Mercurial > repos > bimib > cobraxy
comparison COBRAxy/ras_to_bounds_beta.py @ 406:187cee1a00e2 draft
Uploaded
| author | francesco_lapi |
|---|---|
| date | Mon, 08 Sep 2025 14:44:15 +0000 |
| parents | |
| children | 6619f237aebe |
comparison
equal
deleted
inserted
replaced
| 405:716b1a638fb5 | 406:187cee1a00e2 |
|---|---|
| 1 import argparse | |
| 2 import utils.general_utils as utils | |
| 3 from typing import Optional, List | |
| 4 import os | |
| 5 import numpy as np | |
| 6 import pandas as pd | |
| 7 import cobra | |
| 8 import sys | |
| 9 import csv | |
| 10 from joblib import Parallel, delayed, cpu_count | |
| 11 | |
| 12 ################################# process args ############################### | |
| 13 def process_args(args :List[str] = None) -> argparse.Namespace: | |
| 14 """ | |
| 15 Processes command-line arguments. | |
| 16 | |
| 17 Args: | |
| 18 args (list): List of command-line arguments. | |
| 19 | |
| 20 Returns: | |
| 21 Namespace: An object containing parsed arguments. | |
| 22 """ | |
| 23 parser = argparse.ArgumentParser(usage = '%(prog)s [options]', | |
| 24 description = 'process some value\'s') | |
| 25 | |
| 26 parser.add_argument( | |
| 27 '-ms', '--model_selector', | |
| 28 type = utils.Model, default = utils.Model.ENGRO2, choices = [utils.Model.ENGRO2, utils.Model.Custom], | |
| 29 help = 'chose which type of model you want use') | |
| 30 | |
| 31 parser.add_argument("-mo", "--model", type = str, | |
| 32 help = "path to input file with custom rules, if provided") | |
| 33 | |
| 34 parser.add_argument("-mn", "--model_name", type = str, help = "custom mode name") | |
| 35 | |
| 36 parser.add_argument( | |
| 37 '-mes', '--medium_selector', | |
| 38 default = "allOpen", | |
| 39 help = 'chose which type of medium you want use') | |
| 40 | |
| 41 parser.add_argument("-meo", "--medium", type = str, | |
| 42 help = "path to input file with custom medium, if provided") | |
| 43 | |
| 44 parser.add_argument('-ol', '--out_log', | |
| 45 help = "Output log") | |
| 46 | |
| 47 parser.add_argument('-td', '--tool_dir', | |
| 48 type = str, | |
| 49 required = True, | |
| 50 help = 'your tool directory') | |
| 51 | |
| 52 parser.add_argument('-ir', '--input_ras', | |
| 53 type=str, | |
| 54 required = False, | |
| 55 help = 'input ras') | |
| 56 | |
| 57 parser.add_argument('-rn', '--name', | |
| 58 type=str, | |
| 59 help = 'ras class names') | |
| 60 | |
| 61 parser.add_argument('-rs', '--ras_selector', | |
| 62 required = True, | |
| 63 type=utils.Bool("using_RAS"), | |
| 64 help = 'ras selector') | |
| 65 | |
| 66 parser.add_argument('-cc', '--cell_class', | |
| 67 type = str, | |
| 68 help = 'output of cell class') | |
| 69 parser.add_argument( | |
| 70 '-idop', '--output_path', | |
| 71 type = str, | |
| 72 default='ras_to_bounds/', | |
| 73 help = 'output path for maps') | |
| 74 | |
| 75 | |
| 76 ARGS = parser.parse_args(args) | |
| 77 return ARGS | |
| 78 | |
| 79 ########################### warning ########################################### | |
| 80 def warning(s :str) -> None: | |
| 81 """ | |
| 82 Log a warning message to an output log file and print it to the console. | |
| 83 | |
| 84 Args: | |
| 85 s (str): The warning message to be logged and printed. | |
| 86 | |
| 87 Returns: | |
| 88 None | |
| 89 """ | |
| 90 with open(ARGS.out_log, 'a') as log: | |
| 91 log.write(s + "\n\n") | |
| 92 print(s) | |
| 93 | |
| 94 ############################ dataset input #################################### | |
| 95 def read_dataset(data :str, name :str) -> pd.DataFrame: | |
| 96 """ | |
| 97 Read a dataset from a CSV file and return it as a pandas DataFrame. | |
| 98 | |
| 99 Args: | |
| 100 data (str): Path to the CSV file containing the dataset. | |
| 101 name (str): Name of the dataset, used in error messages. | |
| 102 | |
| 103 Returns: | |
| 104 pandas.DataFrame: DataFrame containing the dataset. | |
| 105 | |
| 106 Raises: | |
| 107 pd.errors.EmptyDataError: If the CSV file is empty. | |
| 108 sys.exit: If the CSV file has the wrong format, the execution is aborted. | |
| 109 """ | |
| 110 try: | |
| 111 dataset = pd.read_csv(data, sep = '\t', header = 0, engine='python') | |
| 112 except pd.errors.EmptyDataError: | |
| 113 sys.exit('Execution aborted: wrong format of ' + name + '\n') | |
| 114 if len(dataset.columns) < 2: | |
| 115 sys.exit('Execution aborted: wrong format of ' + name + '\n') | |
| 116 return dataset | |
| 117 | |
| 118 | |
| 119 def apply_ras_bounds(bounds, ras_row): | |
| 120 """ | |
| 121 Adjust the bounds of reactions in the model based on RAS values. | |
| 122 | |
| 123 Args: | |
| 124 bounds (pd.DataFrame): Model bounds. | |
| 125 ras_row (pd.Series): A row from a RAS DataFrame containing scaling factors for reaction bounds. | |
| 126 Returns: | |
| 127 new_bounds (pd.DataFrame): integrated bounds. | |
| 128 """ | |
| 129 new_bounds = bounds.copy() | |
| 130 for reaction in ras_row.index: | |
| 131 scaling_factor = ras_row[reaction] | |
| 132 if not np.isnan(scaling_factor): | |
| 133 lower_bound=bounds.loc[reaction, "lower_bound"] | |
| 134 upper_bound=bounds.loc[reaction, "upper_bound"] | |
| 135 valMax=float((upper_bound)*scaling_factor) | |
| 136 valMin=float((lower_bound)*scaling_factor) | |
| 137 if upper_bound!=0 and lower_bound==0: | |
| 138 new_bounds.loc[reaction, "upper_bound"] = valMax | |
| 139 if upper_bound==0 and lower_bound!=0: | |
| 140 new_bounds.loc[reaction, "lower_bound"] = valMin | |
| 141 if upper_bound!=0 and lower_bound!=0: | |
| 142 new_bounds.loc[reaction, "lower_bound"] = valMin | |
| 143 new_bounds.loc[reaction, "upper_bound"] = valMax | |
| 144 return new_bounds | |
| 145 | |
| 146 def process_ras_cell(cellName, ras_row, model, rxns_ids, output_folder): | |
| 147 """ | |
| 148 Process a single RAS cell, apply bounds, and save the bounds to a CSV file. | |
| 149 | |
| 150 Args: | |
| 151 cellName (str): The name of the RAS cell (used for naming the output file). | |
| 152 ras_row (pd.Series): A row from a RAS DataFrame containing scaling factors for reaction bounds. | |
| 153 model (cobra.Model): The metabolic model to be modified. | |
| 154 rxns_ids (list of str): List of reaction IDs to which the scaling factors will be applied. | |
| 155 output_folder (str): Folder path where the output CSV file will be saved. | |
| 156 | |
| 157 Returns: | |
| 158 None | |
| 159 """ | |
| 160 bounds = pd.DataFrame([(rxn.lower_bound, rxn.upper_bound) for rxn in model.reactions], index=rxns_ids, columns=["lower_bound", "upper_bound"]) | |
| 161 new_bounds = apply_ras_bounds(bounds, ras_row) | |
| 162 new_bounds.to_csv(output_folder + cellName + ".csv", sep='\t', index=True) | |
| 163 pass | |
| 164 | |
| 165 def generate_bounds(model: cobra.Model, medium: dict, ras=None, output_folder='output/') -> pd.DataFrame: | |
| 166 """ | |
| 167 Generate reaction bounds for a metabolic model based on medium conditions and optional RAS adjustments. | |
| 168 | |
| 169 Args: | |
| 170 model (cobra.Model): The metabolic model for which bounds will be generated. | |
| 171 medium (dict): A dictionary where keys are reaction IDs and values are the medium conditions. | |
| 172 ras (pd.DataFrame, optional): RAS pandas dataframe. Defaults to None. | |
| 173 output_folder (str, optional): Folder path where output CSV files will be saved. Defaults to 'output/'. | |
| 174 | |
| 175 Returns: | |
| 176 pd.DataFrame: DataFrame containing the bounds of reactions in the model. | |
| 177 """ | |
| 178 rxns_ids = [rxn.id for rxn in model.reactions] | |
| 179 | |
| 180 # Set all reactions to zero in the medium | |
| 181 for rxn_id, _ in model.medium.items(): | |
| 182 model.reactions.get_by_id(rxn_id).lower_bound = float(0.0) | |
| 183 | |
| 184 # Set medium conditions | |
| 185 for reaction, value in medium.items(): | |
| 186 if value is not None: | |
| 187 model.reactions.get_by_id(reaction).lower_bound = -float(value) | |
| 188 | |
| 189 | |
| 190 # Perform Flux Variability Analysis (FVA) on this medium | |
| 191 df_FVA = cobra.flux_analysis.flux_variability_analysis(model, fraction_of_optimum=0, processes=1).round(8) | |
| 192 | |
| 193 # Set FVA bounds | |
| 194 for reaction in rxns_ids: | |
| 195 model.reactions.get_by_id(reaction).lower_bound = float(df_FVA.loc[reaction, "minimum"]) | |
| 196 model.reactions.get_by_id(reaction).upper_bound = float(df_FVA.loc[reaction, "maximum"]) | |
| 197 | |
| 198 if ras is not None: | |
| 199 Parallel(n_jobs=cpu_count())(delayed(process_ras_cell)(cellName, ras_row, model, rxns_ids, output_folder) for cellName, ras_row in ras.iterrows()) | |
| 200 else: | |
| 201 bounds = pd.DataFrame([(rxn.lower_bound, rxn.upper_bound) for rxn in model.reactions], index=rxns_ids, columns=["lower_bound", "upper_bound"]) | |
| 202 newBounds = apply_ras_bounds(bounds, pd.Series([1]*len(rxns_ids), index=rxns_ids)) | |
| 203 newBounds.to_csv(output_folder + "bounds.csv", sep='\t', index=True) | |
| 204 pass | |
| 205 | |
| 206 | |
| 207 | |
| 208 ############################# main ########################################### | |
| 209 def main(args:List[str] = None) -> None: | |
| 210 """ | |
| 211 Initializes everything and sets the program in motion based on the fronted input arguments. | |
| 212 | |
| 213 Returns: | |
| 214 None | |
| 215 """ | |
| 216 if not os.path.exists('ras_to_bounds'): | |
| 217 os.makedirs('ras_to_bounds') | |
| 218 | |
| 219 | |
| 220 global ARGS | |
| 221 ARGS = process_args(args) | |
| 222 | |
| 223 if(ARGS.ras_selector == True): | |
| 224 ras_file_list = ARGS.input_ras.split(",") | |
| 225 ras_file_names = ARGS.name.split(",") | |
| 226 if len(ras_file_names) != len(set(ras_file_names)): | |
| 227 error_message = "Duplicated file names in the uploaded RAS matrices." | |
| 228 warning(error_message) | |
| 229 raise ValueError(error_message) | |
| 230 pass | |
| 231 ras_class_names = [] | |
| 232 for file in ras_file_names: | |
| 233 ras_class_names.append(file.rsplit(".", 1)[0]) | |
| 234 ras_list = [] | |
| 235 class_assignments = pd.DataFrame(columns=["Patient_ID", "Class"]) | |
| 236 for ras_matrix, ras_class_name in zip(ras_file_list, ras_class_names): | |
| 237 ras = read_dataset(ras_matrix, "ras dataset") | |
| 238 ras.replace("None", None, inplace=True) | |
| 239 ras.set_index("Reactions", drop=True, inplace=True) | |
| 240 ras = ras.T | |
| 241 ras = ras.astype(float) | |
| 242 if(len(ras_file_list)>1): | |
| 243 #append class name to patient id (dataframe index) | |
| 244 ras.index = [f"{idx}_{ras_class_name}" for idx in ras.index] | |
| 245 else: | |
| 246 ras.index = [f"{idx}" for idx in ras.index] | |
| 247 ras_list.append(ras) | |
| 248 for patient_id in ras.index: | |
| 249 class_assignments.loc[class_assignments.shape[0]] = [patient_id, ras_class_name] | |
| 250 | |
| 251 | |
| 252 # Concatenate all ras DataFrames into a single DataFrame | |
| 253 ras_combined = pd.concat(ras_list, axis=0) | |
| 254 # Normalize the RAS values by max RAS | |
| 255 ras_combined = ras_combined.div(ras_combined.max(axis=0)) | |
| 256 ras_combined.dropna(axis=1, how='all', inplace=True) | |
| 257 | |
| 258 | |
| 259 | |
| 260 model_type :utils.Model = ARGS.model_selector | |
| 261 if model_type is utils.Model.Custom: | |
| 262 model = model_type.getCOBRAmodel(customPath = utils.FilePath.fromStrPath(ARGS.model), customExtension = utils.FilePath.fromStrPath(ARGS.model_name).ext) | |
| 263 else: | |
| 264 model = model_type.getCOBRAmodel(toolDir=ARGS.tool_dir) | |
| 265 | |
| 266 if(ARGS.medium_selector == "Custom"): | |
| 267 medium = read_dataset(ARGS.medium, "medium dataset") | |
| 268 medium.set_index(medium.columns[0], inplace=True) | |
| 269 medium = medium.astype(float) | |
| 270 medium = medium[medium.columns[0]].to_dict() | |
| 271 else: | |
| 272 df_mediums = pd.read_csv(ARGS.tool_dir + "/local/medium/medium.csv", index_col = 0) | |
| 273 ARGS.medium_selector = ARGS.medium_selector.replace("_", " ") | |
| 274 medium = df_mediums[[ARGS.medium_selector]] | |
| 275 medium = medium[ARGS.medium_selector].to_dict() | |
| 276 | |
| 277 if(ARGS.ras_selector == True): | |
| 278 generate_bounds(model, medium, ras = ras_combined, output_folder=ARGS.output_path) | |
| 279 class_assignments.to_csv(ARGS.cell_class, sep = '\t', index = False) | |
| 280 else: | |
| 281 generate_bounds(model, medium, output_folder=ARGS.output_path) | |
| 282 | |
| 283 pass | |
| 284 | |
| 285 ############################################################################## | |
| 286 if __name__ == "__main__": | |
| 287 main() |
