| 4 | 1 from __future__ import division | 
|  | 2 import csv | 
|  | 3 from enum import Enum | 
|  | 4 import re | 
|  | 5 import sys | 
|  | 6 import numpy as np | 
|  | 7 import pandas as pd | 
|  | 8 import itertools as it | 
|  | 9 import scipy.stats as st | 
|  | 10 import lxml.etree as ET | 
|  | 11 import math | 
|  | 12 import utils.general_utils as utils | 
|  | 13 from PIL import Image | 
|  | 14 import os | 
|  | 15 import argparse | 
|  | 16 import pyvips | 
|  | 17 from typing import Tuple, Union, Optional, List, Dict | 
|  | 18 | 
|  | 19 ERRORS = [] | 
|  | 20 ########################## argparse ########################################## | 
|  | 21 ARGS :argparse.Namespace | 
|  | 22 def process_args() -> argparse.Namespace: | 
|  | 23     """ | 
|  | 24     Interfaces the script of a module with its frontend, making the user's choices for various parameters available as values in code. | 
|  | 25 | 
|  | 26     Args: | 
|  | 27         args : Always obtained (in file) from sys.argv | 
|  | 28 | 
|  | 29     Returns: | 
|  | 30         Namespace : An object containing the parsed arguments | 
|  | 31     """ | 
|  | 32     parser = argparse.ArgumentParser( | 
|  | 33         usage = "%(prog)s [options]", | 
|  | 34         description = "process some value's genes to create a comparison's map.") | 
|  | 35 | 
|  | 36     #General: | 
|  | 37     parser.add_argument( | 
|  | 38         '-td', '--tool_dir', | 
|  | 39         type = str, | 
|  | 40         required = True, | 
|  | 41         help = 'your tool directory') | 
|  | 42 | 
|  | 43     parser.add_argument('-on', '--control', type = str) | 
|  | 44     parser.add_argument('-ol', '--out_log', help = "Output log") | 
|  | 45 | 
|  | 46     #Computation details: | 
|  | 47     parser.add_argument( | 
|  | 48         '-co', '--comparison', | 
|  | 49         type = str, | 
|  | 50         default = '1vs1', | 
|  | 51         choices = ['manyvsmany', 'onevsrest', 'onevsmany']) | 
|  | 52 | 
|  | 53     parser.add_argument( | 
|  | 54         '-pv' ,'--pValue', | 
|  | 55         type = float, | 
|  | 56         default = 0.1, | 
|  | 57         help = 'P-Value threshold (default: %(default)s)') | 
|  | 58 | 
|  | 59     parser.add_argument( | 
|  | 60         '-fc', '--fChange', | 
|  | 61         type = float, | 
|  | 62         default = 1.5, | 
|  | 63         help = 'Fold-Change threshold (default: %(default)s)') | 
|  | 64 | 
|  | 65     parser.add_argument( | 
|  | 66         "-ne", "--net", | 
|  | 67         type = utils.Bool("net"), default = False, | 
|  | 68         help = "choose if you want net enrichment for RPS") | 
|  | 69 | 
|  | 70     parser.add_argument( | 
|  | 71         '-op', '--option', | 
|  | 72         type = str, | 
|  | 73         choices = ['datasets', 'dataset_class'], | 
|  | 74         help='dataset or dataset and class') | 
|  | 75 | 
|  | 76     #RAS: | 
|  | 77     parser.add_argument( | 
|  | 78         "-ra", "--using_RAS", | 
|  | 79         type = utils.Bool("using_RAS"), default = True, | 
|  | 80         help = "choose whether to use RAS datasets.") | 
|  | 81 | 
|  | 82     parser.add_argument( | 
|  | 83         '-id', '--input_data', | 
|  | 84         type = str, | 
|  | 85         help = 'input dataset') | 
|  | 86 | 
|  | 87     parser.add_argument( | 
|  | 88         '-ic', '--input_class', | 
|  | 89         type = str, | 
|  | 90         help = 'sample group specification') | 
|  | 91 | 
|  | 92     parser.add_argument( | 
|  | 93         '-ids', '--input_datas', | 
|  | 94         type = str, | 
|  | 95         nargs = '+', | 
|  | 96         help = 'input datasets') | 
|  | 97 | 
|  | 98     parser.add_argument( | 
|  | 99         '-na', '--names', | 
|  | 100         type = str, | 
|  | 101         nargs = '+', | 
|  | 102         help = 'input names') | 
|  | 103 | 
|  | 104     #RPS: | 
|  | 105     parser.add_argument( | 
|  | 106         "-rp", "--using_RPS", | 
|  | 107         type = utils.Bool("using_RPS"), default = False, | 
|  | 108         help = "choose whether to use RPS datasets.") | 
|  | 109 | 
|  | 110     parser.add_argument( | 
|  | 111         '-idr', '--input_data_rps', | 
|  | 112         type = str, | 
|  | 113         help = 'input dataset rps') | 
|  | 114 | 
|  | 115     parser.add_argument( | 
|  | 116         '-icr', '--input_class_rps', | 
|  | 117         type = str, | 
|  | 118         help = 'sample group specification rps') | 
|  | 119 | 
|  | 120     parser.add_argument( | 
|  | 121         '-idsr', '--input_datas_rps', | 
|  | 122         type = str, | 
|  | 123         nargs = '+', | 
|  | 124         help = 'input datasets rps') | 
|  | 125 | 
|  | 126     parser.add_argument( | 
|  | 127         '-nar', '--names_rps', | 
|  | 128         type = str, | 
|  | 129         nargs = '+', | 
|  | 130         help = 'input names rps') | 
|  | 131 | 
|  | 132     #Output: | 
|  | 133     parser.add_argument( | 
|  | 134         "-gs", "--generate_svg", | 
|  | 135         type = utils.Bool("generate_svg"), default = True, | 
|  | 136         help = "choose whether to use RAS datasets.") | 
|  | 137 | 
|  | 138     parser.add_argument( | 
|  | 139         "-gp", "--generate_pdf", | 
|  | 140         type = utils.Bool("generate_pdf"), default = True, | 
|  | 141         help = "choose whether to use RAS datasets.") | 
|  | 142 | 
|  | 143     parser.add_argument( | 
|  | 144         '-cm', '--custom_map', | 
|  | 145         type = str, | 
|  | 146         help='custom map to use') | 
|  | 147 | 
|  | 148     parser.add_argument( | 
|  | 149         '-mc',  '--choice_map', | 
|  | 150         type = utils.Model, default = utils.Model.HMRcore, | 
|  | 151         choices = [utils.Model.HMRcore, utils.Model.ENGRO2, utils.Model.Custom]) | 
|  | 152 | 
|  | 153     args :argparse.Namespace = parser.parse_args() | 
|  | 154     if args.using_RAS and not args.using_RPS: args.net = False | 
|  | 155 | 
|  | 156     return args | 
|  | 157 | 
|  | 158 ############################ dataset input #################################### | 
|  | 159 def read_dataset(data :str, name :str) -> pd.DataFrame: | 
|  | 160     """ | 
|  | 161     Tries to read the dataset from its path (data) as a tsv and turns it into a DataFrame. | 
|  | 162 | 
|  | 163     Args: | 
|  | 164         data : filepath of a dataset (from frontend input params or literals upon calling) | 
|  | 165         name : name associated with the dataset (from frontend input params or literals upon calling) | 
|  | 166 | 
|  | 167     Returns: | 
|  | 168         pd.DataFrame : dataset in a runtime operable shape | 
|  | 169 | 
|  | 170     Raises: | 
|  | 171         sys.exit : if there's no data (pd.errors.EmptyDataError) or if the dataset has less than 2 columns | 
|  | 172     """ | 
|  | 173     try: | 
|  | 174         dataset = pd.read_csv(data, sep = '\t', header = 0, engine='python') | 
|  | 175     except pd.errors.EmptyDataError: | 
|  | 176         sys.exit('Execution aborted: wrong format of ' + name + '\n') | 
|  | 177     if len(dataset.columns) < 2: | 
|  | 178         sys.exit('Execution aborted: wrong format of ' + name + '\n') | 
|  | 179     return dataset | 
|  | 180 | 
|  | 181 ############################ dataset name ##################################### | 
|  | 182 def name_dataset(name_data :str, count :int) -> str: | 
|  | 183     """ | 
|  | 184     Produces a unique name for a dataset based on what was provided by the user. The default name for any dataset is "Dataset", thus if the user didn't change it this function appends f"_{count}" to make it unique. | 
|  | 185 | 
|  | 186     Args: | 
|  | 187         name_data : name associated with the dataset (from frontend input params) | 
|  | 188         count : counter from 1 to make these names unique (external) | 
|  | 189 | 
|  | 190     Returns: | 
|  | 191         str : the name made unique | 
|  | 192     """ | 
|  | 193     if str(name_data) == 'Dataset': | 
|  | 194         return str(name_data) + '_' + str(count) | 
|  | 195     else: | 
|  | 196         return str(name_data) | 
|  | 197 | 
|  | 198 ############################ map_methods ###################################### | 
|  | 199 FoldChange = Union[float, int, str] # Union[float, Literal[0, "-INF", "INF"]] | 
|  | 200 def fold_change(avg1 :float, avg2 :float) -> FoldChange: | 
|  | 201     """ | 
|  | 202     Calculates the fold change between two gene expression values. | 
|  | 203 | 
|  | 204     Args: | 
|  | 205         avg1 : average expression value from one dataset avg2 : average expression value from the other dataset | 
|  | 206 | 
|  | 207     Returns: | 
|  | 208         FoldChange : | 
|  | 209             0 : when both input values are 0 | 
|  | 210             "-INF" : when avg1 is 0 | 
|  | 211             "INF" : when avg2 is 0 | 
|  | 212             float : for any other combination of values | 
|  | 213     """ | 
|  | 214     if avg1 == 0 and avg2 == 0: | 
|  | 215         return 0 | 
|  | 216     elif avg1 == 0: | 
|  | 217         return '-INF' | 
|  | 218     elif avg2 == 0: | 
|  | 219         return 'INF' | 
|  | 220     else: # (threshold_F_C - 1) / (abs(threshold_F_C) + 1) con threshold_F_C > 1 | 
|  | 221         return (avg1 - avg2) / (abs(avg1) + abs(avg2)) | 
|  | 222 | 
|  | 223 def fix_style(l :str, col :Optional[str], width :str, dash :str) -> str: | 
|  | 224     """ | 
|  | 225     Produces a "fixed" style string to assign to a reaction arrow in the SVG map, assigning style properties to the corresponding values passed as input params. | 
|  | 226 | 
|  | 227     Args: | 
|  | 228         l : current style string of an SVG element | 
|  | 229         col : new value for the "stroke" style property | 
|  | 230         width : new value for the "stroke-width" style property | 
|  | 231         dash : new value for the "stroke-dasharray" style property | 
|  | 232 | 
|  | 233     Returns: | 
|  | 234         str : the fixed style string | 
|  | 235     """ | 
|  | 236     tmp = l.split(';') | 
|  | 237     flag_col = False | 
|  | 238     flag_width = False | 
|  | 239     flag_dash = False | 
|  | 240     for i in range(len(tmp)): | 
|  | 241         if tmp[i].startswith('stroke:'): | 
|  | 242             tmp[i] = 'stroke:' + col | 
|  | 243             flag_col = True | 
|  | 244         if tmp[i].startswith('stroke-width:'): | 
|  | 245             tmp[i] = 'stroke-width:' + width | 
|  | 246             flag_width = True | 
|  | 247         if tmp[i].startswith('stroke-dasharray:'): | 
|  | 248             tmp[i] = 'stroke-dasharray:' + dash | 
|  | 249             flag_dash = True | 
|  | 250     if not flag_col: | 
|  | 251         tmp.append('stroke:' + col) | 
|  | 252     if not flag_width: | 
|  | 253         tmp.append('stroke-width:' + width) | 
|  | 254     if not flag_dash: | 
|  | 255         tmp.append('stroke-dasharray:' + dash) | 
|  | 256     return ';'.join(tmp) | 
|  | 257 | 
|  | 258 # The type of d values is collapsed, losing precision, because the dict containst lists instead of tuples, please fix! | 
|  | 259 def fix_map(d :Dict[str, List[Union[float, FoldChange]]], core_map :ET.ElementTree, threshold_P_V :float, threshold_F_C :float, max_z_score :float) -> ET.ElementTree: | 
|  | 260     """ | 
|  | 261     Edits the selected SVG map based on the p-value and fold change data (d) and some significance thresholds also passed as inputs. | 
|  | 262 | 
|  | 263     Args: | 
|  | 264         d : dictionary mapping a p-value and a fold-change value (values) to each reaction ID as encoded in the SVG map (keys) | 
|  | 265         core_map : SVG map to modify | 
|  | 266         threshold_P_V : threshold for a p-value to be considered significant | 
|  | 267         threshold_F_C : threshold for a fold change value to be considered significant | 
|  | 268         max_z_score : highest z-score (absolute value) | 
|  | 269 | 
|  | 270     Returns: | 
|  | 271         ET.ElementTree : the modified core_map | 
|  | 272 | 
|  | 273     Side effects: | 
|  | 274         core_map : mut | 
|  | 275     """ | 
|  | 276     maxT = 12 | 
|  | 277     minT = 2 | 
|  | 278     grey = '#BEBEBE' | 
|  | 279     blue = '#6495ed' | 
|  | 280     red = '#ecac68' | 
|  | 281     for el in core_map.iter(): | 
|  | 282         el_id = str(el.get('id')) | 
|  | 283         if el_id.startswith('R_'): | 
|  | 284             tmp = d.get(el_id[2:]) | 
|  | 285             if tmp != None: | 
|  | 286                 p_val :float = tmp[0] | 
|  | 287                 f_c = tmp[1] | 
|  | 288                 z_score = tmp[2] | 
|  | 289                 if p_val < threshold_P_V: | 
|  | 290                     if not isinstance(f_c, str): | 
|  | 291                         if abs(f_c) < ((threshold_F_C - 1) / (abs(threshold_F_C) + 1)): # | 
|  | 292                             col = grey | 
|  | 293                             width = str(minT) | 
|  | 294                         else: | 
|  | 295                             if f_c < 0: | 
|  | 296                                 col = blue | 
|  | 297                             elif f_c > 0: | 
|  | 298                                 col = red | 
|  | 299                             width = str(max((abs(z_score) * maxT) / max_z_score, minT)) | 
|  | 300                     else: | 
|  | 301                         if f_c == '-INF': | 
|  | 302                             col = blue | 
|  | 303                         elif f_c == 'INF': | 
|  | 304                             col = red | 
|  | 305                         width = str(maxT) | 
|  | 306                     dash = 'none' | 
|  | 307                 else: | 
|  | 308                     dash = '5,5' | 
|  | 309                     col = grey | 
|  | 310                     width = str(minT) | 
|  | 311                 el.set('style', fix_style(el.get('style', ""), col, width, dash)) | 
|  | 312     return core_map | 
|  | 313 | 
|  | 314 def getElementById(reactionId :str, metabMap :ET.ElementTree) -> utils.Result[ET.Element, utils.Result.ResultErr]: | 
|  | 315     """ | 
|  | 316     Finds any element in the given map with the given ID. ID uniqueness in an svg file is recommended but | 
|  | 317     not enforced, if more than one element with the exact ID is found only the first will be returned. | 
|  | 318 | 
|  | 319     Args: | 
|  | 320         reactionId (str): exact ID of the requested element. | 
|  | 321         metabMap (ET.ElementTree): metabolic map containing the element. | 
|  | 322 | 
|  | 323     Returns: | 
|  | 324         utils.Result[ET.Element, ResultErr]: result of the search, either the first match found or a ResultErr. | 
|  | 325     """ | 
|  | 326     return utils.Result.Ok( | 
|  | 327         f"//*[@id=\"{reactionId}\"]").map( | 
|  | 328         lambda xPath : metabMap.xpath(xPath)[0]).mapErr( | 
|  | 329         lambda _ : utils.Result.ResultErr(f"No elements with ID \"{reactionId}\" found in map")) | 
|  | 330         # ^^^ we shamelessly ignore the contents of the IndexError, it offers nothing to the user. | 
|  | 331 | 
|  | 332 def styleMapElement(element :ET.Element, styleStr :str) -> None: | 
|  | 333     currentStyles :str = element.get("style", "") | 
|  | 334     if re.search(r";stroke:[^;]+;stroke-width:[^;]+;stroke-dasharray:[^;]+$", currentStyles): | 
|  | 335         currentStyles = ';'.join(currentStyles.split(';')[:-3]) | 
|  | 336 | 
|  | 337     element.set("style", currentStyles + styleStr) | 
|  | 338 | 
|  | 339 class ReactionDirection(Enum): | 
|  | 340     Unknown = "" | 
|  | 341     Direct  = "_F" | 
|  | 342     Inverse = "_B" | 
|  | 343 | 
|  | 344     @classmethod | 
|  | 345     def fromDir(cls, s :str) -> "ReactionDirection": | 
|  | 346         # vvv as long as there's so few variants I actually condone the if spam: | 
|  | 347         if s == ReactionDirection.Direct.value:  return ReactionDirection.Direct | 
|  | 348         if s == ReactionDirection.Inverse.value: return ReactionDirection.Inverse | 
|  | 349         return ReactionDirection.Unknown | 
|  | 350 | 
|  | 351     @classmethod | 
|  | 352     def fromReactionId(cls, reactionId :str) -> "ReactionDirection": | 
|  | 353         return ReactionDirection.fromDir(reactionId[-2:]) | 
|  | 354 | 
|  | 355 def getArrowBodyElementId(reactionId :str) -> str: | 
|  | 356     if reactionId.endswith("_RV"): reactionId = reactionId[:-3] #TODO: standardize _RV | 
|  | 357     elif ReactionDirection.fromReactionId(reactionId) is not ReactionDirection.Unknown: reactionId = reactionId[:-2] | 
|  | 358     return f"R_{reactionId}" | 
|  | 359 | 
|  | 360 def getArrowHeadElementId(reactionId :str) -> Tuple[str, str]: | 
|  | 361     """ | 
|  | 362     We attempt extracting the direction information from the provided reaction ID, if unsuccessful we provide the IDs of both directions. | 
|  | 363 | 
|  | 364     Args: | 
|  | 365         reactionId : the provided reaction ID. | 
|  | 366 | 
|  | 367     Returns: | 
|  | 368         Tuple[str, str]: either a single str ID for the correct arrow head followed by an empty string or both options to try. | 
|  | 369     """ | 
|  | 370     if reactionId.endswith("_RV"): reactionId = reactionId[:-3] #TODO: standardize _RV | 
|  | 371     elif ReactionDirection.fromReactionId(reactionId) is not ReactionDirection.Unknown: return reactionId[:-3:-1] + reactionId[:-2], "" | 
|  | 372     return f"F_{reactionId}", f"B_{reactionId}" | 
|  | 373 | 
|  | 374 class ArrowColor(Enum): | 
|  | 375     """ | 
|  | 376     Encodes possible arrow colors based on their meaning in the enrichment process. | 
|  | 377     """ | 
|  | 378     Invalid       = "#BEBEBE" # gray, fold-change under treshold | 
|  | 379     UpRegulated   = "#ecac68" # red, up-regulated reaction | 
|  | 380     DownRegulated = "#6495ed" # blue, down-regulated reaction | 
|  | 381 | 
|  | 382     UpRegulatedInv = "#FF0000" | 
|  | 383     # ^^^ different shade of red (actually orange), up-regulated net value for a reversible reaction with | 
|  | 384     # conflicting enrichment in the two directions. | 
|  | 385 | 
|  | 386     DownRegulatedInv = "#0000FF" | 
|  | 387     # ^^^ different shade of blue (actually purple), down-regulated net value for a reversible reaction with | 
|  | 388     # conflicting enrichment in the two directions. | 
|  | 389 | 
|  | 390     @classmethod | 
|  | 391     def fromFoldChangeSign(cls, foldChange :float, *, useAltColor = False) -> "ArrowColor": | 
|  | 392         colors = (cls.DownRegulated, cls.DownRegulatedInv) if foldChange < 0 else (cls.UpRegulated, cls.UpRegulatedInv) | 
|  | 393         return colors[useAltColor] | 
|  | 394 | 
|  | 395     def __str__(self) -> str: return self.value | 
|  | 396 | 
|  | 397 class Arrow: | 
|  | 398     """ | 
|  | 399     Models the properties of a reaction arrow that change based on enrichment. | 
|  | 400     """ | 
|  | 401     MIN_W = 2 | 
|  | 402     MAX_W = 12 | 
|  | 403 | 
|  | 404     def __init__(self, width :int, col: ArrowColor, *, isDashed = False) -> None: | 
|  | 405         """ | 
|  | 406         (Private) Initializes an instance of Arrow. | 
|  | 407 | 
|  | 408         Args: | 
|  | 409             width : width of the arrow, ideally to be kept within Arrow.MIN_W and Arrow.MAX_W (not enforced). | 
|  | 410             col : color of the arrow. | 
|  | 411             isDashed : whether the arrow should be dashed, meaning the associated pValue resulted not significant. | 
|  | 412 | 
|  | 413         Returns: | 
|  | 414             None : practically, a Arrow instance. | 
|  | 415         """ | 
|  | 416         self.w    = width | 
|  | 417         self.col  = col | 
|  | 418         self.dash = isDashed | 
|  | 419 | 
|  | 420     def applyTo(self, reactionId :str, metabMap :ET.ElementTree, styleStr :str) -> None: | 
|  | 421         if getElementById(reactionId, metabMap).map(lambda el : styleMapElement(el, styleStr)).isErr: | 
|  | 422             ERRORS.append(reactionId) | 
|  | 423 | 
|  | 424     def styleReactionElements(self, metabMap :ET.ElementTree, reactionId :str, *, mindReactionDir = True) -> None: | 
|  | 425         # If We're dealing with RAS data or in general don't care about the direction of the reaction we only style the arrow body | 
|  | 426         if not mindReactionDir: | 
|  | 427             return self.applyTo(getArrowBodyElementId(reactionId), metabMap, self.toStyleStr()) | 
|  | 428 | 
|  | 429         # Now we style the arrow head(s): | 
|  | 430         idOpt1, idOpt2 = getArrowHeadElementId(reactionId) | 
|  | 431         self.applyTo(idOpt1, metabMap, self.toStyleStr(downSizedForTips = True)) | 
|  | 432         if idOpt2: self.applyTo(idOpt2, metabMap, self.toStyleStr(downSizedForTips = True)) | 
|  | 433 | 
|  | 434     def getMapReactionId(self, reactionId :str, mindReactionDir :bool) -> str: | 
|  | 435         """ | 
|  | 436         Computes the reaction ID as encoded in the map for a given reaction ID from the dataset. | 
|  | 437 | 
|  | 438         Args: | 
|  | 439             reactionId: the reaction ID, as encoded in the dataset. | 
|  | 440             mindReactionDir: if True forward (F_) and backward (B_) directions will be encoded in the result. | 
|  | 441 | 
|  | 442         Returns: | 
|  | 443             str : the ID of an arrow's body or tips in the map. | 
|  | 444         """ | 
|  | 445         # we assume the reactionIds also don't encode reaction dir if they don't mind it when styling the map. | 
|  | 446         if not mindReactionDir: return "R_" + reactionId | 
|  | 447 | 
|  | 448         #TODO: this is clearly something we need to make consistent in RPS | 
|  | 449         return (reactionId[:-3:-1] + reactionId[:-2]) if reactionId[:-2] in ["_F", "_B"] else f"F_{reactionId}" # "Pyr_F" --> "F_Pyr" | 
|  | 450 | 
|  | 451     def toStyleStr(self, *, downSizedForTips = False) -> str: | 
|  | 452         """ | 
|  | 453         Collapses the styles of this Arrow into a str, ready to be applied as part of the "style" property on an svg element. | 
|  | 454 | 
|  | 455         Returns: | 
|  | 456             str : the styles string. | 
|  | 457         """ | 
|  | 458         width = self.w | 
|  | 459         if downSizedForTips: width *= 0.8 | 
|  | 460         return f";stroke:{self.col};stroke-width:{width};stroke-dasharray:{'5,5' if self.dash else 'none'}" | 
|  | 461 | 
|  | 462 # vvv These constants could be inside the class itself a static properties, but python | 
|  | 463 # was built by brainless organisms so here we are! | 
|  | 464 INVALID_ARROW = Arrow(Arrow.MIN_W, ArrowColor.Invalid) | 
|  | 465 INSIGNIFICANT_ARROW = Arrow(Arrow.MIN_W, ArrowColor.Invalid, isDashed = True) | 
|  | 466 | 
|  | 467 def applyRpsEnrichmentToMap(rpsEnrichmentRes :Dict[str, Union[Tuple[float, FoldChange], Tuple[float, FoldChange, float, float]]], metabMap :ET.ElementTree, maxNumericZScore :float) -> None: | 
|  | 468     """ | 
|  | 469     Applies RPS enrichment results to the provided metabolic map. | 
|  | 470 | 
|  | 471     Args: | 
|  | 472         rpsEnrichmentRes : RPS enrichment results. | 
|  | 473         metabMap : the metabolic map to edit. | 
|  | 474         maxNumericZScore : biggest finite z-score value found. | 
|  | 475 | 
|  | 476     Side effects: | 
|  | 477         metabMap : mut | 
|  | 478 | 
|  | 479     Returns: | 
|  | 480         None | 
|  | 481     """ | 
|  | 482     for reactionId, values in rpsEnrichmentRes.items(): | 
|  | 483         pValue = values[0] | 
|  | 484         foldChange = values[1] | 
|  | 485         z_score = values[2] | 
|  | 486 | 
|  | 487         if isinstance(foldChange, str): foldChange = float(foldChange) | 
|  | 488         if pValue >= ARGS.pValue: # pValue above tresh: dashed arrow | 
|  | 489             INSIGNIFICANT_ARROW.styleReactionElements(metabMap, reactionId) | 
|  | 490             continue | 
|  | 491 | 
|  | 492         if abs(foldChange) <  (ARGS.fChange - 1) / (abs(ARGS.fChange) + 1): | 
|  | 493             INVALID_ARROW.styleReactionElements(metabMap, reactionId) | 
|  | 494             continue | 
|  | 495 | 
|  | 496         width = Arrow.MAX_W | 
|  | 497         if not math.isinf(foldChange): | 
|  | 498             try: width = max(abs(z_score * Arrow.MAX_W) / maxNumericZScore, Arrow.MIN_W) | 
|  | 499             except ZeroDivisionError: pass | 
|  | 500 | 
|  | 501         if not reactionId.endswith("_RV"): # RV stands for reversible reactions | 
|  | 502             Arrow(width, ArrowColor.fromFoldChangeSign(foldChange)).styleReactionElements(metabMap, reactionId) | 
|  | 503             continue | 
|  | 504 | 
|  | 505         reactionId = reactionId[:-3] # Remove "_RV" | 
|  | 506 | 
|  | 507         inversionScore = (values[3] < 0) + (values[4] < 0) # Compacts the signs of averages into 1 easy to check score | 
|  | 508         if inversionScore == 2: foldChange *= -1 | 
|  | 509         # ^^^ Style the inverse direction with the opposite sign netValue | 
|  | 510 | 
|  | 511         # If the score is 1 (opposite signs) we use alternative colors vvv | 
|  | 512         arrow = Arrow(width, ArrowColor.fromFoldChangeSign(foldChange, useAltColor = inversionScore == 1)) | 
|  | 513 | 
|  | 514         # vvv These 2 if statements can both be true and can both happen | 
|  | 515         if ARGS.net: # style arrow head(s): | 
|  | 516             arrow.styleReactionElements(metabMap, reactionId + ("_B" if inversionScore == 2 else "_F")) | 
|  | 517 | 
|  | 518         if not ARGS.using_RAS: # style arrow body | 
|  | 519             arrow.styleReactionElements(metabMap, reactionId, mindReactionDir = False) | 
|  | 520 | 
|  | 521 ############################ split class ###################################### | 
|  | 522 def split_class(classes :pd.DataFrame, resolve_rules :Dict[str, List[float]]) -> Dict[str, List[List[float]]]: | 
|  | 523     """ | 
|  | 524     Generates a :dict that groups together data from a :DataFrame based on classes the data is related to. | 
|  | 525 | 
|  | 526     Args: | 
|  | 527         classes : a :DataFrame of only string values, containing class information (rows) and keys to query the resolve_rules :dict | 
|  | 528         resolve_rules : a :dict containing :float data | 
|  | 529 | 
|  | 530     Returns: | 
|  | 531         dict : the dict with data grouped by class | 
|  | 532 | 
|  | 533     Side effects: | 
|  | 534         classes : mut | 
|  | 535     """ | 
|  | 536     class_pat :Dict[str, List[List[float]]] = {} | 
|  | 537     for i in range(len(classes)): | 
|  | 538         classe :str = classes.iloc[i, 1] | 
|  | 539         if pd.isnull(classe): continue | 
|  | 540 | 
|  | 541         l :List[List[float]] = [] | 
|  | 542         for j in range(i, len(classes)): | 
|  | 543             if classes.iloc[j, 1] == classe: | 
|  | 544                 pat_id :str = classes.iloc[j, 0] | 
|  | 545                 tmp = resolve_rules.get(pat_id, None) | 
|  | 546                 if tmp != None: | 
|  | 547                     l.append(tmp) | 
|  | 548                 classes.iloc[j, 1] = None | 
|  | 549 | 
|  | 550         if l: | 
|  | 551             class_pat[classe] = list(map(list, zip(*l))) | 
|  | 552             continue | 
|  | 553 | 
|  | 554         utils.logWarning( | 
|  | 555             f"Warning: no sample found in class \"{classe}\", the class has been disregarded", ARGS.out_log) | 
|  | 556 | 
|  | 557     return class_pat | 
|  | 558 | 
|  | 559 ############################ conversion ############################################## | 
|  | 560 #conversion from svg to png | 
|  | 561 def svg_to_png_with_background(svg_path :utils.FilePath, png_path :utils.FilePath, dpi :int = 72, scale :int = 1, size :Optional[float] = None) -> None: | 
|  | 562     """ | 
|  | 563     Internal utility to convert an SVG to PNG (forced opaque) to aid in PDF conversion. | 
|  | 564 | 
|  | 565     Args: | 
|  | 566         svg_path : path to SVG file | 
|  | 567         png_path : path for new PNG file | 
|  | 568         dpi : dots per inch of the generated PNG | 
|  | 569         scale : scaling factor for the generated PNG, computed internally when a size is provided | 
|  | 570         size : final effective width of the generated PNG | 
|  | 571 | 
|  | 572     Returns: | 
|  | 573         None | 
|  | 574     """ | 
|  | 575     if size: | 
|  | 576         image = pyvips.Image.new_from_file(svg_path.show(), dpi=dpi, scale=1) | 
|  | 577         scale = size / image.width | 
|  | 578         image = image.resize(scale) | 
|  | 579     else: | 
|  | 580         image = pyvips.Image.new_from_file(svg_path.show(), dpi=dpi, scale=scale) | 
|  | 581 | 
|  | 582     white_background = pyvips.Image.black(image.width, image.height).new_from_image([255, 255, 255]) | 
|  | 583     white_background = white_background.affine([scale, 0, 0, scale]) | 
|  | 584 | 
|  | 585     if white_background.bands != image.bands: | 
|  | 586         white_background = white_background.extract_band(0) | 
|  | 587 | 
|  | 588     composite_image = white_background.composite2(image, 'over') | 
|  | 589     composite_image.write_to_file(png_path.show()) | 
|  | 590 | 
|  | 591 #funzione unica, lascio fuori i file e li passo in input | 
|  | 592 #conversion from png to pdf | 
|  | 593 def convert_png_to_pdf(png_file :utils.FilePath, pdf_file :utils.FilePath) -> None: | 
|  | 594     """ | 
|  | 595     Internal utility to convert a PNG to PDF to aid from SVG conversion. | 
|  | 596 | 
|  | 597     Args: | 
|  | 598         png_file : path to PNG file | 
|  | 599         pdf_file : path to new PDF file | 
|  | 600 | 
|  | 601     Returns: | 
|  | 602         None | 
|  | 603     """ | 
|  | 604     image = Image.open(png_file.show()) | 
|  | 605     image = image.convert("RGB") | 
|  | 606     image.save(pdf_file.show(), "PDF", resolution=100.0) | 
|  | 607 | 
|  | 608 #function called to reduce redundancy in the code | 
|  | 609 def convert_to_pdf(file_svg :utils.FilePath, file_png :utils.FilePath, file_pdf :utils.FilePath) -> None: | 
|  | 610     """ | 
|  | 611     Converts the SVG map at the provided path to PDF. | 
|  | 612 | 
|  | 613     Args: | 
|  | 614         file_svg : path to SVG file | 
|  | 615         file_png : path to PNG file | 
|  | 616         file_pdf : path to new PDF file | 
|  | 617 | 
|  | 618     Returns: | 
|  | 619         None | 
|  | 620     """ | 
|  | 621     svg_to_png_with_background(file_svg, file_png) | 
|  | 622     try: | 
|  | 623         convert_png_to_pdf(file_png, file_pdf) | 
|  | 624         print(f'PDF file {file_pdf.filePath} successfully generated.') | 
|  | 625 | 
|  | 626     except Exception as e: | 
|  | 627         raise utils.DataErr(file_pdf.show(), f'Error generating PDF file: {e}') | 
|  | 628 | 
|  | 629 ############################ map ############################################## | 
|  | 630 def buildOutputPath(dataset1Name :str, dataset2Name = "rest", *, details = "", ext :utils.FileFormat) -> utils.FilePath: | 
|  | 631     """ | 
|  | 632     Builds a FilePath instance from the names of confronted datasets ready to point to a location in the | 
|  | 633     "result/" folder, used by this tool for output files in collections. | 
|  | 634 | 
|  | 635     Args: | 
|  | 636         dataset1Name : _description_ | 
|  | 637         dataset2Name : _description_. Defaults to "rest". | 
|  | 638         details : _description_ | 
|  | 639         ext : _description_ | 
|  | 640 | 
|  | 641     Returns: | 
|  | 642         utils.FilePath : _description_ | 
|  | 643     """ | 
|  | 644     # This function returns a util data structure but is extremely specific to this module. | 
|  | 645     # RAS also uses collections as output and as such might benefit from a method like this, but I'd wait | 
|  | 646     # TODO: until a third tool with multiple outputs appears before porting this to utils. | 
|  | 647     return utils.FilePath( | 
|  | 648         f"{dataset1Name}_vs_{dataset2Name}" + (f" ({details})" if details else ""), | 
|  | 649         # ^^^ yes this string is built every time even if the form is the same for the same 2 datasets in | 
|  | 650         # all output files: I don't care, this was never the performance bottleneck of the tool and | 
|  | 651         # there is no other net gain in saving and re-using the built string. | 
|  | 652         ext, | 
|  | 653         prefix = "result") | 
|  | 654 | 
|  | 655 FIELD_NOT_AVAILABLE = '/' | 
|  | 656 def writeToCsv(rows: List[list], fieldNames :List[str], outPath :utils.FilePath) -> None: | 
|  | 657     fieldsAmt = len(fieldNames) | 
|  | 658     with open(outPath.show(), "w", newline = "") as fd: | 
|  | 659         writer = csv.DictWriter(fd, fieldnames = fieldNames, delimiter = '\t') | 
|  | 660         writer.writeheader() | 
|  | 661 | 
|  | 662         for row in rows: | 
|  | 663             sizeMismatch = fieldsAmt - len(row) | 
|  | 664             if sizeMismatch > 0: row.extend([FIELD_NOT_AVAILABLE] * sizeMismatch) | 
|  | 665             writer.writerow({ field : data for field, data in zip(fieldNames, row) }) | 
|  | 666 | 
|  | 667 OldEnrichedScores = Dict[str, List[Union[float, FoldChange]]] #TODO: try to use Tuple whenever possible | 
|  | 668 def writeTabularResult(enrichedScores : OldEnrichedScores, ras_enrichment: bool, outPath :utils.FilePath) -> None: | 
|  | 669     fieldNames = ["ids", "P_Value", "fold change"] | 
|  | 670     if not ras_enrichment: fieldNames.extend(["average_1", "average_2"]) | 
|  | 671 | 
|  | 672     writeToCsv([ [reactId] + values for reactId, values in enrichedScores.items() ], fieldNames, outPath) | 
|  | 673 | 
|  | 674 def temp_thingsInCommon(tmp :Dict[str, List[Union[float, FoldChange]]], core_map :ET.ElementTree, max_z_score :float, dataset1Name :str, dataset2Name = "rest", ras_enrichment = True) -> None: | 
|  | 675     # this function compiles the things always in common between comparison modes after enrichment. | 
|  | 676     # TODO: organize, name better. | 
|  | 677     writeTabularResult(tmp, ras_enrichment, buildOutputPath(dataset1Name, dataset2Name, details = "Tabular Result", ext = utils.FileFormat.TSV)) | 
|  | 678 | 
|  | 679     if ras_enrichment: | 
|  | 680         fix_map(tmp, core_map, ARGS.pValue, ARGS.fChange, max_z_score) | 
|  | 681         return | 
|  | 682 | 
|  | 683     for reactId, enrichData in tmp.items(): tmp[reactId] = tuple(enrichData) | 
|  | 684     applyRpsEnrichmentToMap(tmp, core_map, max_z_score) | 
|  | 685 | 
|  | 686 def computePValue(dataset1Data: List[float], dataset2Data: List[float]) -> Tuple[float, float]: | 
|  | 687     """ | 
|  | 688     Computes the statistical significance score (P-value) of the comparison between coherent data | 
|  | 689     from two datasets. The data is supposed to, in both datasets: | 
|  | 690     - be related to the same reaction ID; | 
|  | 691     - be ordered by sample, such that the item at position i in both lists is related to the | 
|  | 692       same sample or cell line. | 
|  | 693 | 
|  | 694     Args: | 
|  | 695         dataset1Data : data from the 1st dataset. | 
|  | 696         dataset2Data : data from the 2nd dataset. | 
|  | 697 | 
|  | 698     Returns: | 
|  | 699         tuple: (P-value, Z-score) | 
|  | 700             - P-value from a Kolmogorov-Smirnov test on the provided data. | 
|  | 701             - Z-score of the difference between means of the two datasets. | 
|  | 702     """ | 
|  | 703     # Perform Kolmogorov-Smirnov test | 
|  | 704     ks_statistic, p_value = st.ks_2samp(dataset1Data, dataset2Data) | 
|  | 705 | 
|  | 706     # Calculate means and standard deviations | 
|  | 707     mean1 = np.mean(dataset1Data) | 
|  | 708     mean2 = np.mean(dataset2Data) | 
|  | 709     std1 = np.std(dataset1Data, ddof=1) | 
|  | 710     std2 = np.std(dataset2Data, ddof=1) | 
|  | 711 | 
|  | 712     n1 = len(dataset1Data) | 
|  | 713     n2 = len(dataset2Data) | 
|  | 714 | 
|  | 715     # Calculate Z-score | 
|  | 716     z_score = (mean1 - mean2) / np.sqrt((std1**2 / n1) + (std2**2 / n2)) | 
|  | 717 | 
|  | 718     return p_value, z_score | 
|  | 719 | 
|  | 720 def compareDatasetPair(dataset1Data :List[List[float]], dataset2Data :List[List[float]], ids :List[str]) -> Tuple[Dict[str, List[Union[float, FoldChange]]], float]: | 
|  | 721     #TODO: the following code still suffers from "dumbvarnames-osis" | 
|  | 722     tmp :Dict[str, List[Union[float, FoldChange]]] = {} | 
|  | 723     count   = 0 | 
|  | 724     max_z_score = 0 | 
|  | 725 | 
|  | 726     for l1, l2 in zip(dataset1Data, dataset2Data): | 
|  | 727         reactId = ids[count] | 
|  | 728         count += 1 | 
|  | 729         if not reactId: continue # we skip ids that have already been processed | 
|  | 730 | 
|  | 731         try: #TODO: identify the source of these errors and minimize code in the try block | 
|  | 732             reactDir = ReactionDirection.fromReactionId(reactId) | 
|  | 733             # Net score is computed only for reversible reactions when user wants it on arrow tips or when RAS datasets aren't used | 
|  | 734             if (ARGS.net or not ARGS.using_RAS) and reactDir is not ReactionDirection.Unknown: | 
|  | 735                 try: position = ids.index(reactId[:-1] + ('B' if reactDir is ReactionDirection.Direct else 'F')) | 
|  | 736                 except ValueError: continue # we look for the complementary id, if not found we skip | 
|  | 737 | 
|  | 738                 nets1 = np.subtract(l1, dataset1Data[position]) | 
|  | 739                 nets2 = np.subtract(l2, dataset2Data[position]) | 
|  | 740 | 
|  | 741                 p_value, z_score = computePValue(nets1, nets2) | 
|  | 742                 avg1 = sum(nets1)   / len(nets1) | 
|  | 743                 avg2 = sum(nets2)   / len(nets2) | 
|  | 744                 net = fold_change(avg1, avg2) | 
|  | 745 | 
|  | 746                 if math.isnan(net): continue | 
|  | 747                 tmp[reactId[:-1] + "RV"] = [p_value, net, z_score, avg1, avg2] | 
|  | 748 | 
|  | 749                 # vvv complementary directional ids are set to None once processed if net is to be applied to tips | 
|  | 750                 if ARGS.net: | 
|  | 751                     ids[position] = None | 
|  | 752                     continue | 
|  | 753 | 
|  | 754             # fallthrough is intended, regular scores need to be computed when tips aren't net but RAS datasets aren't used | 
|  | 755             p_value, z_score = computePValue(l1, l2) | 
|  | 756             avg = fold_change(sum(l1) / len(l1), sum(l2) / len(l2)) | 
|  | 757             if not isinstance(z_score, str) and max_z_score < abs(z_score): max_z_score = abs(z_score) | 
|  | 758             tmp[reactId] = [float(p_value), avg, z_score] | 
|  | 759 | 
|  | 760         except (TypeError, ZeroDivisionError): continue | 
|  | 761 | 
|  | 762     return tmp, max_z_score | 
|  | 763 | 
|  | 764 def computeEnrichment(metabMap :ET.ElementTree, class_pat :Dict[str, List[List[float]]], ids :List[str], *, fromRAS = True) -> None: | 
|  | 765     """ | 
|  | 766     Compares clustered data based on a given comparison mode and applies enrichment-based styling on the | 
|  | 767     provided metabolic map. | 
|  | 768 | 
|  | 769     Args: | 
|  | 770         metabMap : SVG map to modify. | 
|  | 771         class_pat : the clustered data. | 
|  | 772         ids : ids for data association. | 
|  | 773         fromRAS : whether the data to enrich consists of RAS scores. | 
|  | 774 | 
|  | 775     Returns: | 
|  | 776         None | 
|  | 777 | 
|  | 778     Raises: | 
|  | 779         sys.exit : if there are less than 2 classes for comparison | 
|  | 780 | 
|  | 781     Side effects: | 
|  | 782         metabMap : mut | 
|  | 783         ids : mut | 
|  | 784     """ | 
|  | 785     class_pat = { k.strip() : v for k, v in class_pat.items() } | 
|  | 786     #TODO: simplfy this stuff vvv and stop using sys.exit (raise the correct utils error) | 
|  | 787     if (not class_pat) or (len(class_pat.keys()) < 2): sys.exit('Execution aborted: classes provided for comparisons are less than two\n') | 
|  | 788 | 
|  | 789     if ARGS.comparison == "manyvsmany": | 
|  | 790         for i, j in it.combinations(class_pat.keys(), 2): | 
|  | 791             #TODO: these 2 functions are always called in pair and in this order and need common data, | 
|  | 792             # some clever refactoring would be appreciated. | 
|  | 793             comparisonDict, max_z_score = compareDatasetPair(class_pat.get(i), class_pat.get(j), ids) | 
|  | 794             temp_thingsInCommon(comparisonDict, metabMap, max_z_score, i, j, fromRAS) | 
|  | 795 | 
|  | 796     elif ARGS.comparison == "onevsrest": | 
|  | 797         for single_cluster in class_pat.keys(): | 
|  | 798             t :List[List[List[float]]] = [] | 
|  | 799             for k in class_pat.keys(): | 
|  | 800                 if k != single_cluster: | 
|  | 801                    t.append(class_pat.get(k)) | 
|  | 802 | 
|  | 803             rest :List[List[float]] = [] | 
|  | 804             for i in t: | 
|  | 805                 rest = rest + i | 
|  | 806 | 
|  | 807             comparisonDict, max_z_score = compareDatasetPair(class_pat.get(single_cluster), rest, ids) | 
|  | 808             temp_thingsInCommon(comparisonDict, metabMap, max_z_score, single_cluster, fromRAS) | 
|  | 809 | 
|  | 810     elif ARGS.comparison == "onevsmany": | 
|  | 811         controlItems = class_pat.get(ARGS.control) | 
|  | 812         for otherDataset in class_pat.keys(): | 
|  | 813             if otherDataset == ARGS.control: continue | 
|  | 814 | 
|  | 815             comparisonDict, max_z_score = compareDatasetPair(controlItems, class_pat.get(otherDataset), ids) | 
|  | 816             temp_thingsInCommon(comparisonDict, metabMap, max_z_score, ARGS.control, otherDataset, fromRAS) | 
|  | 817 | 
|  | 818 def createOutputMaps(dataset1Name :str, dataset2Name :str, core_map :ET.ElementTree) -> None: | 
|  | 819     svgFilePath = buildOutputPath(dataset1Name, dataset2Name, details = "SVG Map", ext = utils.FileFormat.SVG) | 
|  | 820     utils.writeSvg(svgFilePath, core_map) | 
|  | 821 | 
|  | 822     if ARGS.generate_pdf: | 
|  | 823         pngPath = buildOutputPath(dataset1Name, dataset2Name, details = "PNG Map", ext = utils.FileFormat.PNG) | 
|  | 824         pdfPath = buildOutputPath(dataset1Name, dataset2Name, details = "PDF Map", ext = utils.FileFormat.PDF) | 
|  | 825         convert_to_pdf(svgFilePath, pngPath, pdfPath) | 
|  | 826 | 
|  | 827     if not ARGS.generate_svg: os.remove(svgFilePath.show()) | 
|  | 828 | 
|  | 829 ClassPat = Dict[str, List[List[float]]] | 
|  | 830 def getClassesAndIdsFromDatasets(datasetsPaths :List[str], datasetPath :str, classPath :str, names :List[str]) -> Tuple[List[str], ClassPat]: | 
|  | 831     # TODO: I suggest creating dicts with ids as keys instead of keeping class_pat and ids separate, | 
|  | 832     # for the sake of everyone's sanity. | 
|  | 833     class_pat :ClassPat = {} | 
|  | 834     if ARGS.option == 'datasets': | 
|  | 835         num = 1 #TODO: the dataset naming function could be a generator | 
|  | 836         for path, name in zip(datasetsPaths, names): | 
|  | 837             name = name_dataset(name, num) | 
|  | 838             resolve_rules_float, ids = getDatasetValues(path, name) | 
|  | 839             if resolve_rules_float != None: | 
|  | 840                 class_pat[name] = list(map(list, zip(*resolve_rules_float.values()))) | 
|  | 841 | 
|  | 842             num += 1 | 
|  | 843 | 
|  | 844     elif ARGS.option == "dataset_class": | 
|  | 845         classes = read_dataset(classPath, "class") | 
|  | 846         classes = classes.astype(str) | 
|  | 847 | 
|  | 848         resolve_rules_float, ids = getDatasetValues(datasetPath, "Dataset Class (not actual name)") | 
|  | 849         if resolve_rules_float != None: class_pat = split_class(classes, resolve_rules_float) | 
|  | 850 | 
|  | 851     return ids, class_pat | 
|  | 852     #^^^ TODO: this could be a match statement over an enum, make it happen future marea dev with python 3.12! (it's why I kept the ifs) | 
|  | 853 | 
|  | 854 #TODO: create these damn args as FilePath objects | 
|  | 855 def getDatasetValues(datasetPath :str, datasetName :str) -> Tuple[ClassPat, List[str]]: | 
|  | 856     """ | 
|  | 857     Opens the dataset at the given path and extracts the values (expected nullable numerics) and the IDs. | 
|  | 858 | 
|  | 859     Args: | 
|  | 860         datasetPath : path to the dataset | 
|  | 861         datasetName (str): dataset name, used in error reporting | 
|  | 862 | 
|  | 863     Returns: | 
|  | 864         Tuple[ClassPat, List[str]]: values and IDs extracted from the dataset | 
|  | 865     """ | 
|  | 866     dataset = read_dataset(datasetPath, datasetName) | 
|  | 867     IDs = pd.Series.tolist(dataset.iloc[:, 0].astype(str)) | 
|  | 868 | 
|  | 869     dataset = dataset.drop(dataset.columns[0], axis = "columns").to_dict("list") | 
|  | 870     return { id : list(map(utils.Float("Dataset values, not an argument"), values)) for id, values in dataset.items() }, IDs | 
|  | 871 | 
|  | 872 ############################ MAIN ############################################# | 
|  | 873 def main() -> None: | 
|  | 874     """ | 
|  | 875     Initializes everything and sets the program in motion based on the fronted input arguments. | 
|  | 876 | 
|  | 877     Returns: | 
|  | 878         None | 
|  | 879 | 
|  | 880     Raises: | 
|  | 881         sys.exit : if a user-provided custom map is in the wrong format (ET.XMLSyntaxError, ET.XMLSchemaParseError) | 
|  | 882     """ | 
|  | 883 | 
|  | 884     global ARGS | 
|  | 885     ARGS = process_args() | 
|  | 886 | 
|  | 887     if os.path.isdir('result') == False: os.makedirs('result') | 
|  | 888 | 
|  | 889     core_map :ET.ElementTree = ARGS.choice_map.getMap( | 
|  | 890         ARGS.tool_dir, | 
|  | 891         utils.FilePath.fromStrPath(ARGS.custom_map) if ARGS.custom_map else None) | 
|  | 892     # TODO: ^^^ ugly but fine for now, the argument is None if the model isn't custom because no file was given. | 
|  | 893     # getMap will None-check the customPath and panic when the model IS custom but there's no file (good). A cleaner | 
|  | 894     # solution can be derived from my comment in FilePath.fromStrPath | 
|  | 895 | 
|  | 896     if ARGS.using_RAS: | 
|  | 897         ids, class_pat = getClassesAndIdsFromDatasets(ARGS.input_datas, ARGS.input_data, ARGS.input_class, ARGS.names) | 
|  | 898         computeEnrichment(core_map, class_pat, ids) | 
|  | 899 | 
|  | 900     if ARGS.using_RPS: | 
|  | 901         ids, class_pat = getClassesAndIdsFromDatasets(ARGS.input_datas_rps, ARGS.input_data_rps, ARGS.input_class_rps, ARGS.names_rps) | 
|  | 902         computeEnrichment(core_map, class_pat, ids, fromRAS = False) | 
|  | 903 | 
|  | 904     # create output files: TODO: this is the same comparison happening in "maps", find a better way to organize this | 
|  | 905     if ARGS.comparison == "manyvsmany": | 
|  | 906         for i, j in it.combinations(class_pat.keys(), 2): createOutputMaps(i, j, core_map) | 
|  | 907         return | 
|  | 908 | 
|  | 909     if ARGS.comparison == "onevsrest": | 
|  | 910         for single_cluster in class_pat.keys(): createOutputMaps(single_cluster, "rest", core_map) | 
|  | 911         return | 
|  | 912 | 
|  | 913     for otherDataset in class_pat.keys(): | 
|  | 914         if otherDataset != ARGS.control: createOutputMaps(i, j, core_map) | 
|  | 915 | 
|  | 916     if not ERRORS: return | 
|  | 917     utils.logWarning( | 
|  | 918         f"The following reaction IDs were mentioned in the dataset but weren't found in the map: {ERRORS}", | 
|  | 919         ARGS.out_log) | 
|  | 920 | 
|  | 921     print('Execution succeded') | 
|  | 922 | 
|  | 923 ############################################################################### | 
|  | 924 if __name__ == "__main__": | 
|  | 925     main() |