|
492
|
1 # Quick Start Guide
|
|
|
2
|
|
|
3 Get started with COBRAxy! This guide walks you through your first metabolic analysis.
|
|
|
4
|
|
|
5 ## Step 1: Verify Installation
|
|
|
6
|
|
|
7 Test that COBRAxy is working:
|
|
|
8
|
|
|
9 ```bash
|
|
|
10 # Check if tools are available
|
|
|
11 ras_generator --help
|
|
|
12
|
|
|
13 # Should display help text without errors
|
|
|
14 ```
|
|
|
15
|
|
|
16 ## Step 2: Download Sample Data
|
|
|
17
|
|
|
18 Create a sample gene expression file:
|
|
|
19
|
|
|
20 ```bash
|
|
|
21 # Create sample data
|
|
|
22 cat > sample_expression.tsv << 'EOF'
|
|
|
23 Gene_ID Control_1 Control_2 Treatment_1 Treatment_2
|
|
|
24 HGNC:5 8.5 9.2 15.7 14.3
|
|
|
25 HGNC:10 3.2 4.1 8.8 7.9
|
|
|
26 HGNC:15 7.9 8.2 4.4 5.1
|
|
|
27 HGNC:25 12.1 13.5 18.2 17.8
|
|
|
28 HGNC:30 6.3 7.1 11.5 10.8
|
|
|
29 HGNC:55 14.2 15.8 22.1 21.3
|
|
|
30 HGNC:80 5.7 6.4 2.8 3.2
|
|
|
31 HGNC:100 9.8 10.5 16.7 15.9
|
|
|
32 EOF
|
|
|
33 ```
|
|
|
34
|
|
|
35 ## Step 3: Generate Activity Scores
|
|
|
36
|
|
|
37 Compute Reaction Activity Scores (RAS) from your gene expression:
|
|
|
38
|
|
|
39 ```bash
|
|
|
40 # Generate RAS scores using built-in ENGRO2 model
|
|
542
|
41 # Note: -td is optional and auto-detected after pip install
|
|
|
42 ras_generator \
|
|
492
|
43 -in sample_expression.tsv \
|
|
|
44 -ra ras_scores.tsv \
|
|
|
45 -rs ENGRO2
|
|
|
46
|
|
|
47 # Check output
|
|
|
48 head ras_scores.tsv
|
|
|
49 ```
|
|
|
50
|
|
|
51 **Expected output**:
|
|
|
52 ```tsv
|
|
|
53 Reactions Control_1 Control_2 Treatment_1 Treatment_2
|
|
|
54 R_HEX1 8.5 9.2 15.7 14.3
|
|
|
55 R_PGI 7.9 8.2 4.4 5.1
|
|
|
56 ...
|
|
|
57 ```
|
|
|
58
|
|
|
59 ## Step 4: Create Pathway Visualizations
|
|
|
60
|
|
|
61 Generate enriched pathway maps with statistical analysis:
|
|
|
62
|
|
|
63 ```bash
|
|
|
64 # Create pathway maps with statistical analysis
|
|
542
|
65 # Note: -td is optional and auto-detected after pip install
|
|
|
66 marea \
|
|
492
|
67 -using_RAS true \
|
|
|
68 -input_data ras_scores.tsv \
|
|
|
69 -choice_map ENGRO2 \
|
|
|
70 -gs true \
|
|
|
71 -idop pathway_maps
|
|
|
72
|
|
|
73 # Check results
|
|
|
74 ls pathway_maps/
|
|
|
75 ```
|
|
|
76
|
|
|
77 **Expected output**: SVG files with colored pathway maps showing metabolic changes.
|
|
|
78
|
|
|
79 ## Step 5: View Results
|
|
|
80
|
|
|
81 Open the generated pathway maps:
|
|
|
82
|
|
|
83 ```bash
|
|
|
84 # Open SVG files in your browser or image viewer
|
|
|
85 # Files will be in pathway_maps/ directory
|
|
|
86 firefox pathway_maps/*.svg # Linux
|
|
|
87 open pathway_maps/*.svg # macOS
|
|
|
88 ```
|
|
|
89
|
|
|
90 ## What Just Happened?
|
|
|
91
|
|
|
92 1. **RAS Generation**: Mapped gene expression to metabolic reactions using GPR rules
|
|
|
93 2. **Statistical Analysis**: Identified significantly altered pathways between conditions
|
|
|
94 3. **Visualization**: Created colored pathway maps highlighting metabolic changes
|
|
|
95
|
|
|
96 ## Next Steps
|
|
|
97
|
|
|
98 ### Learn More About the Analysis
|
|
|
99
|
|
542
|
100 - **[Understanding RAS](/tools/ras-generator.md)** - How activity scores are computed
|
|
|
101 - **[MAREA Analysis](/tools/marea.md)** - Statistical enrichment methods
|
|
492
|
102 - **[Data Flow](getting-started.md#analysis-workflows)** - Complete workflow overview
|
|
|
103
|
|
|
104 ### Try Advanced Features
|
|
|
105
|
|
|
106 - **[Flux Sampling](tutorials/workflow.md#flux-simulation-workflow)** - Predict metabolic flux distributions
|
|
542
|
107 - **[Galaxy Interface](/tutorials/galaxy-setup.md)** - Web-based analysis
|
|
492
|
108
|
|
|
109 ### Use Your Own Data
|
|
|
110
|
|
542
|
111 - **[Data Formats](/tutorials/data-formats.md)** - Prepare your expression data
|
|
|
112 - **[Troubleshooting](/troubleshooting.md)** - Common issues and solutions
|
|
492
|
113
|
|
|
114 ## Complete Example Pipeline
|
|
|
115
|
|
|
116 Here's the full command sequence for reference:
|
|
|
117
|
|
|
118 ```bash
|
|
|
119 # Set up
|
|
|
120 cd /path/to/analysis/
|
|
|
121
|
|
|
122 # Generate sample data (or use your own)
|
|
|
123 cat > expression.tsv << 'EOF'
|
|
|
124 [your gene expression data]
|
|
|
125 EOF
|
|
|
126
|
|
|
127 # Run analysis pipeline
|
|
542
|
128 # Note: -td is optional and auto-detected after pip install
|
|
|
129 ras_generator -in expression.tsv -ra ras.tsv -rs ENGRO2
|
|
|
130 marea -using_RAS true -input_data ras.tsv -choice_map ENGRO2 -gs true -idop maps
|
|
492
|
131
|
|
|
132 # View results
|
|
|
133 ls maps/*.svg
|
|
|
134 ```
|
|
|
135
|
|
|
136 ## Getting Help
|
|
|
137
|
|
|
138 If something doesn't work:
|
|
|
139
|
|
|
140 1. **Check Prerequisites**: Ensure COBRAxy is properly installed
|
|
|
141 2. **Verify File Format**: Make sure your data is tab-separated TSV
|
|
|
142 3. **Review Logs**: Look for error messages in the terminal output
|
|
542
|
143 4. **Consult Guides**: [Troubleshooting](/troubleshooting.md) and [Installation](/installation.md) |