|  | 382     global ARGS | 
| 147 | 383     ARGS = process_args(args) | 
| 158 | 384 | 
| 159 | 385     if not os.path.exists(ARGS.output_path): | 
|  | 386         os.makedirs(ARGS.output_path) | 
| 4 | 387 | 
|  | 388     model_type :utils.Model = ARGS.model_selector | 
|  | 389     if model_type is utils.Model.Custom: | 
|  | 390         model = model_type.getCOBRAmodel(customPath = utils.FilePath.fromStrPath(ARGS.model), customExtension = utils.FilePath.fromStrPath(ARGS.model_name).ext) | 
|  | 391     else: | 
|  | 392         model = model_type.getCOBRAmodel(toolDir=ARGS.tool_dir) | 
|  | 393 | 
|  | 394     ARGS.bounds = ARGS.input.split(",") | 
|  | 395     ARGS.bounds_name = ARGS.names.split(",") | 
|  | 396     ARGS.output_types = ARGS.output_type.split(",") | 
|  | 397     ARGS.output_type_analysis = ARGS.output_type_analysis.split(",") | 
|  | 398 | 
|  | 399 | 
|  | 400     results = Parallel(n_jobs=num_processors)(delayed(model_sampler)(model, bounds_path, cell_name) for bounds_path, cell_name in zip(ARGS.bounds, ARGS.bounds_name)) | 
|  | 401 | 
|  | 402     all_mean = pd.concat([result[0] for result in results], ignore_index=False) | 
|  | 403     all_median = pd.concat([result[1] for result in results], ignore_index=False) | 
|  | 404     all_quantiles = pd.concat([result[2] for result in results], ignore_index=False) | 
|  | 405 | 
|  | 406     if("mean" in ARGS.output_types): | 
|  | 407         all_mean = all_mean.fillna(0.0) | 
|  | 408         all_mean = all_mean.sort_index() | 
|  | 409         write_to_file(all_mean.T, "mean", True) | 
|  | 410 | 
|  | 411     if("median" in ARGS.output_types): | 
|  | 412         all_median = all_median.fillna(0.0) | 
|  | 413         all_median = all_median.sort_index() | 
|  | 414         write_to_file(all_median.T, "median", True) | 
|  | 415 | 
|  | 416     if("quantiles" in ARGS.output_types): | 
|  | 417         all_quantiles = all_quantiles.fillna(0.0) | 
|  | 418         all_quantiles = all_quantiles.sort_index() | 
|  | 419         write_to_file(all_quantiles.T, "quantiles", True) | 
|  | 420 | 
|  | 421     index_result = 3 | 
|  | 422     if("pFBA" in ARGS.output_type_analysis): | 
|  | 423         all_pFBA = pd.concat([result[index_result] for result in results], ignore_index=False) | 
|  | 424         all_pFBA = all_pFBA.sort_index() | 
|  | 425         write_to_file(all_pFBA.T, "pFBA", True) | 
|  | 426         index_result+=1 | 
|  | 427     if("FVA" in ARGS.output_type_analysis): | 
|  | 428         all_FVA= pd.concat([result[index_result] for result in results], ignore_index=False) | 
|  | 429         all_FVA = all_FVA.sort_index() | 
|  | 430         write_to_file(all_FVA.T, "FVA", True) | 
|  | 431         index_result+=1 | 
|  | 432     if("sensitivity" in ARGS.output_type_analysis): | 
|  | 433         all_sensitivity = pd.concat([result[index_result] for result in results], ignore_index=False) | 
|  | 434         all_sensitivity = all_sensitivity.sort_index() | 
|  | 435         write_to_file(all_sensitivity.T, "sensitivity", True) | 
|  | 436 | 
|  | 437     pass | 
|  | 438 | 
|  | 439 ############################################################################## | 
|  | 440 if __name__ == "__main__": | 
|  | 441     main() |