Mercurial > repos > bimib > cobraxy
comparison COBRAxy/utils/ras_to_bounds.py @ 57:0b4be1dbdbc4 draft
Uploaded
| author | luca_milaz |
|---|---|
| date | Sun, 13 Oct 2024 06:52:58 +0000 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| 56:9688ad27287b | 57:0b4be1dbdbc4 |
|---|---|
| 1 import argparse | |
| 2 import utils.general_utils as utils | |
| 3 from typing import Optional, List | |
| 4 import os | |
| 5 import numpy as np | |
| 6 import pandas as pd | |
| 7 import cobra | |
| 8 import sys | |
| 9 import csv | |
| 10 from joblib import Parallel, delayed, cpu_count | |
| 11 | |
| 12 ################################# process args ############################### | |
| 13 def process_args(args :List[str]) -> argparse.Namespace: | |
| 14 """ | |
| 15 Processes command-line arguments. | |
| 16 | |
| 17 Args: | |
| 18 args (list): List of command-line arguments. | |
| 19 | |
| 20 Returns: | |
| 21 Namespace: An object containing parsed arguments. | |
| 22 """ | |
| 23 parser = argparse.ArgumentParser(usage = '%(prog)s [options]', | |
| 24 description = 'process some value\'s') | |
| 25 | |
| 26 parser.add_argument( | |
| 27 '-ms', '--model_selector', | |
| 28 type = utils.Model, default = utils.Model.ENGRO2, choices = [utils.Model.ENGRO2, utils.Model.Custom], | |
| 29 help = 'chose which type of model you want use') | |
| 30 | |
| 31 parser.add_argument("-mo", "--model", type = str, | |
| 32 help = "path to input file with custom rules, if provided") | |
| 33 | |
| 34 parser.add_argument("-mn", "--model_name", type = str, help = "custom mode name") | |
| 35 | |
| 36 parser.add_argument( | |
| 37 '-mes', '--medium_selector', | |
| 38 default = "allOpen", | |
| 39 help = 'chose which type of medium you want use') | |
| 40 | |
| 41 parser.add_argument("-meo", "--medium", type = str, | |
| 42 help = "path to input file with custom medium, if provided") | |
| 43 | |
| 44 parser.add_argument('-ol', '--out_log', | |
| 45 help = "Output log") | |
| 46 | |
| 47 parser.add_argument('-td', '--tool_dir', | |
| 48 type = str, | |
| 49 required = True, | |
| 50 help = 'your tool directory') | |
| 51 | |
| 52 parser.add_argument('-ir', '--input_ras', | |
| 53 type=str, | |
| 54 required = False, | |
| 55 help = 'input ras') | |
| 56 | |
| 57 parser.add_argument('-rs', '--ras_selector', | |
| 58 required = True, | |
| 59 type=utils.Bool("using_RAS"), | |
| 60 help = 'ras selector') | |
| 61 | |
| 62 parser.add_argument('-c', '--classes', | |
| 63 type = str, | |
| 64 required = False, | |
| 65 help = 'input classes') | |
| 66 | |
| 67 parser.add_argument('-cc', '--cell_class', | |
| 68 type = str, | |
| 69 help = 'output of cell class') | |
| 70 | |
| 71 ARGS = parser.parse_args() | |
| 72 return ARGS | |
| 73 | |
| 74 ########################### warning ########################################### | |
| 75 def warning(s :str) -> None: | |
| 76 """ | |
| 77 Log a warning message to an output log file and print it to the console. | |
| 78 | |
| 79 Args: | |
| 80 s (str): The warning message to be logged and printed. | |
| 81 | |
| 82 Returns: | |
| 83 None | |
| 84 """ | |
| 85 with open(ARGS.out_log, 'a') as log: | |
| 86 log.write(s + "\n\n") | |
| 87 print(s) | |
| 88 | |
| 89 ############################ dataset input #################################### | |
| 90 def read_dataset(data :str, name :str) -> pd.DataFrame: | |
| 91 """ | |
| 92 Read a dataset from a CSV file and return it as a pandas DataFrame. | |
| 93 | |
| 94 Args: | |
| 95 data (str): Path to the CSV file containing the dataset. | |
| 96 name (str): Name of the dataset, used in error messages. | |
| 97 | |
| 98 Returns: | |
| 99 pandas.DataFrame: DataFrame containing the dataset. | |
| 100 | |
| 101 Raises: | |
| 102 pd.errors.EmptyDataError: If the CSV file is empty. | |
| 103 sys.exit: If the CSV file has the wrong format, the execution is aborted. | |
| 104 """ | |
| 105 try: | |
| 106 dataset = pd.read_csv(data, sep = '\t', header = 0, engine='python') | |
| 107 except pd.errors.EmptyDataError: | |
| 108 sys.exit('Execution aborted: wrong format of ' + name + '\n') | |
| 109 if len(dataset.columns) < 2: | |
| 110 sys.exit('Execution aborted: wrong format of ' + name + '\n') | |
| 111 return dataset | |
| 112 | |
| 113 | |
| 114 def apply_ras_bounds(model, ras_row, rxns_ids): | |
| 115 """ | |
| 116 Adjust the bounds of reactions in the model based on RAS values. | |
| 117 | |
| 118 Args: | |
| 119 model (cobra.Model): The metabolic model to be modified. | |
| 120 ras_row (pd.Series): A row from a RAS DataFrame containing scaling factors for reaction bounds. | |
| 121 rxns_ids (list of str): List of reaction IDs to which the scaling factors will be applied. | |
| 122 | |
| 123 Returns: | |
| 124 None | |
| 125 """ | |
| 126 for reaction in rxns_ids: | |
| 127 if reaction in ras_row.index: | |
| 128 scaling_factor = ras_row[reaction] | |
| 129 lower_bound=model.reactions.get_by_id(reaction).lower_bound | |
| 130 upper_bound=model.reactions.get_by_id(reaction).upper_bound | |
| 131 valMax=float((upper_bound)*scaling_factor) | |
| 132 valMin=float((lower_bound)*scaling_factor) | |
| 133 if upper_bound!=0 and lower_bound==0: | |
| 134 model.reactions.get_by_id(reaction).upper_bound=valMax | |
| 135 if upper_bound==0 and lower_bound!=0: | |
| 136 model.reactions.get_by_id(reaction).lower_bound=valMin | |
| 137 if upper_bound!=0 and lower_bound!=0: | |
| 138 model.reactions.get_by_id(reaction).lower_bound=valMin | |
| 139 model.reactions.get_by_id(reaction).upper_bound=valMax | |
| 140 pass | |
| 141 | |
| 142 def process_ras_cell(cellName, ras_row, model, rxns_ids, output_folder): | |
| 143 """ | |
| 144 Process a single RAS cell, apply bounds, and save the bounds to a CSV file. | |
| 145 | |
| 146 Args: | |
| 147 cellName (str): The name of the RAS cell (used for naming the output file). | |
| 148 ras_row (pd.Series): A row from a RAS DataFrame containing scaling factors for reaction bounds. | |
| 149 model (cobra.Model): The metabolic model to be modified. | |
| 150 rxns_ids (list of str): List of reaction IDs to which the scaling factors will be applied. | |
| 151 output_folder (str): Folder path where the output CSV file will be saved. | |
| 152 | |
| 153 Returns: | |
| 154 None | |
| 155 """ | |
| 156 model_new = model.copy() | |
| 157 apply_ras_bounds(model_new, ras_row, rxns_ids) | |
| 158 bounds = pd.DataFrame([(rxn.lower_bound, rxn.upper_bound) for rxn in model_new.reactions], index=rxns_ids, columns=["lower_bound", "upper_bound"]) | |
| 159 bounds.to_csv(output_folder + cellName + ".csv", sep='\t', index=True) | |
| 160 pass | |
| 161 | |
| 162 def generate_bounds(model: cobra.Model, medium: dict, ras=None, output_folder='output/') -> pd.DataFrame: | |
| 163 """ | |
| 164 Generate reaction bounds for a metabolic model based on medium conditions and optional RAS adjustments. | |
| 165 | |
| 166 Args: | |
| 167 model (cobra.Model): The metabolic model for which bounds will be generated. | |
| 168 medium (dict): A dictionary where keys are reaction IDs and values are the medium conditions. | |
| 169 ras (pd.DataFrame, optional): RAS pandas dataframe. Defaults to None. | |
| 170 output_folder (str, optional): Folder path where output CSV files will be saved. Defaults to 'output/'. | |
| 171 | |
| 172 Returns: | |
| 173 pd.DataFrame: DataFrame containing the bounds of reactions in the model. | |
| 174 """ | |
| 175 rxns_ids = [rxn.id for rxn in model.reactions] | |
| 176 | |
| 177 # Set medium conditions | |
| 178 for reaction, value in medium.items(): | |
| 179 if value is not None: | |
| 180 model.reactions.get_by_id(reaction).lower_bound = -float(value) | |
| 181 | |
| 182 # Perform Flux Variability Analysis (FVA) | |
| 183 df_FVA = cobra.flux_analysis.flux_variability_analysis(model, fraction_of_optimum=0, processes=1).round(8) | |
| 184 | |
| 185 # Set FVA bounds | |
| 186 for reaction in rxns_ids: | |
| 187 rxn = model.reactions.get_by_id(reaction) | |
| 188 rxn.lower_bound = float(df_FVA.loc[reaction, "minimum"]) | |
| 189 rxn.upper_bound = float(df_FVA.loc[reaction, "maximum"]) | |
| 190 | |
| 191 if ras is not None: | |
| 192 Parallel(n_jobs=cpu_count())(delayed(process_ras_cell)(cellName, ras_row, model, rxns_ids, output_folder) for cellName, ras_row in ras.iterrows()) | |
| 193 else: | |
| 194 model_new = model.copy() | |
| 195 apply_ras_bounds(model_new, pd.Series([1]*len(rxns_ids), index=rxns_ids), rxns_ids) | |
| 196 bounds = pd.DataFrame([(rxn.lower_bound, rxn.upper_bound) for rxn in model_new.reactions], index=rxns_ids, columns=["lower_bound", "upper_bound"]) | |
| 197 bounds.to_csv(output_folder + "bounds.csv", sep='\t', index=True) | |
| 198 pass | |
| 199 | |
| 200 | |
| 201 | |
| 202 ############################# main ########################################### | |
| 203 def main() -> None: | |
| 204 """ | |
| 205 Initializes everything and sets the program in motion based on the fronted input arguments. | |
| 206 | |
| 207 Returns: | |
| 208 None | |
| 209 """ | |
| 210 if not os.path.exists('ras_to_bounds'): | |
| 211 os.makedirs('ras_to_bounds') | |
| 212 | |
| 213 | |
| 214 global ARGS | |
| 215 ARGS = process_args(sys.argv) | |
| 216 | |
| 217 ARGS.output_folder = 'ras_to_bounds/' | |
| 218 | |
| 219 if(ARGS.ras_selector == True): | |
| 220 ras_file_list = ARGS.input_ras.split(",") | |
| 221 if(len(ras_file_list)>1): | |
| 222 ras_class_names = [cls.strip() for cls in ARGS.classes.split(',')] | |
| 223 else: | |
| 224 ras_class_names = ["placeHolder"] | |
| 225 ras_list = [] | |
| 226 class_assignments = pd.DataFrame(columns=["Patient_ID", "Class"]) | |
| 227 for ras_matrix, ras_class_name in zip(ras_file_list, ras_class_names): | |
| 228 ras = read_dataset(ras_matrix, "ras dataset") | |
| 229 ras.replace("None", None, inplace=True) | |
| 230 ras.set_index("Reactions", drop=True, inplace=True) | |
| 231 ras = ras.T | |
| 232 ras = ras.astype(float) | |
| 233 ras_list.append(ras) | |
| 234 for patient_id in ras.index: | |
| 235 class_assignments = pd.concat([class_assignments, pd.DataFrame({"Patient_ID": ras.index, "Class": ras_class_name})]) | |
| 236 | |
| 237 | |
| 238 # Concatenate all ras DataFrames into a single DataFrame | |
| 239 ras_combined = pd.concat(ras_list, axis=1) | |
| 240 # Normalize the RAS values by max RAS | |
| 241 ras_combined = ras_combined.div(ras_combined.max(axis=0)) | |
| 242 ras_combined = ras_combined.fillna(0) | |
| 243 | |
| 244 | |
| 245 | |
| 246 model_type :utils.Model = ARGS.model_selector | |
| 247 if model_type is utils.Model.Custom: | |
| 248 model = model_type.getCOBRAmodel(customPath = utils.FilePath.fromStrPath(ARGS.model), customExtension = utils.FilePath.fromStrPath(ARGS.model_name).ext) | |
| 249 else: | |
| 250 model = model_type.getCOBRAmodel(toolDir=ARGS.tool_dir) | |
| 251 | |
| 252 if(ARGS.medium_selector == "Custom"): | |
| 253 medium = read_dataset(ARGS.medium, "medium dataset") | |
| 254 medium.set_index(medium.columns[0], inplace=True) | |
| 255 medium = medium.astype(float) | |
| 256 medium = medium[medium.columns[0]].to_dict() | |
| 257 else: | |
| 258 df_mediums = pd.read_csv(ARGS.tool_dir + "/local/medium/medium.csv", index_col = 0) | |
| 259 ARGS.medium_selector = ARGS.medium_selector.replace("_", " ") | |
| 260 medium = df_mediums[[ARGS.medium_selector]] | |
| 261 medium = medium[ARGS.medium_selector].to_dict() | |
| 262 | |
| 263 if(ARGS.ras_selector == True): | |
| 264 generate_bounds(model, medium, ras = ras_combined, output_folder=ARGS.output_folder) | |
| 265 if(len(ras_list)>1): | |
| 266 class_assignments.to_csv(ARGS.cell_class, sep = '\t', index = False) | |
| 267 else: | |
| 268 generate_bounds(model, medium, output_folder=ARGS.output_folder) | |
| 269 | |
| 270 pass | |
| 271 | |
| 272 ############################################################################## | |
| 273 if __name__ == "__main__": | |
| 274 main() |
