| 4 | 1 from __future__ import division | 
|  | 2 import csv | 
|  | 3 from enum import Enum | 
|  | 4 import re | 
|  | 5 import sys | 
|  | 6 import numpy as np | 
|  | 7 import pandas as pd | 
|  | 8 import itertools as it | 
|  | 9 import scipy.stats as st | 
|  | 10 import lxml.etree as ET | 
|  | 11 import math | 
|  | 12 import utils.general_utils as utils | 
|  | 13 from PIL import Image | 
|  | 14 import os | 
|  | 15 import copy | 
|  | 16 import argparse | 
|  | 17 import pyvips | 
|  | 18 from PIL import Image, ImageDraw, ImageFont | 
|  | 19 from typing import Tuple, Union, Optional, List, Dict | 
|  | 20 import matplotlib.pyplot as plt | 
|  | 21 | 
|  | 22 ERRORS = [] | 
|  | 23 ########################## argparse ########################################## | 
|  | 24 ARGS :argparse.Namespace | 
| 147 | 25 def process_args(args:List[str] = None) -> argparse.Namespace: | 
| 4 | 26     """ | 
|  | 27     Interfaces the script of a module with its frontend, making the user's choices for various parameters available as values in code. | 
|  | 28 | 
|  | 29     Args: | 
|  | 30         args : Always obtained (in file) from sys.argv | 
|  | 31 | 
|  | 32     Returns: | 
|  | 33         Namespace : An object containing the parsed arguments | 
|  | 34     """ | 
|  | 35     parser = argparse.ArgumentParser( | 
|  | 36         usage = "%(prog)s [options]", | 
|  | 37         description = "process some value's genes to create a comparison's map.") | 
|  | 38 | 
|  | 39     #General: | 
|  | 40     parser.add_argument( | 
|  | 41         '-td', '--tool_dir', | 
|  | 42         type = str, | 
|  | 43         required = True, | 
|  | 44         help = 'your tool directory') | 
|  | 45 | 
|  | 46     parser.add_argument('-on', '--control', type = str) | 
|  | 47     parser.add_argument('-ol', '--out_log', help = "Output log") | 
|  | 48 | 
|  | 49     #Computation details: | 
|  | 50     parser.add_argument( | 
|  | 51         '-co', '--comparison', | 
|  | 52         type = str, | 
|  | 53         default = '1vs1', | 
|  | 54         choices = ['manyvsmany', 'onevsrest', 'onevsmany']) | 
|  | 55 | 
|  | 56     parser.add_argument( | 
|  | 57         '-pv' ,'--pValue', | 
|  | 58         type = float, | 
|  | 59         default = 0.1, | 
|  | 60         help = 'P-Value threshold (default: %(default)s)') | 
|  | 61 | 
|  | 62     parser.add_argument( | 
|  | 63         '-fc', '--fChange', | 
|  | 64         type = float, | 
|  | 65         default = 1.5, | 
|  | 66         help = 'Fold-Change threshold (default: %(default)s)') | 
|  | 67 | 
|  | 68 | 
|  | 69     parser.add_argument( | 
|  | 70         '-op', '--option', | 
|  | 71         type = str, | 
|  | 72         choices = ['datasets', 'dataset_class'], | 
|  | 73         help='dataset or dataset and class') | 
|  | 74 | 
|  | 75     parser.add_argument( | 
|  | 76         '-idf', '--input_data_fluxes', | 
|  | 77         type = str, | 
|  | 78         help = 'input dataset fluxes') | 
|  | 79 | 
|  | 80     parser.add_argument( | 
|  | 81         '-icf', '--input_class_fluxes', | 
|  | 82         type = str, | 
|  | 83         help = 'sample group specification fluxes') | 
|  | 84 | 
|  | 85     parser.add_argument( | 
|  | 86         '-idsf', '--input_datas_fluxes', | 
|  | 87         type = str, | 
|  | 88         nargs = '+', | 
|  | 89         help = 'input datasets fluxes') | 
|  | 90 | 
|  | 91     parser.add_argument( | 
|  | 92         '-naf', '--names_fluxes', | 
|  | 93         type = str, | 
|  | 94         nargs = '+', | 
|  | 95         help = 'input names fluxes') | 
|  | 96 | 
|  | 97     #Output: | 
|  | 98     parser.add_argument( | 
|  | 99         "-gs", "--generate_svg", | 
|  | 100         type = utils.Bool("generate_svg"), default = True, | 
|  | 101         help = "choose whether to generate svg") | 
|  | 102 | 
|  | 103     parser.add_argument( | 
|  | 104         "-gp", "--generate_pdf", | 
|  | 105         type = utils.Bool("generate_pdf"), default = True, | 
|  | 106         help = "choose whether to generate pdf") | 
|  | 107 | 
|  | 108     parser.add_argument( | 
|  | 109         '-cm', '--custom_map', | 
|  | 110         type = str, | 
|  | 111         help='custom map to use') | 
|  | 112 | 
|  | 113     parser.add_argument( | 
|  | 114         '-mc',  '--choice_map', | 
|  | 115         type = utils.Model, default = utils.Model.HMRcore, | 
|  | 116         choices = [utils.Model.HMRcore, utils.Model.ENGRO2, utils.Model.Custom]) | 
|  | 117 | 
|  | 118     parser.add_argument( | 
|  | 119         '-colorm',  '--color_map', | 
|  | 120         type = str, | 
|  | 121         choices = ["jet", "viridis"]) | 
| 147 | 122 | 
|  | 123     parser.add_argument( | 
|  | 124         '-idop', '--output_path', | 
|  | 125         type = str, | 
|  | 126         default='result', | 
|  | 127         help = 'output path for maps') | 
| 4 | 128 | 
| 147 | 129     args :argparse.Namespace = parser.parse_args(args) | 
| 185 | 130     args.net = True # TODO SICCOME I FLUSSI POSSONO ESSERE ANCHE NEGATIVI SONO SEMPRE CONSIDERATI NETTI | 
| 4 | 131 | 
|  | 132     return args | 
|  | 133 | 
|  | 134 ############################ dataset input #################################### | 
|  | 135 def read_dataset(data :str, name :str) -> pd.DataFrame: | 
|  | 136     """ | 
|  | 137     Tries to read the dataset from its path (data) as a tsv and turns it into a DataFrame. | 
|  | 138 | 
|  | 139     Args: | 
|  | 140         data : filepath of a dataset (from frontend input params or literals upon calling) | 
|  | 141         name : name associated with the dataset (from frontend input params or literals upon calling) | 
|  | 142 | 
|  | 143     Returns: | 
|  | 144         pd.DataFrame : dataset in a runtime operable shape | 
|  | 145 | 
|  | 146     Raises: | 
|  | 147         sys.exit : if there's no data (pd.errors.EmptyDataError) or if the dataset has less than 2 columns | 
|  | 148     """ | 
|  | 149     try: | 
|  | 150         dataset = pd.read_csv(data, sep = '\t', header = 0, engine='python') | 
|  | 151     except pd.errors.EmptyDataError: | 
|  | 152         sys.exit('Execution aborted: wrong format of ' + name + '\n') | 
|  | 153     if len(dataset.columns) < 2: | 
|  | 154         sys.exit('Execution aborted: wrong format of ' + name + '\n') | 
|  | 155     return dataset | 
|  | 156 | 
|  | 157 ############################ dataset name ##################################### | 
|  | 158 def name_dataset(name_data :str, count :int) -> str: | 
|  | 159     """ | 
|  | 160     Produces a unique name for a dataset based on what was provided by the user. The default name for any dataset is "Dataset", thus if the user didn't change it this function appends f"_{count}" to make it unique. | 
|  | 161 | 
|  | 162     Args: | 
|  | 163         name_data : name associated with the dataset (from frontend input params) | 
|  | 164         count : counter from 1 to make these names unique (external) | 
|  | 165 | 
|  | 166     Returns: | 
|  | 167         str : the name made unique | 
|  | 168     """ | 
|  | 169     if str(name_data) == 'Dataset': | 
|  | 170         return str(name_data) + '_' + str(count) | 
|  | 171     else: | 
|  | 172         return str(name_data) | 
|  | 173 | 
|  | 174 ############################ map_methods ###################################### | 
|  | 175 FoldChange = Union[float, int, str] # Union[float, Literal[0, "-INF", "INF"]] | 
|  | 176 def fold_change(avg1 :float, avg2 :float) -> FoldChange: | 
|  | 177     """ | 
|  | 178     Calculates the fold change between two gene expression values. | 
|  | 179 | 
|  | 180     Args: | 
|  | 181         avg1 : average expression value from one dataset avg2 : average expression value from the other dataset | 
|  | 182 | 
|  | 183     Returns: | 
|  | 184         FoldChange : | 
|  | 185             0 : when both input values are 0 | 
|  | 186             "-INF" : when avg1 is 0 | 
|  | 187             "INF" : when avg2 is 0 | 
|  | 188             float : for any other combination of values | 
|  | 189     """ | 
|  | 190     if avg1 == 0 and avg2 == 0: | 
|  | 191         return 0 | 
|  | 192     elif avg1 == 0: | 
|  | 193         return '-INF' | 
|  | 194     elif avg2 == 0: | 
|  | 195         return 'INF' | 
|  | 196     else: # (threshold_F_C - 1) / (abs(threshold_F_C) + 1) con threshold_F_C > 1 | 
|  | 197         return (avg1 - avg2) / (abs(avg1) + abs(avg2)) | 
|  | 198 | 
|  | 199 def fix_style(l :str, col :Optional[str], width :str, dash :str) -> str: | 
|  | 200     """ | 
|  | 201     Produces a "fixed" style string to assign to a reaction arrow in the SVG map, assigning style properties to the corresponding values passed as input params. | 
|  | 202 | 
|  | 203     Args: | 
|  | 204         l : current style string of an SVG element | 
|  | 205         col : new value for the "stroke" style property | 
|  | 206         width : new value for the "stroke-width" style property | 
|  | 207         dash : new value for the "stroke-dasharray" style property | 
|  | 208 | 
|  | 209     Returns: | 
|  | 210         str : the fixed style string | 
|  | 211     """ | 
|  | 212     tmp = l.split(';') | 
|  | 213     flag_col = False | 
|  | 214     flag_width = False | 
|  | 215     flag_dash = False | 
|  | 216     for i in range(len(tmp)): | 
|  | 217         if tmp[i].startswith('stroke:'): | 
|  | 218             tmp[i] = 'stroke:' + col | 
|  | 219             flag_col = True | 
|  | 220         if tmp[i].startswith('stroke-width:'): | 
|  | 221             tmp[i] = 'stroke-width:' + width | 
|  | 222             flag_width = True | 
|  | 223         if tmp[i].startswith('stroke-dasharray:'): | 
|  | 224             tmp[i] = 'stroke-dasharray:' + dash | 
|  | 225             flag_dash = True | 
|  | 226     if not flag_col: | 
|  | 227         tmp.append('stroke:' + col) | 
|  | 228     if not flag_width: | 
|  | 229         tmp.append('stroke-width:' + width) | 
|  | 230     if not flag_dash: | 
|  | 231         tmp.append('stroke-dasharray:' + dash) | 
|  | 232     return ';'.join(tmp) | 
|  | 233 | 
|  | 234 # The type of d values is collapsed, losing precision, because the dict containst lists instead of tuples, please fix! | 
|  | 235 def fix_map(d :Dict[str, List[Union[float, FoldChange]]], core_map :ET.ElementTree, threshold_P_V :float, threshold_F_C :float, max_z_score :float) -> ET.ElementTree: | 
|  | 236     """ | 
|  | 237     Edits the selected SVG map based on the p-value and fold change data (d) and some significance thresholds also passed as inputs. | 
|  | 238 | 
|  | 239     Args: | 
|  | 240         d : dictionary mapping a p-value and a fold-change value (values) to each reaction ID as encoded in the SVG map (keys) | 
|  | 241         core_map : SVG map to modify | 
|  | 242         threshold_P_V : threshold for a p-value to be considered significant | 
|  | 243         threshold_F_C : threshold for a fold change value to be considered significant | 
|  | 244         max_z_score : highest z-score (absolute value) | 
|  | 245 | 
|  | 246     Returns: | 
|  | 247         ET.ElementTree : the modified core_map | 
|  | 248 | 
|  | 249     Side effects: | 
|  | 250         core_map : mut | 
|  | 251     """ | 
|  | 252     maxT = 12 | 
|  | 253     minT = 2 | 
|  | 254     grey = '#BEBEBE' | 
| 185 | 255     blue = '#6495ed' # azzurrino | 
|  | 256     red = '#ecac68' # arancione | 
| 4 | 257     for el in core_map.iter(): | 
|  | 258         el_id = str(el.get('id')) | 
|  | 259         if el_id.startswith('R_'): | 
|  | 260             tmp = d.get(el_id[2:]) | 
|  | 261             if tmp != None: | 
|  | 262                 p_val :float = tmp[0] | 
|  | 263                 f_c = tmp[1] | 
|  | 264                 z_score = tmp[2] | 
| 275 | 265 | 
|  | 266                 if math.isnan(p_val) or (isinstance(f_c, float) and math.isnan(f_c)): continue | 
|  | 267 | 
| 4 | 268                 if p_val < threshold_P_V: | 
|  | 269                     if not isinstance(f_c, str): | 
|  | 270                         if abs(f_c) < ((threshold_F_C - 1) / (abs(threshold_F_C) + 1)): # | 
|  | 271                             col = grey | 
|  | 272                             width = str(minT) | 
|  | 273                         else: | 
|  | 274                             if f_c < 0: | 
|  | 275                                 col = blue | 
|  | 276                             elif f_c > 0: | 
|  | 277                                 col = red | 
|  | 278                             width = str(max((abs(z_score) * maxT) / max_z_score, minT)) | 
|  | 279                     else: | 
|  | 280                         if f_c == '-INF': | 
|  | 281                             col = blue | 
|  | 282                         elif f_c == 'INF': | 
|  | 283                             col = red | 
|  | 284                         width = str(maxT) | 
|  | 285                     dash = 'none' | 
|  | 286                 else: | 
|  | 287                     dash = '5,5' | 
|  | 288                     col = grey | 
|  | 289                     width = str(minT) | 
|  | 290                 el.set('style', fix_style(el.get('style', ""), col, width, dash)) | 
|  | 291     return core_map | 
|  | 292 | 
|  | 293 def getElementById(reactionId :str, metabMap :ET.ElementTree) -> utils.Result[ET.Element, utils.Result.ResultErr]: | 
|  | 294     """ | 
|  | 295     Finds any element in the given map with the given ID. ID uniqueness in an svg file is recommended but | 
|  | 296     not enforced, if more than one element with the exact ID is found only the first will be returned. | 
|  | 297 | 
|  | 298     Args: | 
|  | 299         reactionId (str): exact ID of the requested element. | 
|  | 300         metabMap (ET.ElementTree): metabolic map containing the element. | 
|  | 301 | 
|  | 302     Returns: | 
|  | 303         utils.Result[ET.Element, ResultErr]: result of the search, either the first match found or a ResultErr. | 
|  | 304     """ | 
|  | 305     return utils.Result.Ok( | 
|  | 306         f"//*[@id=\"{reactionId}\"]").map( | 
|  | 307         lambda xPath : metabMap.xpath(xPath)[0]).mapErr( | 
|  | 308         lambda _ : utils.Result.ResultErr(f"No elements with ID \"{reactionId}\" found in map")) | 
|  | 309         # ^^^ we shamelessly ignore the contents of the IndexError, it offers nothing to the user. | 
|  | 310 | 
|  | 311 def styleMapElement(element :ET.Element, styleStr :str) -> None: | 
|  | 312     currentStyles :str = element.get("style", "") | 
|  | 313     if re.search(r";stroke:[^;]+;stroke-width:[^;]+;stroke-dasharray:[^;]+$", currentStyles): | 
|  | 314         currentStyles = ';'.join(currentStyles.split(';')[:-3]) | 
|  | 315 | 
|  | 316     element.set("style", currentStyles + styleStr) | 
|  | 317 | 
|  | 318 class ReactionDirection(Enum): | 
|  | 319     Unknown = "" | 
|  | 320     Direct  = "_F" | 
|  | 321     Inverse = "_B" | 
|  | 322 | 
|  | 323     @classmethod | 
|  | 324     def fromDir(cls, s :str) -> "ReactionDirection": | 
|  | 325         # vvv as long as there's so few variants I actually condone the if spam: | 
|  | 326         if s == ReactionDirection.Direct.value:  return ReactionDirection.Direct | 
|  | 327         if s == ReactionDirection.Inverse.value: return ReactionDirection.Inverse | 
|  | 328         return ReactionDirection.Unknown | 
|  | 329 | 
|  | 330     @classmethod | 
|  | 331     def fromReactionId(cls, reactionId :str) -> "ReactionDirection": | 
|  | 332         return ReactionDirection.fromDir(reactionId[-2:]) | 
|  | 333 | 
|  | 334 def getArrowBodyElementId(reactionId :str) -> str: | 
|  | 335     if reactionId.endswith("_RV"): reactionId = reactionId[:-3] #TODO: standardize _RV | 
|  | 336     elif ReactionDirection.fromReactionId(reactionId) is not ReactionDirection.Unknown: reactionId = reactionId[:-2] | 
|  | 337     return f"R_{reactionId}" | 
|  | 338 | 
|  | 339 def getArrowHeadElementId(reactionId :str) -> Tuple[str, str]: | 
|  | 340     """ | 
|  | 341     We attempt extracting the direction information from the provided reaction ID, if unsuccessful we provide the IDs of both directions. | 
|  | 342 | 
|  | 343     Args: | 
|  | 344         reactionId : the provided reaction ID. | 
|  | 345 | 
|  | 346     Returns: | 
|  | 347         Tuple[str, str]: either a single str ID for the correct arrow head followed by an empty string or both options to try. | 
|  | 348     """ | 
|  | 349     if reactionId.endswith("_RV"): reactionId = reactionId[:-3] #TODO: standardize _RV | 
|  | 350     elif ReactionDirection.fromReactionId(reactionId) is not ReactionDirection.Unknown: return reactionId[:-3:-1] + reactionId[:-2], "" | 
|  | 351     return f"F_{reactionId}", f"B_{reactionId}" | 
|  | 352 | 
|  | 353 class ArrowColor(Enum): | 
|  | 354     """ | 
|  | 355     Encodes possible arrow colors based on their meaning in the enrichment process. | 
|  | 356     """ | 
|  | 357     Invalid       = "#BEBEBE" # gray, fold-change under treshold | 
|  | 358     Transparent   = "#ffffff00" # white, not significant p-value | 
|  | 359     UpRegulated   = "#ecac68" # red, up-regulated reaction | 
|  | 360     DownRegulated = "#6495ed" # blue, down-regulated reaction | 
|  | 361 | 
|  | 362     UpRegulatedInv = "#FF0000" | 
|  | 363     # ^^^ different shade of red (actually orange), up-regulated net value for a reversible reaction with | 
|  | 364     # conflicting enrichment in the two directions. | 
|  | 365 | 
|  | 366     DownRegulatedInv = "#0000FF" | 
|  | 367     # ^^^ different shade of blue (actually purple), down-regulated net value for a reversible reaction with | 
|  | 368     # conflicting enrichment in the two directions. | 
|  | 369 | 
|  | 370     @classmethod | 
|  | 371     def fromFoldChangeSign(cls, foldChange :float, *, useAltColor = False) -> "ArrowColor": | 
|  | 372         colors = (cls.DownRegulated, cls.DownRegulatedInv) if foldChange < 0 else (cls.UpRegulated, cls.UpRegulatedInv) | 
|  | 373         return colors[useAltColor] | 
|  | 374 | 
|  | 375     def __str__(self) -> str: return self.value | 
|  | 376 | 
|  | 377 class Arrow: | 
|  | 378     """ | 
|  | 379     Models the properties of a reaction arrow that change based on enrichment. | 
|  | 380     """ | 
|  | 381     MIN_W = 2 | 
|  | 382     MAX_W = 12 | 
|  | 383 | 
|  | 384     def __init__(self, width :int, col: ArrowColor, *, isDashed = False) -> None: | 
|  | 385         """ | 
|  | 386         (Private) Initializes an instance of Arrow. | 
|  | 387 | 
|  | 388         Args: | 
|  | 389             width : width of the arrow, ideally to be kept within Arrow.MIN_W and Arrow.MAX_W (not enforced). | 
|  | 390             col : color of the arrow. | 
|  | 391             isDashed : whether the arrow should be dashed, meaning the associated pValue resulted not significant. | 
|  | 392 | 
|  | 393         Returns: | 
|  | 394             None : practically, a Arrow instance. | 
|  | 395         """ | 
|  | 396         self.w    = width | 
|  | 397         self.col  = col | 
|  | 398         self.dash = isDashed | 
|  | 399 | 
|  | 400     def applyTo(self, reactionId :str, metabMap :ET.ElementTree, styleStr :str) -> None: | 
|  | 401         if getElementById(reactionId, metabMap).map(lambda el : styleMapElement(el, styleStr)).isErr: | 
|  | 402             ERRORS.append(reactionId) | 
|  | 403 | 
|  | 404     def styleReactionElements(self, metabMap :ET.ElementTree, reactionId :str, *, mindReactionDir = True) -> None: | 
|  | 405         if not mindReactionDir: | 
|  | 406             return self.applyTo(getArrowBodyElementId(reactionId), metabMap, self.toStyleStr()) | 
|  | 407 | 
|  | 408         # Now we style the arrow head(s): | 
|  | 409         idOpt1, idOpt2 = getArrowHeadElementId(reactionId) | 
|  | 410         self.applyTo(idOpt1, metabMap, self.toStyleStr(downSizedForTips = True)) | 
|  | 411         if idOpt2: self.applyTo(idOpt2, metabMap, self.toStyleStr(downSizedForTips = True)) | 
|  | 412 | 
|  | 413     def styleReactionElementsMeanMedian(self, metabMap :ET.ElementTree, reactionId :str, isNegative:bool) -> None: | 
|  | 414 | 
|  | 415         self.applyTo(getArrowBodyElementId(reactionId), metabMap, self.toStyleStr()) | 
|  | 416         idOpt1, idOpt2 = getArrowHeadElementId(reactionId) | 
|  | 417 | 
|  | 418         if(isNegative): | 
|  | 419             self.applyTo(idOpt2, metabMap, self.toStyleStr(downSizedForTips = True)) | 
|  | 420             self.col = ArrowColor.Transparent | 
|  | 421             self.applyTo(idOpt1, metabMap, self.toStyleStr(downSizedForTips = True)) #trasp | 
|  | 422         else: | 
|  | 423             self.applyTo(idOpt1, metabMap, self.toStyleStr(downSizedForTips = True)) | 
|  | 424             self.col = ArrowColor.Transparent | 
|  | 425             self.applyTo(idOpt2, metabMap, self.toStyleStr(downSizedForTips = True)) #trasp | 
|  | 426 | 
|  | 427 | 
|  | 428 | 
|  | 429     def getMapReactionId(self, reactionId :str, mindReactionDir :bool) -> str: | 
|  | 430         """ | 
|  | 431         Computes the reaction ID as encoded in the map for a given reaction ID from the dataset. | 
|  | 432 | 
|  | 433         Args: | 
|  | 434             reactionId: the reaction ID, as encoded in the dataset. | 
|  | 435             mindReactionDir: if True forward (F_) and backward (B_) directions will be encoded in the result. | 
|  | 436 | 
|  | 437         Returns: | 
|  | 438             str : the ID of an arrow's body or tips in the map. | 
|  | 439         """ | 
|  | 440         # we assume the reactionIds also don't encode reaction dir if they don't mind it when styling the map. | 
|  | 441         if not mindReactionDir: return "R_" + reactionId | 
|  | 442 | 
|  | 443         #TODO: this is clearly something we need to make consistent in fluxes | 
|  | 444         return (reactionId[:-3:-1] + reactionId[:-2]) if reactionId[:-2] in ["_F", "_B"] else f"F_{reactionId}" # "Pyr_F" --> "F_Pyr" | 
|  | 445 | 
|  | 446     def toStyleStr(self, *, downSizedForTips = False) -> str: | 
|  | 447         """ | 
|  | 448         Collapses the styles of this Arrow into a str, ready to be applied as part of the "style" property on an svg element. | 
|  | 449 | 
|  | 450         Returns: | 
|  | 451             str : the styles string. | 
|  | 452         """ | 
|  | 453         width = self.w | 
|  | 454         if downSizedForTips: width *= 0.8 | 
|  | 455         return f";stroke:{self.col};stroke-width:{width};stroke-dasharray:{'5,5' if self.dash else 'none'}" | 
|  | 456 | 
|  | 457 # vvv These constants could be inside the class itself a static properties, but python | 
|  | 458 # was built by brainless organisms so here we are! | 
|  | 459 INVALID_ARROW = Arrow(Arrow.MIN_W, ArrowColor.Invalid) | 
|  | 460 INSIGNIFICANT_ARROW = Arrow(Arrow.MIN_W, ArrowColor.Invalid, isDashed = True) | 
|  | 461 | 
|  | 462 def applyFluxesEnrichmentToMap(fluxesEnrichmentRes :Dict[str, Union[Tuple[float, FoldChange], Tuple[float, FoldChange, float, float]]], metabMap :ET.ElementTree, maxNumericZScore :float) -> None: | 
|  | 463     """ | 
|  | 464     Applies fluxes enrichment results to the provided metabolic map. | 
|  | 465 | 
|  | 466     Args: | 
|  | 467         fluxesEnrichmentRes : fluxes enrichment results. | 
|  | 468         metabMap : the metabolic map to edit. | 
|  | 469         maxNumericZScore : biggest finite z-score value found. | 
|  | 470 | 
|  | 471     Side effects: | 
|  | 472         metabMap : mut | 
|  | 473 | 
|  | 474     Returns: | 
|  | 475         None | 
|  | 476     """ | 
|  | 477     for reactionId, values in fluxesEnrichmentRes.items(): | 
|  | 478         pValue = values[0] | 
|  | 479         foldChange = values[1] | 
|  | 480         z_score = values[2] | 
|  | 481 | 
| 275 | 482         if math.isnan(pValue) or (isinstance(foldChange, float) and math.isnan(foldChange)): | 
|  | 483             continue | 
|  | 484 | 
| 4 | 485         if isinstance(foldChange, str): foldChange = float(foldChange) | 
|  | 486         if pValue >= ARGS.pValue: # pValue above tresh: dashed arrow | 
|  | 487             INSIGNIFICANT_ARROW.styleReactionElements(metabMap, reactionId) | 
|  | 488             INSIGNIFICANT_ARROW.styleReactionElements(metabMap, reactionId, mindReactionDir = False) | 
|  | 489 | 
|  | 490             continue | 
|  | 491 | 
|  | 492         if abs(foldChange) <  (ARGS.fChange - 1) / (abs(ARGS.fChange) + 1): | 
|  | 493             INVALID_ARROW.styleReactionElements(metabMap, reactionId) | 
|  | 494             INVALID_ARROW.styleReactionElements(metabMap, reactionId, mindReactionDir = False) | 
|  | 495 | 
|  | 496             continue | 
|  | 497 | 
|  | 498         width = Arrow.MAX_W | 
|  | 499         if not math.isinf(foldChange): | 
|  | 500             try: | 
|  | 501                 width = max(abs(z_score * Arrow.MAX_W) / maxNumericZScore, Arrow.MIN_W) | 
|  | 502 | 
|  | 503             except ZeroDivisionError: pass | 
| 185 | 504         # TODO CHECK RV | 
| 4 | 505         #if not reactionId.endswith("_RV"): # RV stands for reversible reactions | 
| 197 | 506         #   Arrow(width, ArrowColor.fromFoldChangeSign(foldChange)).styleReactionElements(metabMap, reactionId) | 
|  | 507         #   continue | 
| 4 | 508 | 
|  | 509         #reactionId = reactionId[:-3] # Remove "_RV" | 
|  | 510 | 
|  | 511         inversionScore = (values[3] < 0) + (values[4] < 0) # Compacts the signs of averages into 1 easy to check score | 
|  | 512         if inversionScore == 2: foldChange *= -1 | 
|  | 513         # ^^^ Style the inverse direction with the opposite sign netValue | 
|  | 514 | 
|  | 515         # If the score is 1 (opposite signs) we use alternative colors vvv | 
|  | 516         arrow = Arrow(width, ArrowColor.fromFoldChangeSign(foldChange, useAltColor = inversionScore == 1)) | 
|  | 517 | 
|  | 518         # vvv These 2 if statements can both be true and can both happen | 
|  | 519         if ARGS.net: # style arrow head(s): | 
|  | 520             arrow.styleReactionElements(metabMap, reactionId + ("_B" if inversionScore == 2 else "_F")) | 
|  | 521             arrow.applyTo(("F_" if inversionScore == 2 else "B_") + reactionId, metabMap, f";stroke:{ArrowColor.Transparent};stroke-width:0;stroke-dasharray:None") | 
|  | 522 | 
| 186 | 523         arrow.styleReactionElements(metabMap, reactionId, mindReactionDir = False) | 
| 4 | 524 | 
|  | 525 | 
|  | 526 ############################ split class ###################################### | 
|  | 527 def split_class(classes :pd.DataFrame, resolve_rules :Dict[str, List[float]]) -> Dict[str, List[List[float]]]: | 
|  | 528     """ | 
|  | 529     Generates a :dict that groups together data from a :DataFrame based on classes the data is related to. | 
|  | 530 | 
|  | 531     Args: | 
|  | 532         classes : a :DataFrame of only string values, containing class information (rows) and keys to query the resolve_rules :dict | 
|  | 533         resolve_rules : a :dict containing :float data | 
|  | 534 | 
|  | 535     Returns: | 
|  | 536         dict : the dict with data grouped by class | 
|  | 537 | 
|  | 538     Side effects: | 
|  | 539         classes : mut | 
|  | 540     """ | 
|  | 541     class_pat :Dict[str, List[List[float]]] = {} | 
|  | 542     for i in range(len(classes)): | 
|  | 543         classe :str = classes.iloc[i, 1] | 
|  | 544         if pd.isnull(classe): continue | 
|  | 545 | 
|  | 546         l :List[List[float]] = [] | 
|  | 547         for j in range(i, len(classes)): | 
|  | 548             if classes.iloc[j, 1] == classe: | 
|  | 549                 pat_id :str = classes.iloc[j, 0] | 
|  | 550                 tmp = resolve_rules.get(pat_id, None) | 
|  | 551                 if tmp != None: | 
|  | 552                     l.append(tmp) | 
|  | 553                 classes.iloc[j, 1] = None | 
|  | 554 | 
|  | 555         if l: | 
|  | 556             class_pat[classe] = list(map(list, zip(*l))) | 
|  | 557             continue | 
|  | 558 | 
|  | 559         utils.logWarning( | 
|  | 560             f"Warning: no sample found in class \"{classe}\", the class has been disregarded", ARGS.out_log) | 
|  | 561 | 
|  | 562     return class_pat | 
|  | 563 | 
|  | 564 ############################ conversion ############################################## | 
|  | 565 #conversion from svg to png | 
|  | 566 def svg_to_png_with_background(svg_path :utils.FilePath, png_path :utils.FilePath, dpi :int = 72, scale :int = 1, size :Optional[float] = None) -> None: | 
|  | 567     """ | 
|  | 568     Internal utility to convert an SVG to PNG (forced opaque) to aid in PDF conversion. | 
|  | 569 | 
|  | 570     Args: | 
|  | 571         svg_path : path to SVG file | 
|  | 572         png_path : path for new PNG file | 
|  | 573         dpi : dots per inch of the generated PNG | 
|  | 574         scale : scaling factor for the generated PNG, computed internally when a size is provided | 
|  | 575         size : final effective width of the generated PNG | 
|  | 576 | 
|  | 577     Returns: | 
|  | 578         None | 
|  | 579     """ | 
|  | 580     if size: | 
|  | 581         image = pyvips.Image.new_from_file(svg_path.show(), dpi=dpi, scale=1) | 
|  | 582         scale = size / image.width | 
|  | 583         image = image.resize(scale) | 
|  | 584     else: | 
|  | 585         image = pyvips.Image.new_from_file(svg_path.show(), dpi=dpi, scale=scale) | 
|  | 586 | 
|  | 587     white_background = pyvips.Image.black(image.width, image.height).new_from_image([255, 255, 255]) | 
|  | 588     white_background = white_background.affine([scale, 0, 0, scale]) | 
|  | 589 | 
|  | 590     if white_background.bands != image.bands: | 
|  | 591         white_background = white_background.extract_band(0) | 
|  | 592 | 
|  | 593     composite_image = white_background.composite2(image, 'over') | 
|  | 594     composite_image.write_to_file(png_path.show()) | 
|  | 595 | 
|  | 596 #funzione unica, lascio fuori i file e li passo in input | 
|  | 597 #conversion from png to pdf | 
|  | 598 def convert_png_to_pdf(png_file :utils.FilePath, pdf_file :utils.FilePath) -> None: | 
|  | 599     """ | 
|  | 600     Internal utility to convert a PNG to PDF to aid from SVG conversion. | 
|  | 601 | 
|  | 602     Args: | 
|  | 603         png_file : path to PNG file | 
|  | 604         pdf_file : path to new PDF file | 
|  | 605 | 
|  | 606     Returns: | 
|  | 607         None | 
|  | 608     """ | 
|  | 609     image = Image.open(png_file.show()) | 
|  | 610     image = image.convert("RGB") | 
|  | 611     image.save(pdf_file.show(), "PDF", resolution=100.0) | 
|  | 612 | 
|  | 613 #function called to reduce redundancy in the code | 
|  | 614 def convert_to_pdf(file_svg :utils.FilePath, file_png :utils.FilePath, file_pdf :utils.FilePath) -> None: | 
|  | 615     """ | 
|  | 616     Converts the SVG map at the provided path to PDF. | 
|  | 617 | 
|  | 618     Args: | 
|  | 619         file_svg : path to SVG file | 
|  | 620         file_png : path to PNG file | 
|  | 621         file_pdf : path to new PDF file | 
|  | 622 | 
|  | 623     Returns: | 
|  | 624         None | 
|  | 625     """ | 
|  | 626     svg_to_png_with_background(file_svg, file_png) | 
|  | 627     try: | 
|  | 628         convert_png_to_pdf(file_png, file_pdf) | 
|  | 629         print(f'PDF file {file_pdf.filePath} successfully generated.') | 
|  | 630 | 
|  | 631     except Exception as e: | 
|  | 632         raise utils.DataErr(file_pdf.show(), f'Error generating PDF file: {e}') | 
|  | 633 | 
|  | 634 ############################ map ############################################## | 
|  | 635 def buildOutputPath(dataset1Name :str, dataset2Name = "rest", *, details = "", ext :utils.FileFormat) -> utils.FilePath: | 
|  | 636     """ | 
|  | 637     Builds a FilePath instance from the names of confronted datasets ready to point to a location in the | 
|  | 638     "result/" folder, used by this tool for output files in collections. | 
|  | 639 | 
|  | 640     Args: | 
|  | 641         dataset1Name : _description_ | 
|  | 642         dataset2Name : _description_. Defaults to "rest". | 
|  | 643         details : _description_ | 
|  | 644         ext : _description_ | 
|  | 645 | 
|  | 646     Returns: | 
|  | 647         utils.FilePath : _description_ | 
|  | 648     """ | 
|  | 649     # This function returns a util data structure but is extremely specific to this module. | 
|  | 650     # RAS also uses collections as output and as such might benefit from a method like this, but I'd wait | 
|  | 651     # TODO: until a third tool with multiple outputs appears before porting this to utils. | 
|  | 652     return utils.FilePath( | 
|  | 653         f"{dataset1Name}_vs_{dataset2Name}" + (f" ({details})" if details else ""), | 
|  | 654         # ^^^ yes this string is built every time even if the form is the same for the same 2 datasets in | 
|  | 655         # all output files: I don't care, this was never the performance bottleneck of the tool and | 
|  | 656         # there is no other net gain in saving and re-using the built string. | 
|  | 657         ext, | 
| 147 | 658         prefix = ARGS.output_path) | 
| 4 | 659 | 
|  | 660 FIELD_NOT_AVAILABLE = '/' | 
|  | 661 def writeToCsv(rows: List[list], fieldNames :List[str], outPath :utils.FilePath) -> None: | 
|  | 662     fieldsAmt = len(fieldNames) | 
|  | 663     with open(outPath.show(), "w", newline = "") as fd: | 
|  | 664         writer = csv.DictWriter(fd, fieldnames = fieldNames, delimiter = '\t') | 
|  | 665         writer.writeheader() | 
|  | 666 | 
|  | 667         for row in rows: | 
|  | 668             sizeMismatch = fieldsAmt - len(row) | 
|  | 669             if sizeMismatch > 0: row.extend([FIELD_NOT_AVAILABLE] * sizeMismatch) | 
|  | 670             writer.writerow({ field : data for field, data in zip(fieldNames, row) }) | 
|  | 671 | 
|  | 672 OldEnrichedScores = Dict[str, List[Union[float, FoldChange]]] #TODO: try to use Tuple whenever possible | 
|  | 673 def writeTabularResult(enrichedScores : OldEnrichedScores, outPath :utils.FilePath) -> None: | 
| 199 | 674     fieldNames = ["ids", "P_Value", "fold change", "z-score"] | 
| 4 | 675     fieldNames.extend(["average_1", "average_2"]) | 
|  | 676 | 
|  | 677     writeToCsv([ [reactId] + values for reactId, values in enrichedScores.items() ], fieldNames, outPath) | 
|  | 678 | 
|  | 679 def temp_thingsInCommon(tmp :Dict[str, List[Union[float, FoldChange]]], core_map :ET.ElementTree, max_z_score :float, dataset1Name :str, dataset2Name = "rest") -> None: | 
|  | 680     # this function compiles the things always in common between comparison modes after enrichment. | 
|  | 681     # TODO: organize, name better. | 
|  | 682     writeTabularResult(tmp, buildOutputPath(dataset1Name, dataset2Name, details = "Tabular Result", ext = utils.FileFormat.TSV)) | 
|  | 683     for reactId, enrichData in tmp.items(): tmp[reactId] = tuple(enrichData) | 
|  | 684     applyFluxesEnrichmentToMap(tmp, core_map, max_z_score) | 
|  | 685 | 
|  | 686 def computePValue(dataset1Data: List[float], dataset2Data: List[float]) -> Tuple[float, float]: | 
|  | 687     """ | 
|  | 688     Computes the statistical significance score (P-value) of the comparison between coherent data | 
|  | 689     from two datasets. The data is supposed to, in both datasets: | 
|  | 690     - be related to the same reaction ID; | 
|  | 691     - be ordered by sample, such that the item at position i in both lists is related to the | 
|  | 692       same sample or cell line. | 
|  | 693 | 
|  | 694     Args: | 
|  | 695         dataset1Data : data from the 1st dataset. | 
|  | 696         dataset2Data : data from the 2nd dataset. | 
|  | 697 | 
|  | 698     Returns: | 
|  | 699         tuple: (P-value, Z-score) | 
|  | 700             - P-value from a Kolmogorov-Smirnov test on the provided data. | 
|  | 701             - Z-score of the difference between means of the two datasets. | 
|  | 702     """ | 
|  | 703     # Perform Kolmogorov-Smirnov test | 
|  | 704     ks_statistic, p_value = st.ks_2samp(dataset1Data, dataset2Data) | 
|  | 705 | 
|  | 706     # Calculate means and standard deviations | 
| 242 | 707     mean1 = np.nanmean(dataset1Data) | 
|  | 708     mean2 = np.nanmean(dataset2Data) | 
| 244 | 709     std1 = np.nanstd(dataset1Data, ddof=1) | 
|  | 710     std2 = np.nanstd(dataset2Data, ddof=1) | 
| 4 | 711 | 
|  | 712     n1 = len(dataset1Data) | 
|  | 713     n2 = len(dataset2Data) | 
|  | 714 | 
|  | 715     # Calculate Z-score | 
|  | 716     z_score = (mean1 - mean2) / np.sqrt((std1**2 / n1) + (std2**2 / n2)) | 
|  | 717 | 
|  | 718     return p_value, z_score | 
|  | 719 | 
|  | 720 def compareDatasetPair(dataset1Data :List[List[float]], dataset2Data :List[List[float]], ids :List[str]) -> Tuple[Dict[str, List[Union[float, FoldChange]]], float]: | 
|  | 721     #TODO: the following code still suffers from "dumbvarnames-osis" | 
|  | 722     tmp :Dict[str, List[Union[float, FoldChange]]] = {} | 
|  | 723     count   = 0 | 
|  | 724     max_z_score = 0 | 
|  | 725     for l1, l2 in zip(dataset1Data, dataset2Data): | 
|  | 726         reactId = ids[count] | 
|  | 727         count += 1 | 
|  | 728         if not reactId: continue # we skip ids that have already been processed | 
|  | 729 | 
|  | 730         try: | 
|  | 731             p_value, z_score = computePValue(l1, l2) | 
|  | 732             avg1 = sum(l1) / len(l1) | 
|  | 733             avg2 = sum(l2) / len(l2) | 
| 197 | 734             f_c = fold_change(avg1, avg2) | 
| 4 | 735             if not isinstance(z_score, str) and max_z_score < abs(z_score): max_z_score = abs(z_score) | 
| 211 | 736 | 
| 197 | 737             tmp[reactId] = [float(p_value), f_c, z_score, avg1, avg2] | 
| 4 | 738         except (TypeError, ZeroDivisionError): continue | 
|  | 739 | 
|  | 740     return tmp, max_z_score | 
|  | 741 | 
| 151 | 742 def computeEnrichment(class_pat :Dict[str, List[List[float]]], ids :List[str]) -> List[Tuple[str, str, dict, float]]: | 
| 4 | 743     """ | 
|  | 744     Compares clustered data based on a given comparison mode and applies enrichment-based styling on the | 
|  | 745     provided metabolic map. | 
|  | 746 | 
|  | 747     Args: | 
|  | 748         class_pat : the clustered data. | 
|  | 749         ids : ids for data association. | 
|  | 750 | 
|  | 751 | 
|  | 752     Returns: | 
| 148 | 753         List[Tuple[str, str, dict, float]]: List of tuples with pairs of dataset names, comparison dictionary, and max z-score. | 
| 4 | 754 | 
|  | 755     Raises: | 
|  | 756         sys.exit : if there are less than 2 classes for comparison | 
| 151 | 757 | 
| 4 | 758     """ | 
|  | 759     class_pat = { k.strip() : v for k, v in class_pat.items() } | 
|  | 760     #TODO: simplfy this stuff vvv and stop using sys.exit (raise the correct utils error) | 
|  | 761     if (not class_pat) or (len(class_pat.keys()) < 2): sys.exit('Execution aborted: classes provided for comparisons are less than two\n') | 
|  | 762 | 
| 148 | 763     enrichment_results = [] | 
|  | 764 | 
|  | 765 | 
| 4 | 766     if ARGS.comparison == "manyvsmany": | 
|  | 767         for i, j in it.combinations(class_pat.keys(), 2): | 
|  | 768             comparisonDict, max_z_score = compareDatasetPair(class_pat.get(i), class_pat.get(j), ids) | 
| 148 | 769             enrichment_results.append((i, j, comparisonDict, max_z_score)) | 
| 4 | 770 | 
|  | 771     elif ARGS.comparison == "onevsrest": | 
|  | 772         for single_cluster in class_pat.keys(): | 
| 148 | 773             rest = [item for k, v in class_pat.items() if k != single_cluster for item in v] | 
| 211 | 774 | 
| 4 | 775             comparisonDict, max_z_score = compareDatasetPair(class_pat.get(single_cluster), rest, ids) | 
| 148 | 776             enrichment_results.append((single_cluster, "rest", comparisonDict, max_z_score)) | 
| 4 | 777 | 
|  | 778     elif ARGS.comparison == "onevsmany": | 
|  | 779         controlItems = class_pat.get(ARGS.control) | 
|  | 780         for otherDataset in class_pat.keys(): | 
| 148 | 781             if otherDataset == ARGS.control: | 
|  | 782                 continue | 
| 4 | 783             comparisonDict, max_z_score = compareDatasetPair(controlItems, class_pat.get(otherDataset), ids) | 
| 148 | 784             enrichment_results.append((ARGS.control, otherDataset, comparisonDict, max_z_score)) | 
|  | 785     return enrichment_results | 
| 4 | 786 | 
|  | 787 def createOutputMaps(dataset1Name :str, dataset2Name :str, core_map :ET.ElementTree) -> None: | 
| 148 | 788     svgFilePath = buildOutputPath(dataset1Name, dataset2Name, details="SVG Map", ext=utils.FileFormat.SVG) | 
| 4 | 789     utils.writeSvg(svgFilePath, core_map) | 
|  | 790 | 
|  | 791     if ARGS.generate_pdf: | 
| 148 | 792         pngPath = buildOutputPath(dataset1Name, dataset2Name, details="PNG Map", ext=utils.FileFormat.PNG) | 
|  | 793         pdfPath = buildOutputPath(dataset1Name, dataset2Name, details="PDF Map", ext=utils.FileFormat.PDF) | 
|  | 794         convert_to_pdf(svgFilePath, pngPath, pdfPath) | 
| 4 | 795 | 
| 148 | 796     if not ARGS.generate_svg: | 
|  | 797         os.remove(svgFilePath.show()) | 
| 4 | 798 | 
|  | 799 ClassPat = Dict[str, List[List[float]]] | 
|  | 800 def getClassesAndIdsFromDatasets(datasetsPaths :List[str], datasetPath :str, classPath :str, names :List[str]) -> Tuple[List[str], ClassPat]: | 
|  | 801     # TODO: I suggest creating dicts with ids as keys instead of keeping class_pat and ids separate, | 
|  | 802     # for the sake of everyone's sanity. | 
|  | 803     class_pat :ClassPat = {} | 
|  | 804     if ARGS.option == 'datasets': | 
|  | 805         num = 1 #TODO: the dataset naming function could be a generator | 
|  | 806         for path, name in zip(datasetsPaths, names): | 
|  | 807             name = name_dataset(name, num) | 
|  | 808             resolve_rules_float, ids = getDatasetValues(path, name) | 
|  | 809             if resolve_rules_float != None: | 
|  | 810                 class_pat[name] = list(map(list, zip(*resolve_rules_float.values()))) | 
|  | 811 | 
|  | 812             num += 1 | 
|  | 813 | 
|  | 814     elif ARGS.option == "dataset_class": | 
|  | 815         classes = read_dataset(classPath, "class") | 
|  | 816         classes = classes.astype(str) | 
| 235 | 817         resolve_rules_float, ids = getDatasetValues(datasetPath, "Dataset Class (not actual name)") | 
| 234 | 818         #check if classes have mathc on ids | 
|  | 819         if not all(classes.iloc[:, 0].isin(ids)): | 
|  | 820             utils.logWarning( | 
|  | 821             "No match between classes and sample IDs", ARGS.out_log) | 
| 4 | 822         if resolve_rules_float != None: class_pat = split_class(classes, resolve_rules_float) | 
|  | 823 | 
|  | 824     return ids, class_pat | 
|  | 825     #^^^ TODO: this could be a match statement over an enum, make it happen future marea dev with python 3.12! (it's why I kept the ifs) | 
|  | 826 | 
|  | 827 #TODO: create these damn args as FilePath objects | 
|  | 828 def getDatasetValues(datasetPath :str, datasetName :str) -> Tuple[ClassPat, List[str]]: | 
|  | 829     """ | 
|  | 830     Opens the dataset at the given path and extracts the values (expected nullable numerics) and the IDs. | 
|  | 831 | 
|  | 832     Args: | 
|  | 833         datasetPath : path to the dataset | 
|  | 834         datasetName (str): dataset name, used in error reporting | 
|  | 835 | 
|  | 836     Returns: | 
|  | 837         Tuple[ClassPat, List[str]]: values and IDs extracted from the dataset | 
|  | 838     """ | 
|  | 839     dataset = read_dataset(datasetPath, datasetName) | 
| 240 | 840 | 
|  | 841     # Ensure the first column is treated as the reaction name | 
|  | 842     dataset = dataset.set_index(dataset.columns[0]) | 
|  | 843 | 
|  | 844     # Check if required reactions exist in the dataset | 
|  | 845     required_reactions = ['EX_lac__L_e', 'EX_glc__D_e', 'EX_gln__L_e', 'EX_glu__L_e'] | 
|  | 846     missing_reactions = [reaction for reaction in required_reactions if reaction not in dataset.index] | 
|  | 847 | 
|  | 848     if missing_reactions: | 
|  | 849         sys.exit(f'Execution aborted: Missing required reactions {missing_reactions} in {datasetName}\n') | 
|  | 850 | 
|  | 851     # Calculate new rows using safe division | 
|  | 852     lact_glc = np.divide( | 
| 241 | 853         np.clip(dataset.loc['EX_lac__L_e'].to_numpy(), a_min=0, a_max=None), | 
|  | 854         np.clip(dataset.loc['EX_glc__D_e'].to_numpy(), a_min=None, a_max=0), | 
|  | 855         out=np.full_like(dataset.loc['EX_lac__L_e'].to_numpy(), np.nan),  # Prepara un array con NaN come output di default | 
|  | 856         where=dataset.loc['EX_glc__D_e'].to_numpy() != 0  # Condizione per evitare la divisione per zero | 
| 240 | 857     ) | 
|  | 858     lact_gln = np.divide( | 
| 241 | 859         np.clip(dataset.loc['EX_lac__L_e'].to_numpy(), a_min=0, a_max=None), | 
|  | 860         np.clip(dataset.loc['EX_gln__L_e'].to_numpy(), a_min=None, a_max=0), | 
|  | 861         out=np.full_like(dataset.loc['EX_lac__L_e'].to_numpy(), np.nan), | 
|  | 862         where=dataset.loc['EX_gln__L_e'].to_numpy() != 0 | 
|  | 863     ) | 
|  | 864     lact_o2 = np.divide( | 
|  | 865         np.clip(dataset.loc['EX_lac__L_e'].to_numpy(), a_min=0, a_max=None), | 
|  | 866         np.clip(dataset.loc['EX_o2_e'].to_numpy(), a_min=None, a_max=0), | 
|  | 867         out=np.full_like(dataset.loc['EX_lac__L_e'].to_numpy(), np.nan), | 
|  | 868         where=dataset.loc['EX_o2_e'].to_numpy() != 0 | 
| 240 | 869     ) | 
|  | 870     glu_gln = np.divide( | 
| 241 | 871         dataset.loc['EX_glu__L_e'].to_numpy(), | 
|  | 872         np.clip(dataset.loc['EX_gln__L_e'].to_numpy(), a_min=None, a_max=0), | 
|  | 873         out=np.full_like(dataset.loc['EX_lac__L_e'].to_numpy(), np.nan), | 
|  | 874         where=dataset.loc['EX_gln__L_e'].to_numpy() != 0 | 
| 240 | 875     ) | 
|  | 876 | 
| 253 | 877 | 
| 246 | 878     values = {'lact_glc': lact_glc, 'lact_gln': lact_gln, 'lact_o2': lact_o2, 'glu_gln': glu_gln} | 
|  | 879 | 
|  | 880     # Sostituzione di inf e NaN con 0 se necessario | 
| 253 | 881     for key in values: | 
|  | 882         values[key] = np.nan_to_num(values[key], nan=0.0, posinf=0.0, neginf=0.0) | 
| 245 | 883 | 
| 246 | 884     # Creazione delle nuove righe da aggiungere al dataset | 
| 240 | 885     new_rows = pd.DataFrame({ | 
| 246 | 886         dataset.index.name: ['LactGlc', 'LactGln', 'LactO2', 'GluGln'], | 
|  | 887         **{col: [values['lact_glc'][i], values['lact_gln'][i], values['lact_o2'][i], values['glu_gln'][i]] | 
|  | 888            for i, col in enumerate(dataset.columns)} | 
| 240 | 889     }) | 
|  | 890 | 
| 254 | 891     print(new_rows) | 
|  | 892 | 
| 246 | 893     # Ritorna il dataset originale con le nuove righe | 
| 240 | 894     dataset.reset_index(inplace=True) | 
|  | 895     dataset = pd.concat([dataset, new_rows], ignore_index=True) | 
|  | 896 | 
| 4 | 897     IDs = pd.Series.tolist(dataset.iloc[:, 0].astype(str)) | 
|  | 898 | 
|  | 899     dataset = dataset.drop(dataset.columns[0], axis = "columns").to_dict("list") | 
|  | 900     return { id : list(map(utils.Float("Dataset values, not an argument"), values)) for id, values in dataset.items() }, IDs | 
|  | 901 | 
|  | 902 def rgb_to_hex(rgb): | 
|  | 903     """ | 
|  | 904     Convert RGB values (0-1 range) to hexadecimal color format. | 
|  | 905 | 
|  | 906     Args: | 
|  | 907         rgb (numpy.ndarray): An array of RGB color components (in the range [0, 1]). | 
|  | 908 | 
|  | 909     Returns: | 
|  | 910         str: The color in hexadecimal format (e.g., '#ff0000' for red). | 
|  | 911     """ | 
|  | 912     # Convert RGB values (0-1 range) to hexadecimal format | 
|  | 913     rgb = (np.array(rgb) * 255).astype(int) | 
|  | 914     return '#{:02x}{:02x}{:02x}'.format(rgb[0], rgb[1], rgb[2]) | 
|  | 915 | 
|  | 916 | 
|  | 917 | 
|  | 918 def save_colormap_image(min_value: float, max_value: float, path: utils.FilePath, colorMap:str="viridis"): | 
|  | 919     """ | 
|  | 920     Create and save an image of the colormap showing the gradient and its range. | 
|  | 921 | 
|  | 922     Args: | 
|  | 923         min_value (float): The minimum value of the colormap range. | 
|  | 924         max_value (float): The maximum value of the colormap range. | 
|  | 925         filename (str): The filename for saving the image. | 
|  | 926     """ | 
|  | 927 | 
|  | 928     # Create a colormap using matplotlib | 
|  | 929     cmap = plt.get_cmap(colorMap) | 
|  | 930 | 
|  | 931     # Create a figure and axis | 
|  | 932     fig, ax = plt.subplots(figsize=(6, 1)) | 
|  | 933     fig.subplots_adjust(bottom=0.5) | 
|  | 934 | 
|  | 935     # Create a gradient image | 
|  | 936     gradient = np.linspace(0, 1, 256) | 
|  | 937     gradient = np.vstack((gradient, gradient)) | 
|  | 938 | 
|  | 939     # Add min and max value annotations | 
|  | 940     ax.text(0, 0.5, f'{np.round(min_value, 3)}', va='center', ha='right', transform=ax.transAxes, fontsize=12, color='black') | 
|  | 941     ax.text(1, 0.5, f'{np.round(max_value, 3)}', va='center', ha='left', transform=ax.transAxes, fontsize=12, color='black') | 
|  | 942 | 
|  | 943 | 
|  | 944     # Display the gradient image | 
|  | 945     ax.imshow(gradient, aspect='auto', cmap=cmap) | 
|  | 946     ax.set_axis_off() | 
|  | 947 | 
|  | 948     # Save the image | 
|  | 949     plt.savefig(path.show(), bbox_inches='tight', pad_inches=0) | 
|  | 950     plt.close() | 
|  | 951     pass | 
|  | 952 | 
|  | 953 def min_nonzero_abs(arr): | 
|  | 954     # Flatten the array and filter out zeros, then find the minimum of the remaining values | 
|  | 955     non_zero_elements = np.abs(arr)[np.abs(arr) > 0] | 
|  | 956     return np.min(non_zero_elements) if non_zero_elements.size > 0 else None | 
|  | 957 | 
|  | 958 def computeEnrichmentMeanMedian(metabMap: ET.ElementTree, class_pat: Dict[str, List[List[float]]], ids: List[str], colormap:str) -> None: | 
|  | 959     """ | 
|  | 960     Compute and visualize the metabolic map based on mean and median of the input fluxes. | 
| 168 | 961     The fluxes are normalised across classes/datasets and visualised using the given colormap. | 
| 4 | 962 | 
|  | 963     Args: | 
|  | 964         metabMap (ET.ElementTree): An XML tree representing the metabolic map. | 
|  | 965         class_pat (Dict[str, List[List[float]]]): A dictionary where keys are class names and values are lists of enrichment values. | 
|  | 966         ids (List[str]): A list of reaction IDs to be used for coloring arrows. | 
|  | 967 | 
|  | 968     Returns: | 
|  | 969         None | 
|  | 970     """ | 
|  | 971     # Create copies only if they are needed | 
|  | 972     metabMap_mean = copy.deepcopy(metabMap) | 
|  | 973     metabMap_median = copy.deepcopy(metabMap) | 
|  | 974 | 
|  | 975     # Compute medians and means | 
| 242 | 976     medians = {key: np.round(np.nanmedian(np.array(value), axis=1), 6) for key, value in class_pat.items()} | 
|  | 977     means = {key: np.round(np.nanmean(np.array(value), axis=1),6) for key, value in class_pat.items()} | 
| 4 | 978 | 
|  | 979     # Normalize medians and means | 
|  | 980     max_flux_medians = max(np.max(np.abs(arr)) for arr in medians.values()) | 
|  | 981     max_flux_means = max(np.max(np.abs(arr)) for arr in means.values()) | 
|  | 982 | 
| 168 | 983     min_flux_medians = min(min_nonzero_abs(arr) for arr in medians.values()) | 
|  | 984     min_flux_means = min(min_nonzero_abs(arr) for arr in means.values()) | 
| 4 | 985 | 
| 168 | 986     medians = {key: median/max_flux_medians for key, median in medians.items()} | 
|  | 987     means = {key: mean/max_flux_means for key, mean in means.items()} | 
| 4 | 988 | 
| 147 | 989     save_colormap_image(min_flux_medians, max_flux_medians, utils.FilePath("Color map median", ext=utils.FileFormat.PNG, prefix=ARGS.output_path), colormap) | 
|  | 990     save_colormap_image(min_flux_means, max_flux_means, utils.FilePath("Color map mean", ext=utils.FileFormat.PNG, prefix=ARGS.output_path), colormap) | 
| 4 | 991 | 
|  | 992     cmap = plt.get_cmap(colormap) | 
|  | 993 | 
| 240 | 994     min_width = 2.0  # Minimum arrow width | 
|  | 995     max_width = 15.0  # Maximum arrow width | 
|  | 996 | 
| 4 | 997     for key in class_pat: | 
|  | 998         # Create color mappings for median and mean | 
|  | 999         colors_median = { | 
| 168 | 1000             rxn_id: rgb_to_hex(cmap(abs(medians[key][i]))) if medians[key][i] != 0 else '#bebebe'  #grey blocked | 
| 4 | 1001             for i, rxn_id in enumerate(ids) | 
|  | 1002         } | 
|  | 1003 | 
|  | 1004         colors_mean = { | 
| 168 | 1005             rxn_id: rgb_to_hex(cmap(abs(means[key][i]))) if means[key][i] != 0 else '#bebebe'  #grey blocked | 
| 4 | 1006             for i, rxn_id in enumerate(ids) | 
|  | 1007         } | 
|  | 1008 | 
|  | 1009         for i, rxn_id in enumerate(ids): | 
| 240 | 1010             # Calculate arrow width for median | 
|  | 1011             width_median = np.interp(abs(medians[key][i]), [0, 1], [min_width, max_width]) | 
| 4 | 1012             isNegative = medians[key][i] < 0 | 
| 240 | 1013             apply_arrow(metabMap_median, rxn_id, colors_median[rxn_id], isNegative, width_median) | 
| 4 | 1014 | 
| 240 | 1015             # Calculate arrow width for mean | 
|  | 1016             width_mean = np.interp(abs(means[key][i]), [0, 1], [min_width, max_width]) | 
| 4 | 1017             isNegative = means[key][i] < 0 | 
| 240 | 1018             apply_arrow(metabMap_mean, rxn_id, colors_mean[rxn_id], isNegative, width_mean) | 
| 4 | 1019 | 
|  | 1020         # Save and convert the SVG files | 
|  | 1021         save_and_convert(metabMap_mean, "mean", key) | 
|  | 1022         save_and_convert(metabMap_median, "median", key) | 
|  | 1023 | 
| 240 | 1024 def apply_arrow(metabMap, rxn_id, color, isNegative, width=5): | 
| 4 | 1025     """ | 
|  | 1026     Apply an arrow to a specific reaction in the metabolic map with a given color. | 
|  | 1027 | 
|  | 1028     Args: | 
|  | 1029         metabMap (ET.ElementTree): An XML tree representing the metabolic map. | 
|  | 1030         rxn_id (str): The ID of the reaction to which the arrow will be applied. | 
|  | 1031         color (str): The color of the arrow in hexadecimal format. | 
| 240 | 1032         isNegative (bool): A boolean indicating if the arrow represents a negative value. | 
|  | 1033         width (int): The width of the arrow. | 
| 4 | 1034 | 
|  | 1035     Returns: | 
|  | 1036         None | 
|  | 1037     """ | 
| 240 | 1038     arrow = Arrow(width=width, col=color) | 
| 4 | 1039     arrow.styleReactionElementsMeanMedian(metabMap, rxn_id, isNegative) | 
|  | 1040     pass | 
|  | 1041 | 
|  | 1042 def save_and_convert(metabMap, map_type, key): | 
|  | 1043     """ | 
|  | 1044     Save the metabolic map as an SVG file and optionally convert it to PNG and PDF formats. | 
|  | 1045 | 
|  | 1046     Args: | 
|  | 1047         metabMap (ET.ElementTree): An XML tree representing the metabolic map. | 
|  | 1048         map_type (str): The type of map ('mean' or 'median'). | 
|  | 1049         key (str): The key identifying the specific map. | 
|  | 1050 | 
|  | 1051     Returns: | 
|  | 1052         None | 
|  | 1053     """ | 
| 147 | 1054     svgFilePath = utils.FilePath(f"SVG Map {map_type} - {key}", ext=utils.FileFormat.SVG, prefix=ARGS.output_path) | 
| 4 | 1055     utils.writeSvg(svgFilePath, metabMap) | 
|  | 1056     if ARGS.generate_pdf: | 
| 147 | 1057         pngPath = utils.FilePath(f"PNG Map {map_type} - {key}", ext=utils.FileFormat.PNG, prefix=ARGS.output_path) | 
|  | 1058         pdfPath = utils.FilePath(f"PDF Map {map_type} - {key}", ext=utils.FileFormat.PDF, prefix=ARGS.output_path) | 
| 4 | 1059         convert_to_pdf(svgFilePath, pngPath, pdfPath) | 
|  | 1060     if not ARGS.generate_svg: | 
|  | 1061         os.remove(svgFilePath.show()) | 
|  | 1062 | 
|  | 1063 | 
|  | 1064 ############################ MAIN ############################################# | 
| 147 | 1065 def main(args:List[str] = None) -> None: | 
| 4 | 1066     """ | 
|  | 1067     Initializes everything and sets the program in motion based on the fronted input arguments. | 
|  | 1068 | 
|  | 1069     Returns: | 
|  | 1070         None | 
|  | 1071 | 
|  | 1072     Raises: | 
|  | 1073         sys.exit : if a user-provided custom map is in the wrong format (ET.XMLSyntaxError, ET.XMLSchemaParseError) | 
|  | 1074     """ | 
|  | 1075 | 
|  | 1076     global ARGS | 
| 147 | 1077     ARGS = process_args(args) | 
| 4 | 1078 | 
| 240 | 1079     if ARGS.custom_map == 'None': | 
|  | 1080         ARGS.custom_map = None | 
|  | 1081 | 
| 147 | 1082     if os.path.isdir(ARGS.output_path) == False: os.makedirs(ARGS.output_path) | 
| 4 | 1083 | 
|  | 1084     core_map :ET.ElementTree = ARGS.choice_map.getMap( | 
|  | 1085         ARGS.tool_dir, | 
|  | 1086         utils.FilePath.fromStrPath(ARGS.custom_map) if ARGS.custom_map else None) | 
|  | 1087     # TODO: ^^^ ugly but fine for now, the argument is None if the model isn't custom because no file was given. | 
|  | 1088     # getMap will None-check the customPath and panic when the model IS custom but there's no file (good). A cleaner | 
|  | 1089     # solution can be derived from my comment in FilePath.fromStrPath | 
|  | 1090 | 
|  | 1091     ids, class_pat = getClassesAndIdsFromDatasets(ARGS.input_datas_fluxes, ARGS.input_data_fluxes, ARGS.input_class_fluxes, ARGS.names_fluxes) | 
|  | 1092 | 
|  | 1093     if(ARGS.choice_map == utils.Model.HMRcore): | 
|  | 1094         temp_map = utils.Model.HMRcore_no_legend | 
|  | 1095         computeEnrichmentMeanMedian(temp_map.getMap(ARGS.tool_dir), class_pat, ids, ARGS.color_map) | 
|  | 1096     elif(ARGS.choice_map == utils.Model.ENGRO2): | 
|  | 1097         temp_map = utils.Model.ENGRO2_no_legend | 
|  | 1098         computeEnrichmentMeanMedian(temp_map.getMap(ARGS.tool_dir), class_pat, ids, ARGS.color_map) | 
|  | 1099     else: | 
|  | 1100         computeEnrichmentMeanMedian(core_map, class_pat, ids, ARGS.color_map) | 
| 148 | 1101 | 
| 4 | 1102 | 
| 151 | 1103     enrichment_results = computeEnrichment(class_pat, ids) | 
| 148 | 1104     for i, j, comparisonDict, max_z_score in enrichment_results: | 
|  | 1105         map_copy = copy.deepcopy(core_map) | 
|  | 1106         temp_thingsInCommon(comparisonDict, map_copy, max_z_score, i, j) | 
|  | 1107         createOutputMaps(i, j, map_copy) | 
| 4 | 1108 | 
|  | 1109     if not ERRORS: return | 
|  | 1110     utils.logWarning( | 
|  | 1111         f"The following reaction IDs were mentioned in the dataset but weren't found in the map: {ERRORS}", | 
|  | 1112         ARGS.out_log) | 
|  | 1113 | 
|  | 1114     print('Execution succeded') | 
|  | 1115 | 
|  | 1116 ############################################################################### | 
|  | 1117 if __name__ == "__main__": | 
| 148 | 1118     main() | 
|  | 1119 |