| 4 | 1 from __future__ import division | 
|  | 2 import csv | 
|  | 3 from enum import Enum | 
|  | 4 import re | 
|  | 5 import sys | 
|  | 6 import numpy as np | 
|  | 7 import pandas as pd | 
|  | 8 import itertools as it | 
|  | 9 import scipy.stats as st | 
|  | 10 import lxml.etree as ET | 
|  | 11 import math | 
|  | 12 import utils.general_utils as utils | 
|  | 13 from PIL import Image | 
|  | 14 import os | 
|  | 15 import argparse | 
|  | 16 import pyvips | 
|  | 17 from typing import Tuple, Union, Optional, List, Dict | 
| 143 | 18 import copy | 
| 4 | 19 | 
|  | 20 ERRORS = [] | 
|  | 21 ########################## argparse ########################################## | 
|  | 22 ARGS :argparse.Namespace | 
| 147 | 23 def process_args(args:List[str] = None) -> argparse.Namespace: | 
| 4 | 24     """ | 
|  | 25     Interfaces the script of a module with its frontend, making the user's choices for various parameters available as values in code. | 
|  | 26 | 
|  | 27     Args: | 
|  | 28         args : Always obtained (in file) from sys.argv | 
|  | 29 | 
|  | 30     Returns: | 
|  | 31         Namespace : An object containing the parsed arguments | 
|  | 32     """ | 
|  | 33     parser = argparse.ArgumentParser( | 
|  | 34         usage = "%(prog)s [options]", | 
|  | 35         description = "process some value's genes to create a comparison's map.") | 
|  | 36 | 
|  | 37     #General: | 
|  | 38     parser.add_argument( | 
|  | 39         '-td', '--tool_dir', | 
|  | 40         type = str, | 
|  | 41         required = True, | 
|  | 42         help = 'your tool directory') | 
|  | 43 | 
|  | 44     parser.add_argument('-on', '--control', type = str) | 
|  | 45     parser.add_argument('-ol', '--out_log', help = "Output log") | 
|  | 46 | 
|  | 47     #Computation details: | 
|  | 48     parser.add_argument( | 
|  | 49         '-co', '--comparison', | 
|  | 50         type = str, | 
|  | 51         default = '1vs1', | 
|  | 52         choices = ['manyvsmany', 'onevsrest', 'onevsmany']) | 
|  | 53 | 
|  | 54     parser.add_argument( | 
|  | 55         '-pv' ,'--pValue', | 
|  | 56         type = float, | 
|  | 57         default = 0.1, | 
|  | 58         help = 'P-Value threshold (default: %(default)s)') | 
|  | 59 | 
|  | 60     parser.add_argument( | 
|  | 61         '-fc', '--fChange', | 
|  | 62         type = float, | 
|  | 63         default = 1.5, | 
|  | 64         help = 'Fold-Change threshold (default: %(default)s)') | 
|  | 65 | 
|  | 66     parser.add_argument( | 
|  | 67         "-ne", "--net", | 
|  | 68         type = utils.Bool("net"), default = False, | 
|  | 69         help = "choose if you want net enrichment for RPS") | 
|  | 70 | 
|  | 71     parser.add_argument( | 
|  | 72         '-op', '--option', | 
|  | 73         type = str, | 
|  | 74         choices = ['datasets', 'dataset_class'], | 
|  | 75         help='dataset or dataset and class') | 
|  | 76 | 
|  | 77     #RAS: | 
|  | 78     parser.add_argument( | 
|  | 79         "-ra", "--using_RAS", | 
|  | 80         type = utils.Bool("using_RAS"), default = True, | 
|  | 81         help = "choose whether to use RAS datasets.") | 
|  | 82 | 
|  | 83     parser.add_argument( | 
|  | 84         '-id', '--input_data', | 
|  | 85         type = str, | 
|  | 86         help = 'input dataset') | 
|  | 87 | 
|  | 88     parser.add_argument( | 
|  | 89         '-ic', '--input_class', | 
|  | 90         type = str, | 
|  | 91         help = 'sample group specification') | 
|  | 92 | 
|  | 93     parser.add_argument( | 
|  | 94         '-ids', '--input_datas', | 
|  | 95         type = str, | 
|  | 96         nargs = '+', | 
|  | 97         help = 'input datasets') | 
|  | 98 | 
|  | 99     parser.add_argument( | 
|  | 100         '-na', '--names', | 
|  | 101         type = str, | 
|  | 102         nargs = '+', | 
|  | 103         help = 'input names') | 
|  | 104 | 
|  | 105     #RPS: | 
|  | 106     parser.add_argument( | 
|  | 107         "-rp", "--using_RPS", | 
|  | 108         type = utils.Bool("using_RPS"), default = False, | 
|  | 109         help = "choose whether to use RPS datasets.") | 
|  | 110 | 
|  | 111     parser.add_argument( | 
|  | 112         '-idr', '--input_data_rps', | 
|  | 113         type = str, | 
|  | 114         help = 'input dataset rps') | 
|  | 115 | 
|  | 116     parser.add_argument( | 
|  | 117         '-icr', '--input_class_rps', | 
|  | 118         type = str, | 
|  | 119         help = 'sample group specification rps') | 
|  | 120 | 
|  | 121     parser.add_argument( | 
|  | 122         '-idsr', '--input_datas_rps', | 
|  | 123         type = str, | 
|  | 124         nargs = '+', | 
|  | 125         help = 'input datasets rps') | 
|  | 126 | 
|  | 127     parser.add_argument( | 
|  | 128         '-nar', '--names_rps', | 
|  | 129         type = str, | 
|  | 130         nargs = '+', | 
|  | 131         help = 'input names rps') | 
|  | 132 | 
|  | 133     #Output: | 
|  | 134     parser.add_argument( | 
|  | 135         "-gs", "--generate_svg", | 
|  | 136         type = utils.Bool("generate_svg"), default = True, | 
|  | 137         help = "choose whether to use RAS datasets.") | 
|  | 138 | 
|  | 139     parser.add_argument( | 
|  | 140         "-gp", "--generate_pdf", | 
|  | 141         type = utils.Bool("generate_pdf"), default = True, | 
|  | 142         help = "choose whether to use RAS datasets.") | 
|  | 143 | 
|  | 144     parser.add_argument( | 
|  | 145         '-cm', '--custom_map', | 
|  | 146         type = str, | 
|  | 147         help='custom map to use') | 
|  | 148 | 
|  | 149     parser.add_argument( | 
| 146 | 150         '-idop', '--output_path', | 
|  | 151         type = str, | 
|  | 152         default='result', | 
|  | 153         help = 'output path for maps') | 
|  | 154 | 
|  | 155     parser.add_argument( | 
| 4 | 156         '-mc',  '--choice_map', | 
|  | 157         type = utils.Model, default = utils.Model.HMRcore, | 
|  | 158         choices = [utils.Model.HMRcore, utils.Model.ENGRO2, utils.Model.Custom]) | 
|  | 159 | 
| 146 | 160     args :argparse.Namespace = parser.parse_args(args) | 
| 4 | 161     if args.using_RAS and not args.using_RPS: args.net = False | 
|  | 162 | 
|  | 163     return args | 
|  | 164 | 
|  | 165 ############################ dataset input #################################### | 
|  | 166 def read_dataset(data :str, name :str) -> pd.DataFrame: | 
|  | 167     """ | 
|  | 168     Tries to read the dataset from its path (data) as a tsv and turns it into a DataFrame. | 
|  | 169 | 
|  | 170     Args: | 
|  | 171         data : filepath of a dataset (from frontend input params or literals upon calling) | 
|  | 172         name : name associated with the dataset (from frontend input params or literals upon calling) | 
|  | 173 | 
|  | 174     Returns: | 
|  | 175         pd.DataFrame : dataset in a runtime operable shape | 
|  | 176 | 
|  | 177     Raises: | 
|  | 178         sys.exit : if there's no data (pd.errors.EmptyDataError) or if the dataset has less than 2 columns | 
|  | 179     """ | 
|  | 180     try: | 
|  | 181         dataset = pd.read_csv(data, sep = '\t', header = 0, engine='python') | 
|  | 182     except pd.errors.EmptyDataError: | 
|  | 183         sys.exit('Execution aborted: wrong format of ' + name + '\n') | 
|  | 184     if len(dataset.columns) < 2: | 
|  | 185         sys.exit('Execution aborted: wrong format of ' + name + '\n') | 
|  | 186     return dataset | 
|  | 187 | 
|  | 188 ############################ dataset name ##################################### | 
|  | 189 def name_dataset(name_data :str, count :int) -> str: | 
|  | 190     """ | 
|  | 191     Produces a unique name for a dataset based on what was provided by the user. The default name for any dataset is "Dataset", thus if the user didn't change it this function appends f"_{count}" to make it unique. | 
|  | 192 | 
|  | 193     Args: | 
|  | 194         name_data : name associated with the dataset (from frontend input params) | 
|  | 195         count : counter from 1 to make these names unique (external) | 
|  | 196 | 
|  | 197     Returns: | 
|  | 198         str : the name made unique | 
|  | 199     """ | 
|  | 200     if str(name_data) == 'Dataset': | 
|  | 201         return str(name_data) + '_' + str(count) | 
|  | 202     else: | 
|  | 203         return str(name_data) | 
|  | 204 | 
|  | 205 ############################ map_methods ###################################### | 
|  | 206 FoldChange = Union[float, int, str] # Union[float, Literal[0, "-INF", "INF"]] | 
|  | 207 def fold_change(avg1 :float, avg2 :float) -> FoldChange: | 
|  | 208     """ | 
|  | 209     Calculates the fold change between two gene expression values. | 
|  | 210 | 
|  | 211     Args: | 
|  | 212         avg1 : average expression value from one dataset avg2 : average expression value from the other dataset | 
|  | 213 | 
|  | 214     Returns: | 
|  | 215         FoldChange : | 
|  | 216             0 : when both input values are 0 | 
|  | 217             "-INF" : when avg1 is 0 | 
|  | 218             "INF" : when avg2 is 0 | 
|  | 219             float : for any other combination of values | 
|  | 220     """ | 
|  | 221     if avg1 == 0 and avg2 == 0: | 
|  | 222         return 0 | 
|  | 223     elif avg1 == 0: | 
|  | 224         return '-INF' | 
|  | 225     elif avg2 == 0: | 
|  | 226         return 'INF' | 
|  | 227     else: # (threshold_F_C - 1) / (abs(threshold_F_C) + 1) con threshold_F_C > 1 | 
|  | 228         return (avg1 - avg2) / (abs(avg1) + abs(avg2)) | 
|  | 229 | 
|  | 230 def fix_style(l :str, col :Optional[str], width :str, dash :str) -> str: | 
|  | 231     """ | 
|  | 232     Produces a "fixed" style string to assign to a reaction arrow in the SVG map, assigning style properties to the corresponding values passed as input params. | 
|  | 233 | 
|  | 234     Args: | 
|  | 235         l : current style string of an SVG element | 
|  | 236         col : new value for the "stroke" style property | 
|  | 237         width : new value for the "stroke-width" style property | 
|  | 238         dash : new value for the "stroke-dasharray" style property | 
|  | 239 | 
|  | 240     Returns: | 
|  | 241         str : the fixed style string | 
|  | 242     """ | 
|  | 243     tmp = l.split(';') | 
|  | 244     flag_col = False | 
|  | 245     flag_width = False | 
|  | 246     flag_dash = False | 
|  | 247     for i in range(len(tmp)): | 
|  | 248         if tmp[i].startswith('stroke:'): | 
|  | 249             tmp[i] = 'stroke:' + col | 
|  | 250             flag_col = True | 
|  | 251         if tmp[i].startswith('stroke-width:'): | 
|  | 252             tmp[i] = 'stroke-width:' + width | 
|  | 253             flag_width = True | 
|  | 254         if tmp[i].startswith('stroke-dasharray:'): | 
|  | 255             tmp[i] = 'stroke-dasharray:' + dash | 
|  | 256             flag_dash = True | 
|  | 257     if not flag_col: | 
|  | 258         tmp.append('stroke:' + col) | 
|  | 259     if not flag_width: | 
|  | 260         tmp.append('stroke-width:' + width) | 
|  | 261     if not flag_dash: | 
|  | 262         tmp.append('stroke-dasharray:' + dash) | 
|  | 263     return ';'.join(tmp) | 
|  | 264 | 
|  | 265 # The type of d values is collapsed, losing precision, because the dict containst lists instead of tuples, please fix! | 
|  | 266 def fix_map(d :Dict[str, List[Union[float, FoldChange]]], core_map :ET.ElementTree, threshold_P_V :float, threshold_F_C :float, max_z_score :float) -> ET.ElementTree: | 
|  | 267     """ | 
|  | 268     Edits the selected SVG map based on the p-value and fold change data (d) and some significance thresholds also passed as inputs. | 
|  | 269 | 
|  | 270     Args: | 
|  | 271         d : dictionary mapping a p-value and a fold-change value (values) to each reaction ID as encoded in the SVG map (keys) | 
|  | 272         core_map : SVG map to modify | 
|  | 273         threshold_P_V : threshold for a p-value to be considered significant | 
|  | 274         threshold_F_C : threshold for a fold change value to be considered significant | 
|  | 275         max_z_score : highest z-score (absolute value) | 
|  | 276 | 
|  | 277     Returns: | 
|  | 278         ET.ElementTree : the modified core_map | 
|  | 279 | 
|  | 280     Side effects: | 
|  | 281         core_map : mut | 
|  | 282     """ | 
|  | 283     maxT = 12 | 
|  | 284     minT = 2 | 
|  | 285     grey = '#BEBEBE' | 
|  | 286     blue = '#6495ed' | 
|  | 287     red = '#ecac68' | 
|  | 288     for el in core_map.iter(): | 
|  | 289         el_id = str(el.get('id')) | 
|  | 290         if el_id.startswith('R_'): | 
|  | 291             tmp = d.get(el_id[2:]) | 
|  | 292             if tmp != None: | 
|  | 293                 p_val :float = tmp[0] | 
|  | 294                 f_c = tmp[1] | 
|  | 295                 z_score = tmp[2] | 
|  | 296                 if p_val < threshold_P_V: | 
|  | 297                     if not isinstance(f_c, str): | 
|  | 298                         if abs(f_c) < ((threshold_F_C - 1) / (abs(threshold_F_C) + 1)): # | 
|  | 299                             col = grey | 
|  | 300                             width = str(minT) | 
|  | 301                         else: | 
|  | 302                             if f_c < 0: | 
|  | 303                                 col = blue | 
|  | 304                             elif f_c > 0: | 
|  | 305                                 col = red | 
|  | 306                             width = str(max((abs(z_score) * maxT) / max_z_score, minT)) | 
|  | 307                     else: | 
|  | 308                         if f_c == '-INF': | 
|  | 309                             col = blue | 
|  | 310                         elif f_c == 'INF': | 
|  | 311                             col = red | 
|  | 312                         width = str(maxT) | 
|  | 313                     dash = 'none' | 
|  | 314                 else: | 
|  | 315                     dash = '5,5' | 
|  | 316                     col = grey | 
|  | 317                     width = str(minT) | 
|  | 318                 el.set('style', fix_style(el.get('style', ""), col, width, dash)) | 
|  | 319     return core_map | 
|  | 320 | 
|  | 321 def getElementById(reactionId :str, metabMap :ET.ElementTree) -> utils.Result[ET.Element, utils.Result.ResultErr]: | 
|  | 322     """ | 
|  | 323     Finds any element in the given map with the given ID. ID uniqueness in an svg file is recommended but | 
|  | 324     not enforced, if more than one element with the exact ID is found only the first will be returned. | 
|  | 325 | 
|  | 326     Args: | 
|  | 327         reactionId (str): exact ID of the requested element. | 
|  | 328         metabMap (ET.ElementTree): metabolic map containing the element. | 
|  | 329 | 
|  | 330     Returns: | 
|  | 331         utils.Result[ET.Element, ResultErr]: result of the search, either the first match found or a ResultErr. | 
|  | 332     """ | 
|  | 333     return utils.Result.Ok( | 
|  | 334         f"//*[@id=\"{reactionId}\"]").map( | 
|  | 335         lambda xPath : metabMap.xpath(xPath)[0]).mapErr( | 
|  | 336         lambda _ : utils.Result.ResultErr(f"No elements with ID \"{reactionId}\" found in map")) | 
|  | 337         # ^^^ we shamelessly ignore the contents of the IndexError, it offers nothing to the user. | 
|  | 338 | 
|  | 339 def styleMapElement(element :ET.Element, styleStr :str) -> None: | 
|  | 340     currentStyles :str = element.get("style", "") | 
|  | 341     if re.search(r";stroke:[^;]+;stroke-width:[^;]+;stroke-dasharray:[^;]+$", currentStyles): | 
|  | 342         currentStyles = ';'.join(currentStyles.split(';')[:-3]) | 
|  | 343 | 
|  | 344     element.set("style", currentStyles + styleStr) | 
|  | 345 | 
|  | 346 class ReactionDirection(Enum): | 
|  | 347     Unknown = "" | 
|  | 348     Direct  = "_F" | 
|  | 349     Inverse = "_B" | 
|  | 350 | 
|  | 351     @classmethod | 
|  | 352     def fromDir(cls, s :str) -> "ReactionDirection": | 
|  | 353         # vvv as long as there's so few variants I actually condone the if spam: | 
|  | 354         if s == ReactionDirection.Direct.value:  return ReactionDirection.Direct | 
|  | 355         if s == ReactionDirection.Inverse.value: return ReactionDirection.Inverse | 
|  | 356         return ReactionDirection.Unknown | 
|  | 357 | 
|  | 358     @classmethod | 
|  | 359     def fromReactionId(cls, reactionId :str) -> "ReactionDirection": | 
|  | 360         return ReactionDirection.fromDir(reactionId[-2:]) | 
|  | 361 | 
|  | 362 def getArrowBodyElementId(reactionId :str) -> str: | 
|  | 363     if reactionId.endswith("_RV"): reactionId = reactionId[:-3] #TODO: standardize _RV | 
|  | 364     elif ReactionDirection.fromReactionId(reactionId) is not ReactionDirection.Unknown: reactionId = reactionId[:-2] | 
|  | 365     return f"R_{reactionId}" | 
|  | 366 | 
|  | 367 def getArrowHeadElementId(reactionId :str) -> Tuple[str, str]: | 
|  | 368     """ | 
|  | 369     We attempt extracting the direction information from the provided reaction ID, if unsuccessful we provide the IDs of both directions. | 
|  | 370 | 
|  | 371     Args: | 
|  | 372         reactionId : the provided reaction ID. | 
|  | 373 | 
|  | 374     Returns: | 
|  | 375         Tuple[str, str]: either a single str ID for the correct arrow head followed by an empty string or both options to try. | 
|  | 376     """ | 
|  | 377     if reactionId.endswith("_RV"): reactionId = reactionId[:-3] #TODO: standardize _RV | 
|  | 378     elif ReactionDirection.fromReactionId(reactionId) is not ReactionDirection.Unknown: return reactionId[:-3:-1] + reactionId[:-2], "" | 
|  | 379     return f"F_{reactionId}", f"B_{reactionId}" | 
|  | 380 | 
|  | 381 class ArrowColor(Enum): | 
|  | 382     """ | 
|  | 383     Encodes possible arrow colors based on their meaning in the enrichment process. | 
|  | 384     """ | 
|  | 385     Invalid       = "#BEBEBE" # gray, fold-change under treshold | 
|  | 386     UpRegulated   = "#ecac68" # red, up-regulated reaction | 
|  | 387     DownRegulated = "#6495ed" # blue, down-regulated reaction | 
|  | 388 | 
|  | 389     UpRegulatedInv = "#FF0000" | 
|  | 390     # ^^^ different shade of red (actually orange), up-regulated net value for a reversible reaction with | 
|  | 391     # conflicting enrichment in the two directions. | 
|  | 392 | 
|  | 393     DownRegulatedInv = "#0000FF" | 
|  | 394     # ^^^ different shade of blue (actually purple), down-regulated net value for a reversible reaction with | 
|  | 395     # conflicting enrichment in the two directions. | 
|  | 396 | 
|  | 397     @classmethod | 
|  | 398     def fromFoldChangeSign(cls, foldChange :float, *, useAltColor = False) -> "ArrowColor": | 
|  | 399         colors = (cls.DownRegulated, cls.DownRegulatedInv) if foldChange < 0 else (cls.UpRegulated, cls.UpRegulatedInv) | 
|  | 400         return colors[useAltColor] | 
|  | 401 | 
|  | 402     def __str__(self) -> str: return self.value | 
|  | 403 | 
|  | 404 class Arrow: | 
|  | 405     """ | 
|  | 406     Models the properties of a reaction arrow that change based on enrichment. | 
|  | 407     """ | 
|  | 408     MIN_W = 2 | 
|  | 409     MAX_W = 12 | 
|  | 410 | 
|  | 411     def __init__(self, width :int, col: ArrowColor, *, isDashed = False) -> None: | 
|  | 412         """ | 
|  | 413         (Private) Initializes an instance of Arrow. | 
|  | 414 | 
|  | 415         Args: | 
|  | 416             width : width of the arrow, ideally to be kept within Arrow.MIN_W and Arrow.MAX_W (not enforced). | 
|  | 417             col : color of the arrow. | 
|  | 418             isDashed : whether the arrow should be dashed, meaning the associated pValue resulted not significant. | 
|  | 419 | 
|  | 420         Returns: | 
|  | 421             None : practically, a Arrow instance. | 
|  | 422         """ | 
|  | 423         self.w    = width | 
|  | 424         self.col  = col | 
|  | 425         self.dash = isDashed | 
|  | 426 | 
|  | 427     def applyTo(self, reactionId :str, metabMap :ET.ElementTree, styleStr :str) -> None: | 
|  | 428         if getElementById(reactionId, metabMap).map(lambda el : styleMapElement(el, styleStr)).isErr: | 
|  | 429             ERRORS.append(reactionId) | 
|  | 430 | 
|  | 431     def styleReactionElements(self, metabMap :ET.ElementTree, reactionId :str, *, mindReactionDir = True) -> None: | 
|  | 432         # If We're dealing with RAS data or in general don't care about the direction of the reaction we only style the arrow body | 
|  | 433         if not mindReactionDir: | 
|  | 434             return self.applyTo(getArrowBodyElementId(reactionId), metabMap, self.toStyleStr()) | 
|  | 435 | 
|  | 436         # Now we style the arrow head(s): | 
|  | 437         idOpt1, idOpt2 = getArrowHeadElementId(reactionId) | 
|  | 438         self.applyTo(idOpt1, metabMap, self.toStyleStr(downSizedForTips = True)) | 
|  | 439         if idOpt2: self.applyTo(idOpt2, metabMap, self.toStyleStr(downSizedForTips = True)) | 
|  | 440 | 
|  | 441     def getMapReactionId(self, reactionId :str, mindReactionDir :bool) -> str: | 
|  | 442         """ | 
|  | 443         Computes the reaction ID as encoded in the map for a given reaction ID from the dataset. | 
|  | 444 | 
|  | 445         Args: | 
|  | 446             reactionId: the reaction ID, as encoded in the dataset. | 
|  | 447             mindReactionDir: if True forward (F_) and backward (B_) directions will be encoded in the result. | 
|  | 448 | 
|  | 449         Returns: | 
|  | 450             str : the ID of an arrow's body or tips in the map. | 
|  | 451         """ | 
|  | 452         # we assume the reactionIds also don't encode reaction dir if they don't mind it when styling the map. | 
|  | 453         if not mindReactionDir: return "R_" + reactionId | 
|  | 454 | 
|  | 455         #TODO: this is clearly something we need to make consistent in RPS | 
|  | 456         return (reactionId[:-3:-1] + reactionId[:-2]) if reactionId[:-2] in ["_F", "_B"] else f"F_{reactionId}" # "Pyr_F" --> "F_Pyr" | 
|  | 457 | 
|  | 458     def toStyleStr(self, *, downSizedForTips = False) -> str: | 
|  | 459         """ | 
|  | 460         Collapses the styles of this Arrow into a str, ready to be applied as part of the "style" property on an svg element. | 
|  | 461 | 
|  | 462         Returns: | 
|  | 463             str : the styles string. | 
|  | 464         """ | 
|  | 465         width = self.w | 
|  | 466         if downSizedForTips: width *= 0.8 | 
|  | 467         return f";stroke:{self.col};stroke-width:{width};stroke-dasharray:{'5,5' if self.dash else 'none'}" | 
|  | 468 | 
|  | 469 # vvv These constants could be inside the class itself a static properties, but python | 
|  | 470 # was built by brainless organisms so here we are! | 
|  | 471 INVALID_ARROW = Arrow(Arrow.MIN_W, ArrowColor.Invalid) | 
|  | 472 INSIGNIFICANT_ARROW = Arrow(Arrow.MIN_W, ArrowColor.Invalid, isDashed = True) | 
|  | 473 | 
|  | 474 def applyRpsEnrichmentToMap(rpsEnrichmentRes :Dict[str, Union[Tuple[float, FoldChange], Tuple[float, FoldChange, float, float]]], metabMap :ET.ElementTree, maxNumericZScore :float) -> None: | 
|  | 475     """ | 
|  | 476     Applies RPS enrichment results to the provided metabolic map. | 
|  | 477 | 
|  | 478     Args: | 
|  | 479         rpsEnrichmentRes : RPS enrichment results. | 
|  | 480         metabMap : the metabolic map to edit. | 
|  | 481         maxNumericZScore : biggest finite z-score value found. | 
|  | 482 | 
|  | 483     Side effects: | 
|  | 484         metabMap : mut | 
|  | 485 | 
|  | 486     Returns: | 
|  | 487         None | 
|  | 488     """ | 
|  | 489     for reactionId, values in rpsEnrichmentRes.items(): | 
|  | 490         pValue = values[0] | 
|  | 491         foldChange = values[1] | 
|  | 492         z_score = values[2] | 
|  | 493 | 
|  | 494         if isinstance(foldChange, str): foldChange = float(foldChange) | 
|  | 495         if pValue >= ARGS.pValue: # pValue above tresh: dashed arrow | 
|  | 496             INSIGNIFICANT_ARROW.styleReactionElements(metabMap, reactionId) | 
|  | 497             continue | 
|  | 498 | 
|  | 499         if abs(foldChange) <  (ARGS.fChange - 1) / (abs(ARGS.fChange) + 1): | 
|  | 500             INVALID_ARROW.styleReactionElements(metabMap, reactionId) | 
|  | 501             continue | 
|  | 502 | 
|  | 503         width = Arrow.MAX_W | 
|  | 504         if not math.isinf(foldChange): | 
|  | 505             try: width = max(abs(z_score * Arrow.MAX_W) / maxNumericZScore, Arrow.MIN_W) | 
|  | 506             except ZeroDivisionError: pass | 
|  | 507 | 
|  | 508         if not reactionId.endswith("_RV"): # RV stands for reversible reactions | 
|  | 509             Arrow(width, ArrowColor.fromFoldChangeSign(foldChange)).styleReactionElements(metabMap, reactionId) | 
|  | 510             continue | 
|  | 511 | 
|  | 512         reactionId = reactionId[:-3] # Remove "_RV" | 
|  | 513 | 
|  | 514         inversionScore = (values[3] < 0) + (values[4] < 0) # Compacts the signs of averages into 1 easy to check score | 
|  | 515         if inversionScore == 2: foldChange *= -1 | 
|  | 516         # ^^^ Style the inverse direction with the opposite sign netValue | 
|  | 517 | 
|  | 518         # If the score is 1 (opposite signs) we use alternative colors vvv | 
|  | 519         arrow = Arrow(width, ArrowColor.fromFoldChangeSign(foldChange, useAltColor = inversionScore == 1)) | 
|  | 520 | 
|  | 521         # vvv These 2 if statements can both be true and can both happen | 
|  | 522         if ARGS.net: # style arrow head(s): | 
|  | 523             arrow.styleReactionElements(metabMap, reactionId + ("_B" if inversionScore == 2 else "_F")) | 
|  | 524 | 
|  | 525         if not ARGS.using_RAS: # style arrow body | 
|  | 526             arrow.styleReactionElements(metabMap, reactionId, mindReactionDir = False) | 
|  | 527 | 
|  | 528 ############################ split class ###################################### | 
|  | 529 def split_class(classes :pd.DataFrame, resolve_rules :Dict[str, List[float]]) -> Dict[str, List[List[float]]]: | 
|  | 530     """ | 
|  | 531     Generates a :dict that groups together data from a :DataFrame based on classes the data is related to. | 
|  | 532 | 
|  | 533     Args: | 
|  | 534         classes : a :DataFrame of only string values, containing class information (rows) and keys to query the resolve_rules :dict | 
|  | 535         resolve_rules : a :dict containing :float data | 
|  | 536 | 
|  | 537     Returns: | 
|  | 538         dict : the dict with data grouped by class | 
|  | 539 | 
|  | 540     Side effects: | 
|  | 541         classes : mut | 
|  | 542     """ | 
|  | 543     class_pat :Dict[str, List[List[float]]] = {} | 
|  | 544     for i in range(len(classes)): | 
|  | 545         classe :str = classes.iloc[i, 1] | 
|  | 546         if pd.isnull(classe): continue | 
|  | 547 | 
|  | 548         l :List[List[float]] = [] | 
|  | 549         for j in range(i, len(classes)): | 
|  | 550             if classes.iloc[j, 1] == classe: | 
|  | 551                 pat_id :str = classes.iloc[j, 0] | 
|  | 552                 tmp = resolve_rules.get(pat_id, None) | 
|  | 553                 if tmp != None: | 
|  | 554                     l.append(tmp) | 
|  | 555                 classes.iloc[j, 1] = None | 
|  | 556 | 
|  | 557         if l: | 
|  | 558             class_pat[classe] = list(map(list, zip(*l))) | 
|  | 559             continue | 
|  | 560 | 
|  | 561         utils.logWarning( | 
|  | 562             f"Warning: no sample found in class \"{classe}\", the class has been disregarded", ARGS.out_log) | 
|  | 563 | 
|  | 564     return class_pat | 
|  | 565 | 
|  | 566 ############################ conversion ############################################## | 
|  | 567 #conversion from svg to png | 
|  | 568 def svg_to_png_with_background(svg_path :utils.FilePath, png_path :utils.FilePath, dpi :int = 72, scale :int = 1, size :Optional[float] = None) -> None: | 
|  | 569     """ | 
|  | 570     Internal utility to convert an SVG to PNG (forced opaque) to aid in PDF conversion. | 
|  | 571 | 
|  | 572     Args: | 
|  | 573         svg_path : path to SVG file | 
|  | 574         png_path : path for new PNG file | 
|  | 575         dpi : dots per inch of the generated PNG | 
|  | 576         scale : scaling factor for the generated PNG, computed internally when a size is provided | 
|  | 577         size : final effective width of the generated PNG | 
|  | 578 | 
|  | 579     Returns: | 
|  | 580         None | 
|  | 581     """ | 
|  | 582     if size: | 
|  | 583         image = pyvips.Image.new_from_file(svg_path.show(), dpi=dpi, scale=1) | 
|  | 584         scale = size / image.width | 
|  | 585         image = image.resize(scale) | 
|  | 586     else: | 
|  | 587         image = pyvips.Image.new_from_file(svg_path.show(), dpi=dpi, scale=scale) | 
|  | 588 | 
|  | 589     white_background = pyvips.Image.black(image.width, image.height).new_from_image([255, 255, 255]) | 
|  | 590     white_background = white_background.affine([scale, 0, 0, scale]) | 
|  | 591 | 
|  | 592     if white_background.bands != image.bands: | 
|  | 593         white_background = white_background.extract_band(0) | 
|  | 594 | 
|  | 595     composite_image = white_background.composite2(image, 'over') | 
|  | 596     composite_image.write_to_file(png_path.show()) | 
|  | 597 | 
|  | 598 #funzione unica, lascio fuori i file e li passo in input | 
|  | 599 #conversion from png to pdf | 
|  | 600 def convert_png_to_pdf(png_file :utils.FilePath, pdf_file :utils.FilePath) -> None: | 
|  | 601     """ | 
|  | 602     Internal utility to convert a PNG to PDF to aid from SVG conversion. | 
|  | 603 | 
|  | 604     Args: | 
|  | 605         png_file : path to PNG file | 
|  | 606         pdf_file : path to new PDF file | 
|  | 607 | 
|  | 608     Returns: | 
|  | 609         None | 
|  | 610     """ | 
|  | 611     image = Image.open(png_file.show()) | 
|  | 612     image = image.convert("RGB") | 
|  | 613     image.save(pdf_file.show(), "PDF", resolution=100.0) | 
|  | 614 | 
|  | 615 #function called to reduce redundancy in the code | 
|  | 616 def convert_to_pdf(file_svg :utils.FilePath, file_png :utils.FilePath, file_pdf :utils.FilePath) -> None: | 
|  | 617     """ | 
|  | 618     Converts the SVG map at the provided path to PDF. | 
|  | 619 | 
|  | 620     Args: | 
|  | 621         file_svg : path to SVG file | 
|  | 622         file_png : path to PNG file | 
|  | 623         file_pdf : path to new PDF file | 
|  | 624 | 
|  | 625     Returns: | 
|  | 626         None | 
|  | 627     """ | 
|  | 628     svg_to_png_with_background(file_svg, file_png) | 
|  | 629     try: | 
|  | 630         convert_png_to_pdf(file_png, file_pdf) | 
|  | 631         print(f'PDF file {file_pdf.filePath} successfully generated.') | 
|  | 632 | 
|  | 633     except Exception as e: | 
|  | 634         raise utils.DataErr(file_pdf.show(), f'Error generating PDF file: {e}') | 
|  | 635 | 
|  | 636 ############################ map ############################################## | 
|  | 637 def buildOutputPath(dataset1Name :str, dataset2Name = "rest", *, details = "", ext :utils.FileFormat) -> utils.FilePath: | 
|  | 638     """ | 
|  | 639     Builds a FilePath instance from the names of confronted datasets ready to point to a location in the | 
|  | 640     "result/" folder, used by this tool for output files in collections. | 
|  | 641 | 
|  | 642     Args: | 
|  | 643         dataset1Name : _description_ | 
|  | 644         dataset2Name : _description_. Defaults to "rest". | 
|  | 645         details : _description_ | 
|  | 646         ext : _description_ | 
|  | 647 | 
|  | 648     Returns: | 
|  | 649         utils.FilePath : _description_ | 
|  | 650     """ | 
|  | 651     # This function returns a util data structure but is extremely specific to this module. | 
|  | 652     # RAS also uses collections as output and as such might benefit from a method like this, but I'd wait | 
|  | 653     # TODO: until a third tool with multiple outputs appears before porting this to utils. | 
|  | 654     return utils.FilePath( | 
|  | 655         f"{dataset1Name}_vs_{dataset2Name}" + (f" ({details})" if details else ""), | 
|  | 656         # ^^^ yes this string is built every time even if the form is the same for the same 2 datasets in | 
|  | 657         # all output files: I don't care, this was never the performance bottleneck of the tool and | 
|  | 658         # there is no other net gain in saving and re-using the built string. | 
|  | 659         ext, | 
| 146 | 660         prefix = ARGS.output_path) | 
| 4 | 661 | 
|  | 662 FIELD_NOT_AVAILABLE = '/' | 
|  | 663 def writeToCsv(rows: List[list], fieldNames :List[str], outPath :utils.FilePath) -> None: | 
|  | 664     fieldsAmt = len(fieldNames) | 
|  | 665     with open(outPath.show(), "w", newline = "") as fd: | 
|  | 666         writer = csv.DictWriter(fd, fieldnames = fieldNames, delimiter = '\t') | 
|  | 667         writer.writeheader() | 
|  | 668 | 
|  | 669         for row in rows: | 
|  | 670             sizeMismatch = fieldsAmt - len(row) | 
|  | 671             if sizeMismatch > 0: row.extend([FIELD_NOT_AVAILABLE] * sizeMismatch) | 
|  | 672             writer.writerow({ field : data for field, data in zip(fieldNames, row) }) | 
|  | 673 | 
|  | 674 OldEnrichedScores = Dict[str, List[Union[float, FoldChange]]] #TODO: try to use Tuple whenever possible | 
|  | 675 def writeTabularResult(enrichedScores : OldEnrichedScores, ras_enrichment: bool, outPath :utils.FilePath) -> None: | 
|  | 676     fieldNames = ["ids", "P_Value", "fold change"] | 
|  | 677     if not ras_enrichment: fieldNames.extend(["average_1", "average_2"]) | 
|  | 678 | 
|  | 679     writeToCsv([ [reactId] + values for reactId, values in enrichedScores.items() ], fieldNames, outPath) | 
|  | 680 | 
|  | 681 def temp_thingsInCommon(tmp :Dict[str, List[Union[float, FoldChange]]], core_map :ET.ElementTree, max_z_score :float, dataset1Name :str, dataset2Name = "rest", ras_enrichment = True) -> None: | 
|  | 682     # this function compiles the things always in common between comparison modes after enrichment. | 
|  | 683     # TODO: organize, name better. | 
|  | 684     writeTabularResult(tmp, ras_enrichment, buildOutputPath(dataset1Name, dataset2Name, details = "Tabular Result", ext = utils.FileFormat.TSV)) | 
|  | 685 | 
|  | 686     if ras_enrichment: | 
|  | 687         fix_map(tmp, core_map, ARGS.pValue, ARGS.fChange, max_z_score) | 
|  | 688         return | 
|  | 689 | 
|  | 690     for reactId, enrichData in tmp.items(): tmp[reactId] = tuple(enrichData) | 
|  | 691     applyRpsEnrichmentToMap(tmp, core_map, max_z_score) | 
|  | 692 | 
|  | 693 def computePValue(dataset1Data: List[float], dataset2Data: List[float]) -> Tuple[float, float]: | 
|  | 694     """ | 
|  | 695     Computes the statistical significance score (P-value) of the comparison between coherent data | 
|  | 696     from two datasets. The data is supposed to, in both datasets: | 
|  | 697     - be related to the same reaction ID; | 
|  | 698     - be ordered by sample, such that the item at position i in both lists is related to the | 
|  | 699       same sample or cell line. | 
|  | 700 | 
|  | 701     Args: | 
|  | 702         dataset1Data : data from the 1st dataset. | 
|  | 703         dataset2Data : data from the 2nd dataset. | 
|  | 704 | 
|  | 705     Returns: | 
|  | 706         tuple: (P-value, Z-score) | 
|  | 707             - P-value from a Kolmogorov-Smirnov test on the provided data. | 
|  | 708             - Z-score of the difference between means of the two datasets. | 
|  | 709     """ | 
|  | 710     # Perform Kolmogorov-Smirnov test | 
|  | 711     ks_statistic, p_value = st.ks_2samp(dataset1Data, dataset2Data) | 
|  | 712 | 
|  | 713     # Calculate means and standard deviations | 
|  | 714     mean1 = np.mean(dataset1Data) | 
|  | 715     mean2 = np.mean(dataset2Data) | 
|  | 716     std1 = np.std(dataset1Data, ddof=1) | 
|  | 717     std2 = np.std(dataset2Data, ddof=1) | 
|  | 718 | 
|  | 719     n1 = len(dataset1Data) | 
|  | 720     n2 = len(dataset2Data) | 
|  | 721 | 
|  | 722     # Calculate Z-score | 
|  | 723     z_score = (mean1 - mean2) / np.sqrt((std1**2 / n1) + (std2**2 / n2)) | 
|  | 724 | 
|  | 725     return p_value, z_score | 
|  | 726 | 
|  | 727 def compareDatasetPair(dataset1Data :List[List[float]], dataset2Data :List[List[float]], ids :List[str]) -> Tuple[Dict[str, List[Union[float, FoldChange]]], float]: | 
|  | 728     #TODO: the following code still suffers from "dumbvarnames-osis" | 
|  | 729     tmp :Dict[str, List[Union[float, FoldChange]]] = {} | 
|  | 730     count   = 0 | 
|  | 731     max_z_score = 0 | 
|  | 732 | 
|  | 733     for l1, l2 in zip(dataset1Data, dataset2Data): | 
|  | 734         reactId = ids[count] | 
|  | 735         count += 1 | 
|  | 736         if not reactId: continue # we skip ids that have already been processed | 
|  | 737 | 
|  | 738         try: #TODO: identify the source of these errors and minimize code in the try block | 
|  | 739             reactDir = ReactionDirection.fromReactionId(reactId) | 
|  | 740             # Net score is computed only for reversible reactions when user wants it on arrow tips or when RAS datasets aren't used | 
|  | 741             if (ARGS.net or not ARGS.using_RAS) and reactDir is not ReactionDirection.Unknown: | 
|  | 742                 try: position = ids.index(reactId[:-1] + ('B' if reactDir is ReactionDirection.Direct else 'F')) | 
|  | 743                 except ValueError: continue # we look for the complementary id, if not found we skip | 
|  | 744 | 
|  | 745                 nets1 = np.subtract(l1, dataset1Data[position]) | 
|  | 746                 nets2 = np.subtract(l2, dataset2Data[position]) | 
|  | 747 | 
|  | 748                 p_value, z_score = computePValue(nets1, nets2) | 
|  | 749                 avg1 = sum(nets1)   / len(nets1) | 
|  | 750                 avg2 = sum(nets2)   / len(nets2) | 
|  | 751                 net = fold_change(avg1, avg2) | 
|  | 752 | 
|  | 753                 if math.isnan(net): continue | 
|  | 754                 tmp[reactId[:-1] + "RV"] = [p_value, net, z_score, avg1, avg2] | 
|  | 755 | 
|  | 756                 # vvv complementary directional ids are set to None once processed if net is to be applied to tips | 
|  | 757                 if ARGS.net: | 
|  | 758                     ids[position] = None | 
|  | 759                     continue | 
|  | 760 | 
|  | 761             # fallthrough is intended, regular scores need to be computed when tips aren't net but RAS datasets aren't used | 
|  | 762             p_value, z_score = computePValue(l1, l2) | 
|  | 763             avg = fold_change(sum(l1) / len(l1), sum(l2) / len(l2)) | 
|  | 764             if not isinstance(z_score, str) and max_z_score < abs(z_score): max_z_score = abs(z_score) | 
|  | 765             tmp[reactId] = [float(p_value), avg, z_score] | 
|  | 766 | 
|  | 767         except (TypeError, ZeroDivisionError): continue | 
|  | 768 | 
|  | 769     return tmp, max_z_score | 
|  | 770 | 
| 151 | 771 def computeEnrichment(class_pat: Dict[str, List[List[float]]], ids: List[str], *, fromRAS=True) -> List[Tuple[str, str, dict, float]]: | 
| 4 | 772     """ | 
|  | 773     Compares clustered data based on a given comparison mode and applies enrichment-based styling on the | 
|  | 774     provided metabolic map. | 
|  | 775 | 
|  | 776     Args: | 
|  | 777         class_pat : the clustered data. | 
|  | 778         ids : ids for data association. | 
|  | 779         fromRAS : whether the data to enrich consists of RAS scores. | 
|  | 780 | 
|  | 781     Returns: | 
| 143 | 782         List[Tuple[str, str, dict, float]]: List of tuples with pairs of dataset names, comparison dictionary, and max z-score. | 
|  | 783 | 
| 4 | 784     Raises: | 
|  | 785         sys.exit : if there are less than 2 classes for comparison | 
|  | 786     """ | 
| 143 | 787     class_pat = {k.strip(): v for k, v in class_pat.items()} | 
|  | 788     if (not class_pat) or (len(class_pat.keys()) < 2): | 
|  | 789         sys.exit('Execution aborted: classes provided for comparisons are less than two\n') | 
|  | 790 | 
|  | 791     enrichment_results = [] | 
| 4 | 792 | 
|  | 793     if ARGS.comparison == "manyvsmany": | 
|  | 794         for i, j in it.combinations(class_pat.keys(), 2): | 
|  | 795             comparisonDict, max_z_score = compareDatasetPair(class_pat.get(i), class_pat.get(j), ids) | 
| 143 | 796             enrichment_results.append((i, j, comparisonDict, max_z_score)) | 
| 4 | 797 | 
|  | 798     elif ARGS.comparison == "onevsrest": | 
|  | 799         for single_cluster in class_pat.keys(): | 
| 143 | 800             rest = [item for k, v in class_pat.items() if k != single_cluster for item in v] | 
| 4 | 801             comparisonDict, max_z_score = compareDatasetPair(class_pat.get(single_cluster), rest, ids) | 
| 143 | 802             enrichment_results.append((single_cluster, "rest", comparisonDict, max_z_score)) | 
| 4 | 803 | 
|  | 804     elif ARGS.comparison == "onevsmany": | 
|  | 805         controlItems = class_pat.get(ARGS.control) | 
|  | 806         for otherDataset in class_pat.keys(): | 
| 143 | 807             if otherDataset == ARGS.control: | 
|  | 808                 continue | 
| 4 | 809             comparisonDict, max_z_score = compareDatasetPair(controlItems, class_pat.get(otherDataset), ids) | 
| 143 | 810             enrichment_results.append((ARGS.control, otherDataset, comparisonDict, max_z_score)) | 
|  | 811 | 
|  | 812     return enrichment_results | 
| 4 | 813 | 
| 143 | 814 def createOutputMaps(dataset1Name: str, dataset2Name: str, core_map: ET.ElementTree) -> None: | 
|  | 815     svgFilePath = buildOutputPath(dataset1Name, dataset2Name, details="SVG Map", ext=utils.FileFormat.SVG) | 
| 4 | 816     utils.writeSvg(svgFilePath, core_map) | 
|  | 817 | 
|  | 818     if ARGS.generate_pdf: | 
| 143 | 819         pngPath = buildOutputPath(dataset1Name, dataset2Name, details="PNG Map", ext=utils.FileFormat.PNG) | 
|  | 820         pdfPath = buildOutputPath(dataset1Name, dataset2Name, details="PDF Map", ext=utils.FileFormat.PDF) | 
|  | 821         convert_to_pdf(svgFilePath, pngPath, pdfPath) | 
| 4 | 822 | 
| 143 | 823     if not ARGS.generate_svg: | 
| 145 | 824         os.remove(svgFilePath.show()) | 
| 4 | 825 | 
|  | 826 ClassPat = Dict[str, List[List[float]]] | 
|  | 827 def getClassesAndIdsFromDatasets(datasetsPaths :List[str], datasetPath :str, classPath :str, names :List[str]) -> Tuple[List[str], ClassPat]: | 
|  | 828     # TODO: I suggest creating dicts with ids as keys instead of keeping class_pat and ids separate, | 
|  | 829     # for the sake of everyone's sanity. | 
|  | 830     class_pat :ClassPat = {} | 
|  | 831     if ARGS.option == 'datasets': | 
|  | 832         num = 1 #TODO: the dataset naming function could be a generator | 
|  | 833         for path, name in zip(datasetsPaths, names): | 
|  | 834             name = name_dataset(name, num) | 
|  | 835             resolve_rules_float, ids = getDatasetValues(path, name) | 
|  | 836             if resolve_rules_float != None: | 
|  | 837                 class_pat[name] = list(map(list, zip(*resolve_rules_float.values()))) | 
|  | 838 | 
|  | 839             num += 1 | 
|  | 840 | 
|  | 841     elif ARGS.option == "dataset_class": | 
|  | 842         classes = read_dataset(classPath, "class") | 
|  | 843         classes = classes.astype(str) | 
|  | 844 | 
|  | 845         resolve_rules_float, ids = getDatasetValues(datasetPath, "Dataset Class (not actual name)") | 
|  | 846         if resolve_rules_float != None: class_pat = split_class(classes, resolve_rules_float) | 
|  | 847 | 
|  | 848     return ids, class_pat | 
|  | 849     #^^^ TODO: this could be a match statement over an enum, make it happen future marea dev with python 3.12! (it's why I kept the ifs) | 
|  | 850 | 
|  | 851 #TODO: create these damn args as FilePath objects | 
|  | 852 def getDatasetValues(datasetPath :str, datasetName :str) -> Tuple[ClassPat, List[str]]: | 
|  | 853     """ | 
|  | 854     Opens the dataset at the given path and extracts the values (expected nullable numerics) and the IDs. | 
|  | 855 | 
|  | 856     Args: | 
|  | 857         datasetPath : path to the dataset | 
|  | 858         datasetName (str): dataset name, used in error reporting | 
|  | 859 | 
|  | 860     Returns: | 
|  | 861         Tuple[ClassPat, List[str]]: values and IDs extracted from the dataset | 
|  | 862     """ | 
|  | 863     dataset = read_dataset(datasetPath, datasetName) | 
|  | 864     IDs = pd.Series.tolist(dataset.iloc[:, 0].astype(str)) | 
|  | 865 | 
|  | 866     dataset = dataset.drop(dataset.columns[0], axis = "columns").to_dict("list") | 
|  | 867     return { id : list(map(utils.Float("Dataset values, not an argument"), values)) for id, values in dataset.items() }, IDs | 
|  | 868 | 
|  | 869 ############################ MAIN ############################################# | 
| 147 | 870 def main(args:List[str] = None) -> None: | 
| 4 | 871     """ | 
|  | 872     Initializes everything and sets the program in motion based on the fronted input arguments. | 
|  | 873 | 
|  | 874     Returns: | 
|  | 875         None | 
|  | 876 | 
|  | 877     Raises: | 
|  | 878         sys.exit : if a user-provided custom map is in the wrong format (ET.XMLSyntaxError, ET.XMLSchemaParseError) | 
|  | 879     """ | 
|  | 880     global ARGS | 
| 146 | 881     ARGS = process_args(args) | 
| 4 | 882 | 
| 146 | 883     if not os.path.isdir(ARGS.output_path): | 
|  | 884         os.makedirs(ARGS.output_path) | 
| 4 | 885 | 
| 143 | 886     core_map: ET.ElementTree = ARGS.choice_map.getMap( | 
| 4 | 887         ARGS.tool_dir, | 
|  | 888         utils.FilePath.fromStrPath(ARGS.custom_map) if ARGS.custom_map else None) | 
| 143 | 889 | 
| 4 | 890     if ARGS.using_RAS: | 
|  | 891         ids, class_pat = getClassesAndIdsFromDatasets(ARGS.input_datas, ARGS.input_data, ARGS.input_class, ARGS.names) | 
| 151 | 892         enrichment_results = computeEnrichment(class_pat, ids) | 
| 143 | 893         for i, j, comparisonDict, max_z_score in enrichment_results: | 
|  | 894             map_copy = copy.deepcopy(core_map) | 
| 144 | 895             temp_thingsInCommon(comparisonDict, map_copy, max_z_score, i, j, ras_enrichment=True) | 
| 143 | 896             createOutputMaps(i, j, map_copy) | 
| 4 | 897 | 
|  | 898     if ARGS.using_RPS: | 
|  | 899         ids, class_pat = getClassesAndIdsFromDatasets(ARGS.input_datas_rps, ARGS.input_data_rps, ARGS.input_class_rps, ARGS.names_rps) | 
| 151 | 900         enrichment_results = computeEnrichment(class_pat, ids, fromRAS=False) | 
| 143 | 901         for i, j, comparisonDict, max_z_score in enrichment_results: | 
|  | 902             map_copy = copy.deepcopy(core_map) | 
| 144 | 903             temp_thingsInCommon(comparisonDict, map_copy, max_z_score, i, j, ras_enrichment=False) | 
| 143 | 904             createOutputMaps(i, j, map_copy) | 
| 4 | 905 | 
| 143 | 906     print('Execution succeeded') | 
| 4 | 907 ############################################################################### | 
|  | 908 if __name__ == "__main__": | 
|  | 909     main() |