Mercurial > repos > bimib > cobraxy
comparison COBRAxy/custom_data_generator.py @ 403:05092b0cfca0 draft
Uploaded
| author | francesco_lapi |
|---|---|
| date | Mon, 08 Sep 2025 13:38:59 +0000 |
| parents | de4a373e338b |
| children | 08f1ff359397 |
comparison
equal
deleted
inserted
replaced
| 402:ccccb731c953 | 403:05092b0cfca0 |
|---|---|
| 145 for reaction in model.reactions: | 145 for reaction in model.reactions: |
| 146 bounds.loc[reaction.id] = [reaction.lower_bound, reaction.upper_bound] | 146 bounds.loc[reaction.id] = [reaction.lower_bound, reaction.upper_bound] |
| 147 return bounds | 147 return bounds |
| 148 | 148 |
| 149 | 149 |
| 150 | |
| 151 def generate_compartments(model: cobra.Model) -> pd.DataFrame: | |
| 152 """ | |
| 153 Generates a DataFrame containing compartment information for each reaction. | |
| 154 Creates columns for each compartment position (Compartment_1, Compartment_2, etc.) | |
| 155 | |
| 156 Args: | |
| 157 model: the COBRA model to extract compartment data from. | |
| 158 | |
| 159 Returns: | |
| 160 pd.DataFrame: DataFrame with ReactionID and compartment columns | |
| 161 """ | |
| 162 compartment_data = [] | |
| 163 | |
| 164 # First pass: determine the maximum number of compartments any reaction has | |
| 165 max_compartments = 0 | |
| 166 reaction_compartments = {} | |
| 167 | |
| 168 for reaction in model.reactions: | |
| 169 # Get unique compartments from all metabolites in the reaction | |
| 170 if type(reaction.annotation['pathways']) == list: | |
| 171 reaction_compartments[reaction.id] = reaction.annotation['pathways'] | |
| 172 max_compartments = max(max_compartments, len(reaction.annotation['pathways'])) | |
| 173 else: | |
| 174 reaction_compartments[reaction.id] = [reaction.annotation['pathways']] | |
| 175 | |
| 176 # Create column names for compartments | |
| 177 compartment_columns = [f"Compartment_{i+1}" for i in range(max_compartments)] | |
| 178 | |
| 179 # Second pass: create the data | |
| 180 for reaction_id, compartments in reaction_compartments.items(): | |
| 181 row = {"ReactionID": reaction_id} | |
| 182 | |
| 183 # Fill compartment columns | |
| 184 for i in range(max_compartments): | |
| 185 col_name = compartment_columns[i] | |
| 186 if i < len(compartments): | |
| 187 row[col_name] = compartments[i] | |
| 188 | |
| 189 else: | |
| 190 row[col_name] = None # or "" if you prefer empty strings | |
| 191 | |
| 192 compartment_data.append(row) | |
| 193 | |
| 194 return pd.DataFrame(compartment_data) | |
| 195 | |
| 196 | |
| 150 ###############################- FILE SAVING -################################ | 197 ###############################- FILE SAVING -################################ |
| 151 def save_as_csv_filePath(data :dict, file_path :utils.FilePath, fieldNames :Tuple[str, str]) -> None: | 198 def save_as_csv_filePath(data :dict, file_path :utils.FilePath, fieldNames :Tuple[str, str]) -> None: |
| 152 """ | 199 """ |
| 153 Saves any dictionary-shaped data in a .csv file created at the given file_path as FilePath. | 200 Saves any dictionary-shaped data in a .csv file created at the given file_path as FilePath. |
| 154 | 201 |
| 227 raise utils.DataErr(ARGS.model, f"failed loading built-in model: {e}") | 274 raise utils.DataErr(ARGS.model, f"failed loading built-in model: {e}") |
| 228 | 275 |
| 229 # Determine final model name: explicit --name overrides, otherwise use the model id | 276 # Determine final model name: explicit --name overrides, otherwise use the model id |
| 230 | 277 |
| 231 model_name = ARGS.name if ARGS.name else ARGS.model | 278 model_name = ARGS.name if ARGS.name else ARGS.model |
| 232 print(ARGS.name) | |
| 233 print(model_name) | |
| 234 print(ARGS.medium_selector) | |
| 235 | 279 |
| 236 if ARGS.name == "ENGRO2" and ARGS.medium_selector != "Default": | 280 if ARGS.name == "ENGRO2" and ARGS.medium_selector != "Default": |
| 237 df_mediums = pd.read_csv(ARGS.tool_dir + "/local/medium/medium.csv", index_col = 0) | 281 df_mediums = pd.read_csv(ARGS.tool_dir + "/local/medium/medium.csv", index_col = 0) |
| 238 ARGS.medium_selector = ARGS.medium_selector.replace("_", " ") | 282 ARGS.medium_selector = ARGS.medium_selector.replace("_", " ") |
| 239 medium = df_mediums[[ARGS.medium_selector]] | 283 medium = df_mediums[[ARGS.medium_selector]] |
| 255 # generate data | 299 # generate data |
| 256 rules = generate_rules(model, asParsed = False) | 300 rules = generate_rules(model, asParsed = False) |
| 257 reactions = generate_reactions(model, asParsed = False) | 301 reactions = generate_reactions(model, asParsed = False) |
| 258 bounds = generate_bounds(model) | 302 bounds = generate_bounds(model) |
| 259 medium = get_medium(model) | 303 medium = get_medium(model) |
| 304 compartments = generate_compartments(model) | |
| 260 | 305 |
| 261 df_rules = pd.DataFrame(list(rules.items()), columns = ["ReactionID", "Rule"]) | 306 df_rules = pd.DataFrame(list(rules.items()), columns = ["ReactionID", "Rule"]) |
| 262 df_reactions = pd.DataFrame(list(reactions.items()), columns = ["ReactionID", "Reaction"]) | 307 df_reactions = pd.DataFrame(list(reactions.items()), columns = ["ReactionID", "Reaction"]) |
| 263 | 308 |
| 264 df_bounds = bounds.reset_index().rename(columns = {"index": "ReactionID"}) | 309 df_bounds = bounds.reset_index().rename(columns = {"index": "ReactionID"}) |
| 265 df_medium = medium.rename(columns = {"reaction": "ReactionID"}) | 310 df_medium = medium.rename(columns = {"reaction": "ReactionID"}) |
| 266 df_medium["InMedium"] = True # flag per indicare la presenza nel medium | 311 df_medium["InMedium"] = True # flag per indicare la presenza nel medium |
| 267 | 312 |
| 268 merged = df_reactions.merge(df_rules, on = "ReactionID", how = "outer") | 313 merged = df_reactions.merge(df_rules, on = "ReactionID", how = "outer") |
| 269 merged = merged.merge(df_bounds, on = "ReactionID", how = "outer") | 314 merged = merged.merge(df_bounds, on = "ReactionID", how = "outer") |
| 270 | 315 merged = merged.merge(compartments, on = "ReactionID", how = "outer") |
| 271 merged = merged.merge(df_medium, on = "ReactionID", how = "left") | 316 merged = merged.merge(df_medium, on = "ReactionID", how = "left") |
| 272 | 317 |
| 273 merged["InMedium"] = merged["InMedium"].fillna(False) | 318 merged["InMedium"] = merged["InMedium"].fillna(False) |
| 274 | 319 |
| 275 merged = merged.sort_values(by = "InMedium", ascending = False) | 320 merged = merged.sort_values(by = "InMedium", ascending = False) |
