Mercurial > repos > bimib > cobraxy
comparison COBRAxy/ras_to_bounds_beta.py @ 406:187cee1a00e2 draft
Uploaded
author | francesco_lapi |
---|---|
date | Mon, 08 Sep 2025 14:44:15 +0000 |
parents | |
children | 6619f237aebe |
comparison
equal
deleted
inserted
replaced
405:716b1a638fb5 | 406:187cee1a00e2 |
---|---|
1 import argparse | |
2 import utils.general_utils as utils | |
3 from typing import Optional, List | |
4 import os | |
5 import numpy as np | |
6 import pandas as pd | |
7 import cobra | |
8 import sys | |
9 import csv | |
10 from joblib import Parallel, delayed, cpu_count | |
11 | |
12 ################################# process args ############################### | |
13 def process_args(args :List[str] = None) -> argparse.Namespace: | |
14 """ | |
15 Processes command-line arguments. | |
16 | |
17 Args: | |
18 args (list): List of command-line arguments. | |
19 | |
20 Returns: | |
21 Namespace: An object containing parsed arguments. | |
22 """ | |
23 parser = argparse.ArgumentParser(usage = '%(prog)s [options]', | |
24 description = 'process some value\'s') | |
25 | |
26 parser.add_argument( | |
27 '-ms', '--model_selector', | |
28 type = utils.Model, default = utils.Model.ENGRO2, choices = [utils.Model.ENGRO2, utils.Model.Custom], | |
29 help = 'chose which type of model you want use') | |
30 | |
31 parser.add_argument("-mo", "--model", type = str, | |
32 help = "path to input file with custom rules, if provided") | |
33 | |
34 parser.add_argument("-mn", "--model_name", type = str, help = "custom mode name") | |
35 | |
36 parser.add_argument( | |
37 '-mes', '--medium_selector', | |
38 default = "allOpen", | |
39 help = 'chose which type of medium you want use') | |
40 | |
41 parser.add_argument("-meo", "--medium", type = str, | |
42 help = "path to input file with custom medium, if provided") | |
43 | |
44 parser.add_argument('-ol', '--out_log', | |
45 help = "Output log") | |
46 | |
47 parser.add_argument('-td', '--tool_dir', | |
48 type = str, | |
49 required = True, | |
50 help = 'your tool directory') | |
51 | |
52 parser.add_argument('-ir', '--input_ras', | |
53 type=str, | |
54 required = False, | |
55 help = 'input ras') | |
56 | |
57 parser.add_argument('-rn', '--name', | |
58 type=str, | |
59 help = 'ras class names') | |
60 | |
61 parser.add_argument('-rs', '--ras_selector', | |
62 required = True, | |
63 type=utils.Bool("using_RAS"), | |
64 help = 'ras selector') | |
65 | |
66 parser.add_argument('-cc', '--cell_class', | |
67 type = str, | |
68 help = 'output of cell class') | |
69 parser.add_argument( | |
70 '-idop', '--output_path', | |
71 type = str, | |
72 default='ras_to_bounds/', | |
73 help = 'output path for maps') | |
74 | |
75 | |
76 ARGS = parser.parse_args(args) | |
77 return ARGS | |
78 | |
79 ########################### warning ########################################### | |
80 def warning(s :str) -> None: | |
81 """ | |
82 Log a warning message to an output log file and print it to the console. | |
83 | |
84 Args: | |
85 s (str): The warning message to be logged and printed. | |
86 | |
87 Returns: | |
88 None | |
89 """ | |
90 with open(ARGS.out_log, 'a') as log: | |
91 log.write(s + "\n\n") | |
92 print(s) | |
93 | |
94 ############################ dataset input #################################### | |
95 def read_dataset(data :str, name :str) -> pd.DataFrame: | |
96 """ | |
97 Read a dataset from a CSV file and return it as a pandas DataFrame. | |
98 | |
99 Args: | |
100 data (str): Path to the CSV file containing the dataset. | |
101 name (str): Name of the dataset, used in error messages. | |
102 | |
103 Returns: | |
104 pandas.DataFrame: DataFrame containing the dataset. | |
105 | |
106 Raises: | |
107 pd.errors.EmptyDataError: If the CSV file is empty. | |
108 sys.exit: If the CSV file has the wrong format, the execution is aborted. | |
109 """ | |
110 try: | |
111 dataset = pd.read_csv(data, sep = '\t', header = 0, engine='python') | |
112 except pd.errors.EmptyDataError: | |
113 sys.exit('Execution aborted: wrong format of ' + name + '\n') | |
114 if len(dataset.columns) < 2: | |
115 sys.exit('Execution aborted: wrong format of ' + name + '\n') | |
116 return dataset | |
117 | |
118 | |
119 def apply_ras_bounds(bounds, ras_row): | |
120 """ | |
121 Adjust the bounds of reactions in the model based on RAS values. | |
122 | |
123 Args: | |
124 bounds (pd.DataFrame): Model bounds. | |
125 ras_row (pd.Series): A row from a RAS DataFrame containing scaling factors for reaction bounds. | |
126 Returns: | |
127 new_bounds (pd.DataFrame): integrated bounds. | |
128 """ | |
129 new_bounds = bounds.copy() | |
130 for reaction in ras_row.index: | |
131 scaling_factor = ras_row[reaction] | |
132 if not np.isnan(scaling_factor): | |
133 lower_bound=bounds.loc[reaction, "lower_bound"] | |
134 upper_bound=bounds.loc[reaction, "upper_bound"] | |
135 valMax=float((upper_bound)*scaling_factor) | |
136 valMin=float((lower_bound)*scaling_factor) | |
137 if upper_bound!=0 and lower_bound==0: | |
138 new_bounds.loc[reaction, "upper_bound"] = valMax | |
139 if upper_bound==0 and lower_bound!=0: | |
140 new_bounds.loc[reaction, "lower_bound"] = valMin | |
141 if upper_bound!=0 and lower_bound!=0: | |
142 new_bounds.loc[reaction, "lower_bound"] = valMin | |
143 new_bounds.loc[reaction, "upper_bound"] = valMax | |
144 return new_bounds | |
145 | |
146 def process_ras_cell(cellName, ras_row, model, rxns_ids, output_folder): | |
147 """ | |
148 Process a single RAS cell, apply bounds, and save the bounds to a CSV file. | |
149 | |
150 Args: | |
151 cellName (str): The name of the RAS cell (used for naming the output file). | |
152 ras_row (pd.Series): A row from a RAS DataFrame containing scaling factors for reaction bounds. | |
153 model (cobra.Model): The metabolic model to be modified. | |
154 rxns_ids (list of str): List of reaction IDs to which the scaling factors will be applied. | |
155 output_folder (str): Folder path where the output CSV file will be saved. | |
156 | |
157 Returns: | |
158 None | |
159 """ | |
160 bounds = pd.DataFrame([(rxn.lower_bound, rxn.upper_bound) for rxn in model.reactions], index=rxns_ids, columns=["lower_bound", "upper_bound"]) | |
161 new_bounds = apply_ras_bounds(bounds, ras_row) | |
162 new_bounds.to_csv(output_folder + cellName + ".csv", sep='\t', index=True) | |
163 pass | |
164 | |
165 def generate_bounds(model: cobra.Model, medium: dict, ras=None, output_folder='output/') -> pd.DataFrame: | |
166 """ | |
167 Generate reaction bounds for a metabolic model based on medium conditions and optional RAS adjustments. | |
168 | |
169 Args: | |
170 model (cobra.Model): The metabolic model for which bounds will be generated. | |
171 medium (dict): A dictionary where keys are reaction IDs and values are the medium conditions. | |
172 ras (pd.DataFrame, optional): RAS pandas dataframe. Defaults to None. | |
173 output_folder (str, optional): Folder path where output CSV files will be saved. Defaults to 'output/'. | |
174 | |
175 Returns: | |
176 pd.DataFrame: DataFrame containing the bounds of reactions in the model. | |
177 """ | |
178 rxns_ids = [rxn.id for rxn in model.reactions] | |
179 | |
180 # Set all reactions to zero in the medium | |
181 for rxn_id, _ in model.medium.items(): | |
182 model.reactions.get_by_id(rxn_id).lower_bound = float(0.0) | |
183 | |
184 # Set medium conditions | |
185 for reaction, value in medium.items(): | |
186 if value is not None: | |
187 model.reactions.get_by_id(reaction).lower_bound = -float(value) | |
188 | |
189 | |
190 # Perform Flux Variability Analysis (FVA) on this medium | |
191 df_FVA = cobra.flux_analysis.flux_variability_analysis(model, fraction_of_optimum=0, processes=1).round(8) | |
192 | |
193 # Set FVA bounds | |
194 for reaction in rxns_ids: | |
195 model.reactions.get_by_id(reaction).lower_bound = float(df_FVA.loc[reaction, "minimum"]) | |
196 model.reactions.get_by_id(reaction).upper_bound = float(df_FVA.loc[reaction, "maximum"]) | |
197 | |
198 if ras is not None: | |
199 Parallel(n_jobs=cpu_count())(delayed(process_ras_cell)(cellName, ras_row, model, rxns_ids, output_folder) for cellName, ras_row in ras.iterrows()) | |
200 else: | |
201 bounds = pd.DataFrame([(rxn.lower_bound, rxn.upper_bound) for rxn in model.reactions], index=rxns_ids, columns=["lower_bound", "upper_bound"]) | |
202 newBounds = apply_ras_bounds(bounds, pd.Series([1]*len(rxns_ids), index=rxns_ids)) | |
203 newBounds.to_csv(output_folder + "bounds.csv", sep='\t', index=True) | |
204 pass | |
205 | |
206 | |
207 | |
208 ############################# main ########################################### | |
209 def main(args:List[str] = None) -> None: | |
210 """ | |
211 Initializes everything and sets the program in motion based on the fronted input arguments. | |
212 | |
213 Returns: | |
214 None | |
215 """ | |
216 if not os.path.exists('ras_to_bounds'): | |
217 os.makedirs('ras_to_bounds') | |
218 | |
219 | |
220 global ARGS | |
221 ARGS = process_args(args) | |
222 | |
223 if(ARGS.ras_selector == True): | |
224 ras_file_list = ARGS.input_ras.split(",") | |
225 ras_file_names = ARGS.name.split(",") | |
226 if len(ras_file_names) != len(set(ras_file_names)): | |
227 error_message = "Duplicated file names in the uploaded RAS matrices." | |
228 warning(error_message) | |
229 raise ValueError(error_message) | |
230 pass | |
231 ras_class_names = [] | |
232 for file in ras_file_names: | |
233 ras_class_names.append(file.rsplit(".", 1)[0]) | |
234 ras_list = [] | |
235 class_assignments = pd.DataFrame(columns=["Patient_ID", "Class"]) | |
236 for ras_matrix, ras_class_name in zip(ras_file_list, ras_class_names): | |
237 ras = read_dataset(ras_matrix, "ras dataset") | |
238 ras.replace("None", None, inplace=True) | |
239 ras.set_index("Reactions", drop=True, inplace=True) | |
240 ras = ras.T | |
241 ras = ras.astype(float) | |
242 if(len(ras_file_list)>1): | |
243 #append class name to patient id (dataframe index) | |
244 ras.index = [f"{idx}_{ras_class_name}" for idx in ras.index] | |
245 else: | |
246 ras.index = [f"{idx}" for idx in ras.index] | |
247 ras_list.append(ras) | |
248 for patient_id in ras.index: | |
249 class_assignments.loc[class_assignments.shape[0]] = [patient_id, ras_class_name] | |
250 | |
251 | |
252 # Concatenate all ras DataFrames into a single DataFrame | |
253 ras_combined = pd.concat(ras_list, axis=0) | |
254 # Normalize the RAS values by max RAS | |
255 ras_combined = ras_combined.div(ras_combined.max(axis=0)) | |
256 ras_combined.dropna(axis=1, how='all', inplace=True) | |
257 | |
258 | |
259 | |
260 model_type :utils.Model = ARGS.model_selector | |
261 if model_type is utils.Model.Custom: | |
262 model = model_type.getCOBRAmodel(customPath = utils.FilePath.fromStrPath(ARGS.model), customExtension = utils.FilePath.fromStrPath(ARGS.model_name).ext) | |
263 else: | |
264 model = model_type.getCOBRAmodel(toolDir=ARGS.tool_dir) | |
265 | |
266 if(ARGS.medium_selector == "Custom"): | |
267 medium = read_dataset(ARGS.medium, "medium dataset") | |
268 medium.set_index(medium.columns[0], inplace=True) | |
269 medium = medium.astype(float) | |
270 medium = medium[medium.columns[0]].to_dict() | |
271 else: | |
272 df_mediums = pd.read_csv(ARGS.tool_dir + "/local/medium/medium.csv", index_col = 0) | |
273 ARGS.medium_selector = ARGS.medium_selector.replace("_", " ") | |
274 medium = df_mediums[[ARGS.medium_selector]] | |
275 medium = medium[ARGS.medium_selector].to_dict() | |
276 | |
277 if(ARGS.ras_selector == True): | |
278 generate_bounds(model, medium, ras = ras_combined, output_folder=ARGS.output_path) | |
279 class_assignments.to_csv(ARGS.cell_class, sep = '\t', index = False) | |
280 else: | |
281 generate_bounds(model, medium, output_folder=ARGS.output_path) | |
282 | |
283 pass | |
284 | |
285 ############################################################################## | |
286 if __name__ == "__main__": | |
287 main() |