| 4 | 1 from swiglpk import * | 
|  | 2 import random | 
|  | 3 import pandas as pd | 
|  | 4 import numpy as np | 
|  | 5 import cobra as cb | 
|  | 6 | 
|  | 7 # Initialize LP problem | 
|  | 8 def initialize_lp_problem(S): | 
|  | 9 | 
|  | 10     len_vector=len(S.keys()) | 
|  | 11     values=list(S.values()) | 
|  | 12     indexes=list(S.keys()) | 
|  | 13     ia = intArray(len_vector+1); | 
|  | 14     ja = intArray(len_vector+1); | 
|  | 15     ar = doubleArray(len_vector+1); | 
|  | 16 | 
|  | 17     i=0 | 
|  | 18     ind_row=[indexes[i][0]+1 for i in range(0, len(values) )] | 
|  | 19     ind_col=[indexes[i][1]+1 for i in range(0, len(values) )] | 
|  | 20     for i in range(1, len(values) + 1): | 
|  | 21         ia[i]=ind_row[i-1] | 
|  | 22         ja[i]=ind_col[i-1] | 
|  | 23         ar[i] = values[i-1] | 
|  | 24 | 
|  | 25     nrows=S.shape[0] | 
|  | 26     ncol=S.shape[1] | 
|  | 27 | 
|  | 28     return len_vector, values, indexes, ia, ja, ar, nrows, ncol | 
|  | 29 | 
|  | 30 | 
|  | 31 | 
|  | 32 # Solve LP problem from the structure of the metabolic model | 
|  | 33 def create_and_solve_lp_problem(lb,ub,nrows, ncol, len_vector, ia, ja, ar, | 
|  | 34                                 obj_coefs,reactions,return_lp=False): | 
|  | 35 | 
|  | 36 | 
|  | 37     lp = glp_create_prob(); | 
|  | 38     glp_set_prob_name(lp, "sample"); | 
|  | 39     glp_set_obj_dir(lp, GLP_MAX); | 
|  | 40     glp_add_rows(lp, nrows); | 
|  | 41     eps = 1e-16 | 
|  | 42     for i in range(nrows): | 
|  | 43         glp_set_row_name(lp, i+1, "constrain_"+str(i+1)); | 
|  | 44         glp_set_row_bnds(lp, i+1, GLP_FX, 0.0, 0.0); | 
|  | 45     glp_add_cols(lp, ncol); | 
|  | 46     for i in range(ncol): | 
|  | 47         glp_set_col_name(lp, i+1, "flux_"+str(i+1)); | 
|  | 48         glp_set_col_bnds(lp, i+1, GLP_DB,lb[i]-eps,ub[i]+eps); | 
|  | 49     glp_load_matrix(lp, len_vector, ia, ja, ar); | 
|  | 50 | 
|  | 51     try: | 
|  | 52         fluxes,Z=solve_lp_problem(lp,obj_coefs,reactions) | 
|  | 53         if return_lp: | 
|  | 54             return fluxes,Z,lp | 
|  | 55         else: | 
|  | 56             glp_delete_prob(lp); | 
|  | 57             return fluxes,Z | 
|  | 58     except Exception as e: | 
|  | 59         glp_delete_prob(lp) | 
|  | 60         raise Exception(e) | 
|  | 61 | 
|  | 62 | 
|  | 63 # Solve LP problem from the structure of the metabolic model | 
|  | 64 def solve_lp_problem(lp,obj_coefs,reactions): | 
|  | 65 | 
|  | 66     # Set the coefficients of the objective function | 
|  | 67     i=1 | 
|  | 68     for ind_coef in obj_coefs: | 
|  | 69         glp_set_obj_coef(lp, i, ind_coef); | 
|  | 70         i+=1 | 
|  | 71 | 
|  | 72     # Initialize the parameters | 
|  | 73     params=glp_smcp() | 
|  | 74     params.presolve=GLP_ON | 
|  | 75     params.msg_lev = GLP_MSG_ALL | 
|  | 76     params.tm_lim=4000 | 
|  | 77     glp_init_smcp(params) | 
|  | 78 | 
|  | 79     # Solve the problem | 
|  | 80     glp_scale_prob(lp,GLP_SF_AUTO) | 
|  | 81 | 
|  | 82     value=glp_simplex(lp, params) | 
|  | 83 | 
|  | 84     Z = glp_get_obj_val(lp); | 
|  | 85 | 
|  | 86     if value == 0: | 
|  | 87         fluxes = [] | 
|  | 88         for i in range(len(reactions)): fluxes.append(glp_get_col_prim(lp, i+1)) | 
|  | 89         return fluxes,Z | 
|  | 90     else: | 
|  | 91         raise Exception("error in LP problem. Problem:",str(value)) | 
|  | 92 | 
|  | 93 | 
|  | 94 # Create LP structure | 
|  | 95 def create_lp_structure(model): | 
|  | 96 | 
|  | 97     reactions=[el.id for el in model.reactions] | 
|  | 98     coefs_obj=[reaction.objective_coefficient for reaction in model.reactions] | 
|  | 99 | 
|  | 100     # Lower and upper bounds | 
|  | 101     lb=[reaction.lower_bound for reaction in model.reactions] | 
|  | 102     ub=[reaction.upper_bound for reaction in model.reactions] | 
|  | 103 | 
|  | 104     # Create S matrix | 
|  | 105     S=cb.util.create_stoichiometric_matrix(model,array_type="dok") | 
|  | 106 | 
|  | 107     return S,lb,ub,coefs_obj,reactions | 
|  | 108 | 
|  | 109 # CBS sampling interface | 
|  | 110 def randomObjectiveFunctionSampling(model, nsample, coefficients_df, df_sample): | 
|  | 111 | 
|  | 112     S,lb,ub,coefs_obj,reactions = create_lp_structure(model) | 
|  | 113     len_vector, values, indexes, ia, ja, ar, nrow, ncol = initialize_lp_problem(S) | 
|  | 114 | 
|  | 115     for i in range(nsample): | 
|  | 116 | 
|  | 117         coefs_obj=coefficients_df.iloc[:,i].values | 
|  | 118 | 
|  | 119         if coefs_obj[-1]==1: #minimize | 
|  | 120             coefs_obj= coefs_obj[0:-1] * -1 | 
|  | 121         else: | 
|  | 122             coefs_obj=coefs_obj[0:-1] | 
|  | 123 | 
|  | 124         fluxes,Z = create_and_solve_lp_problem(lb,ub, nrow, ncol, len_vector, | 
|  | 125                                                         ia, ja, ar, coefs_obj,reactions,return_lp=False) | 
|  | 126         df_sample.loc[i] = fluxes | 
|  | 127     pass | 
|  | 128 | 
|  | 129 def randomObjectiveFunctionSampling_cobrapy(model, nsample, coefficients_df, df_sample): | 
|  | 130 | 
|  | 131     for i in range(nsample): | 
|  | 132 | 
|  | 133         dict_coeff={} | 
|  | 134         if(coefficients_df.iloc[-1][i]==1): | 
|  | 135             type_problem = -1 #minimize | 
|  | 136         else: | 
|  | 137             type_problem = 1 | 
|  | 138 | 
|  | 139         for rxn in [reaction.id for reaction in model.reactions]: | 
|  | 140             dict_coeff[model.reactions.get_by_id(rxn)] = coefficients_df.loc[rxn][i] * type_problem | 
|  | 141 | 
|  | 142         model.objective = dict_coeff | 
|  | 143         solution =  model.optimize().fluxes | 
|  | 144         for rxn, flux in solution.items(): | 
|  | 145             df_sample.loc[i][rxn] = flux | 
|  | 146 | 
|  | 147     pass | 
|  | 148 | 
|  | 149 # Create random coefficients for CBS | 
|  | 150 def randomObjectiveFunction(model, n_samples, df_fva, seed=0): | 
|  | 151 | 
|  | 152 | 
|  | 153         #reactions = model.reactions | 
|  | 154         reactions = [reaction.id for reaction in model.reactions] | 
|  | 155         cont=seed | 
|  | 156         list_ex=reactions.copy() | 
|  | 157         list_ex.append("type_of_problem") | 
|  | 158         coefficients_df = pd.DataFrame(index=list_ex,columns=[str(i) for i in range(n_samples)]) | 
|  | 159 | 
|  | 160         for i in range(0, n_samples): | 
|  | 161 | 
|  | 162             cont=cont+1 | 
|  | 163             random.seed(cont) | 
|  | 164 | 
|  | 165             # Genera un numero casuale tra 0 e 1 | 
|  | 166             threshold = random.random() #coefficiente tra 0 e 1 | 
|  | 167 | 
|  | 168             for reaction in reactions: | 
|  | 169 | 
|  | 170                 cont=cont+1 | 
|  | 171                 random.seed(cont) | 
|  | 172 | 
|  | 173                 val=random.random() | 
|  | 174 | 
|  | 175                 if val>threshold: | 
|  | 176 | 
|  | 177                     cont=cont+1 | 
|  | 178                     random.seed(cont) | 
|  | 179 | 
|  | 180                     c=2*random.random()-1 #coefficiente tra -1 e 1 | 
|  | 181 | 
|  | 182                     val_max=np.max([df_fva.loc[reaction,"minimum"],df_fva.loc[reaction,"maximum"]]) | 
|  | 183 | 
|  | 184                     if val_max!=0: #solo se la fva รจ diversa da zero | 
|  | 185                         coefficients_df.loc[reaction,str(i)] = c/val_max #divido per la fva | 
|  | 186                     else: | 
|  | 187                         coefficients_df.loc[reaction,str(i)] = 0 | 
|  | 188 | 
|  | 189                 else: | 
|  | 190                     coefficients_df.loc[reaction,str(i)] = 0 | 
|  | 191 | 
|  | 192             cont=cont+1 | 
|  | 193             random.seed(cont) | 
|  | 194 | 
|  | 195             if random.random()<0.5: | 
|  | 196                 coefficients_df.loc["type_of_problem",str(i)] = 0 #maximize | 
|  | 197             else: | 
|  | 198                 coefficients_df.loc["type_of_problem",str(i)] = 1 #minimize | 
|  | 199 | 
|  | 200         return coefficients_df |