Mercurial > repos > bimib > cobraxy
comparison COBRAxy/src/flux_to_map.py @ 539:2fb97466e404 draft
Uploaded
| author | francesco_lapi |
|---|---|
| date | Sat, 25 Oct 2025 14:55:13 +0000 |
| parents | |
| children | fcdbc81feb45 |
comparison
equal
deleted
inserted
replaced
| 538:fd53d42348bd | 539:2fb97466e404 |
|---|---|
| 1 from __future__ import division | |
| 2 import csv | |
| 3 from enum import Enum | |
| 4 import re | |
| 5 import sys | |
| 6 import numpy as np | |
| 7 import pandas as pd | |
| 8 import itertools as it | |
| 9 import scipy.stats as st | |
| 10 import lxml.etree as ET | |
| 11 import math | |
| 12 import utils.general_utils as utils | |
| 13 from PIL import Image | |
| 14 import os | |
| 15 import copy | |
| 16 import argparse | |
| 17 import pyvips | |
| 18 from PIL import Image | |
| 19 from typing import Tuple, Union, Optional, List, Dict | |
| 20 import matplotlib.pyplot as plt | |
| 21 | |
| 22 ERRORS = [] | |
| 23 ########################## argparse ########################################## | |
| 24 ARGS :argparse.Namespace | |
| 25 def process_args(args:List[str] = None) -> argparse.Namespace: | |
| 26 """ | |
| 27 Interfaces the script of a module with its frontend, making the user's choices for various parameters available as values in code. | |
| 28 | |
| 29 Args: | |
| 30 args : Always obtained (in file) from sys.argv | |
| 31 | |
| 32 Returns: | |
| 33 Namespace : An object containing the parsed arguments | |
| 34 """ | |
| 35 parser = argparse.ArgumentParser( | |
| 36 usage = "%(prog)s [options]", | |
| 37 description = "process some value's genes to create a comparison's map.") | |
| 38 | |
| 39 #General: | |
| 40 parser.add_argument( | |
| 41 '-td', '--tool_dir', | |
| 42 type = str, | |
| 43 required = True, | |
| 44 help = 'your tool directory') | |
| 45 | |
| 46 parser.add_argument('-on', '--control', type = str) | |
| 47 parser.add_argument('-ol', '--out_log', help = "Output log") | |
| 48 | |
| 49 #Computation details: | |
| 50 parser.add_argument( | |
| 51 '-co', '--comparison', | |
| 52 type = str, | |
| 53 default = 'manyvsmany', | |
| 54 choices = ['manyvsmany', 'onevsrest', 'onevsmany']) | |
| 55 | |
| 56 parser.add_argument( | |
| 57 '-te' ,'--test', | |
| 58 type = str, | |
| 59 default = 'ks', | |
| 60 choices = ['ks', 'ttest_p', 'ttest_ind', 'wilcoxon', 'mw'], | |
| 61 help = 'Statistical test to use (default: %(default)s)') | |
| 62 | |
| 63 parser.add_argument( | |
| 64 '-pv' ,'--pValue', | |
| 65 type = float, | |
| 66 default = 0.1, | |
| 67 help = 'P-Value threshold (default: %(default)s)') | |
| 68 | |
| 69 parser.add_argument( | |
| 70 '-adj' ,'--adjusted', | |
| 71 type = utils.Bool("adjusted"), default = False, | |
| 72 help = 'Apply the FDR (Benjamini-Hochberg) correction (default: %(default)s)') | |
| 73 | |
| 74 parser.add_argument( | |
| 75 '-fc', '--fChange', | |
| 76 type = float, | |
| 77 default = 1.5, | |
| 78 help = 'Fold-Change threshold (default: %(default)s)') | |
| 79 | |
| 80 parser.add_argument( | |
| 81 '-op', '--option', | |
| 82 type = str, | |
| 83 choices = ['datasets', 'dataset_class'], | |
| 84 help='dataset or dataset and class') | |
| 85 | |
| 86 parser.add_argument( | |
| 87 '-idf', '--input_data_fluxes', | |
| 88 type = str, | |
| 89 help = 'input dataset fluxes') | |
| 90 | |
| 91 parser.add_argument( | |
| 92 '-icf', '--input_class_fluxes', | |
| 93 type = str, | |
| 94 help = 'sample group specification fluxes') | |
| 95 | |
| 96 parser.add_argument( | |
| 97 '-idsf', '--input_datas_fluxes', | |
| 98 type = str, | |
| 99 nargs = '+', | |
| 100 help = 'input datasets fluxes') | |
| 101 | |
| 102 parser.add_argument( | |
| 103 '-naf', '--names_fluxes', | |
| 104 type = str, | |
| 105 nargs = '+', | |
| 106 help = 'input names fluxes') | |
| 107 | |
| 108 #Output: | |
| 109 parser.add_argument( | |
| 110 "-gs", "--generate_svg", | |
| 111 type = utils.Bool("generate_svg"), default = True, | |
| 112 help = "choose whether to generate svg") | |
| 113 | |
| 114 parser.add_argument( | |
| 115 "-gp", "--generate_pdf", | |
| 116 type = utils.Bool("generate_pdf"), default = True, | |
| 117 help = "choose whether to generate pdf") | |
| 118 | |
| 119 parser.add_argument( | |
| 120 '-cm', '--custom_map', | |
| 121 type = str, | |
| 122 help='custom map to use') | |
| 123 | |
| 124 parser.add_argument( | |
| 125 '-mc', '--choice_map', | |
| 126 type = utils.Model, default = utils.Model.HMRcore, | |
| 127 choices = [utils.Model.HMRcore, utils.Model.ENGRO2, utils.Model.Custom]) | |
| 128 | |
| 129 parser.add_argument( | |
| 130 '-colorm', '--color_map', | |
| 131 type = str, | |
| 132 choices = ["jet", "viridis"]) | |
| 133 | |
| 134 parser.add_argument( | |
| 135 '-idop', '--output_path', | |
| 136 type = str, | |
| 137 default='result', | |
| 138 help = 'output path for maps') | |
| 139 | |
| 140 args :argparse.Namespace = parser.parse_args(args) | |
| 141 args.net = True # TODO SICCOME I FLUSSI POSSONO ESSERE ANCHE NEGATIVI SONO SEMPRE CONSIDERATI NETTI | |
| 142 | |
| 143 return args | |
| 144 | |
| 145 ############################ dataset input #################################### | |
| 146 def read_dataset(data :str, name :str) -> pd.DataFrame: | |
| 147 """ | |
| 148 Tries to read the dataset from its path (data) as a tsv and turns it into a DataFrame. | |
| 149 | |
| 150 Args: | |
| 151 data : filepath of a dataset (from frontend input params or literals upon calling) | |
| 152 name : name associated with the dataset (from frontend input params or literals upon calling) | |
| 153 | |
| 154 Returns: | |
| 155 pd.DataFrame : dataset in a runtime operable shape | |
| 156 | |
| 157 Raises: | |
| 158 sys.exit : if there's no data (pd.errors.EmptyDataError) or if the dataset has less than 2 columns | |
| 159 """ | |
| 160 try: | |
| 161 dataset = pd.read_csv(data, sep = '\t', header = 0, engine='python') | |
| 162 except pd.errors.EmptyDataError: | |
| 163 sys.exit('Execution aborted: wrong format of ' + name + '\n') | |
| 164 if len(dataset.columns) < 2: | |
| 165 sys.exit('Execution aborted: wrong format of ' + name + '\n') | |
| 166 return dataset | |
| 167 | |
| 168 ############################ dataset name ##################################### | |
| 169 def name_dataset(name_data :str, count :int) -> str: | |
| 170 """ | |
| 171 Produces a unique name for a dataset based on what was provided by the user. The default name for any dataset is "Dataset", thus if the user didn't change it this function appends f"_{count}" to make it unique. | |
| 172 | |
| 173 Args: | |
| 174 name_data : name associated with the dataset (from frontend input params) | |
| 175 count : counter from 1 to make these names unique (external) | |
| 176 | |
| 177 Returns: | |
| 178 str : the name made unique | |
| 179 """ | |
| 180 if str(name_data) == 'Dataset': | |
| 181 return str(name_data) + '_' + str(count) | |
| 182 else: | |
| 183 return str(name_data) | |
| 184 | |
| 185 ############################ map_methods ###################################### | |
| 186 FoldChange = Union[float, int, str] # Union[float, Literal[0, "-INF", "INF"]] | |
| 187 def fold_change(avg1 :float, avg2 :float) -> FoldChange: | |
| 188 """ | |
| 189 Calculates the fold change between two gene expression values. | |
| 190 | |
| 191 Args: | |
| 192 avg1 : average expression value from one dataset avg2 : average expression value from the other dataset | |
| 193 | |
| 194 Returns: | |
| 195 FoldChange : | |
| 196 0 : when both input values are 0 | |
| 197 "-INF" : when avg1 is 0 | |
| 198 "INF" : when avg2 is 0 | |
| 199 float : for any other combination of values | |
| 200 """ | |
| 201 if avg1 == 0 and avg2 == 0: | |
| 202 return 0 | |
| 203 elif avg1 == 0: | |
| 204 return '-INF' | |
| 205 elif avg2 == 0: | |
| 206 return 'INF' | |
| 207 else: # (threshold_F_C - 1) / (abs(threshold_F_C) + 1) con threshold_F_C > 1 | |
| 208 return (avg1 - avg2) / (abs(avg1) + abs(avg2)) | |
| 209 | |
| 210 def getElementById(reactionId :str, metabMap :ET.ElementTree) -> utils.Result[ET.Element, utils.Result.ResultErr]: | |
| 211 """ | |
| 212 Finds any element in the given map with the given ID. ID uniqueness in an svg file is recommended but | |
| 213 not enforced, if more than one element with the exact ID is found only the first will be returned. | |
| 214 | |
| 215 Args: | |
| 216 reactionId (str): exact ID of the requested element. | |
| 217 metabMap (ET.ElementTree): metabolic map containing the element. | |
| 218 | |
| 219 Returns: | |
| 220 utils.Result[ET.Element, ResultErr]: result of the search, either the first match found or a ResultErr. | |
| 221 """ | |
| 222 return utils.Result.Ok( | |
| 223 f"//*[@id=\"{reactionId}\"]").map( | |
| 224 lambda xPath : metabMap.xpath(xPath)[0]).mapErr( | |
| 225 lambda _ : utils.Result.ResultErr(f"No elements with ID \"{reactionId}\" found in map")) | |
| 226 # ^^^ we shamelessly ignore the contents of the IndexError, it offers nothing to the user. | |
| 227 | |
| 228 def styleMapElement(element :ET.Element, styleStr :str) -> None: | |
| 229 currentStyles :str = element.get("style", "") | |
| 230 if re.search(r";stroke:[^;]+;stroke-width:[^;]+;stroke-dasharray:[^;]+$", currentStyles): | |
| 231 currentStyles = ';'.join(currentStyles.split(';')[:-3]) | |
| 232 | |
| 233 element.set("style", currentStyles + styleStr) | |
| 234 | |
| 235 class ReactionDirection(Enum): | |
| 236 Unknown = "" | |
| 237 Direct = "_F" | |
| 238 Inverse = "_B" | |
| 239 | |
| 240 @classmethod | |
| 241 def fromDir(cls, s :str) -> "ReactionDirection": | |
| 242 # vvv as long as there's so few variants I actually condone the if spam: | |
| 243 if s == ReactionDirection.Direct.value: return ReactionDirection.Direct | |
| 244 if s == ReactionDirection.Inverse.value: return ReactionDirection.Inverse | |
| 245 return ReactionDirection.Unknown | |
| 246 | |
| 247 @classmethod | |
| 248 def fromReactionId(cls, reactionId :str) -> "ReactionDirection": | |
| 249 return ReactionDirection.fromDir(reactionId[-2:]) | |
| 250 | |
| 251 def getArrowBodyElementId(reactionId :str) -> str: | |
| 252 if reactionId.endswith("_RV"): reactionId = reactionId[:-3] #TODO: standardize _RV | |
| 253 elif ReactionDirection.fromReactionId(reactionId) is not ReactionDirection.Unknown: reactionId = reactionId[:-2] | |
| 254 return f"R_{reactionId}" | |
| 255 | |
| 256 def getArrowHeadElementId(reactionId :str) -> Tuple[str, str]: | |
| 257 """ | |
| 258 We attempt extracting the direction information from the provided reaction ID, if unsuccessful we provide the IDs of both directions. | |
| 259 | |
| 260 Args: | |
| 261 reactionId : the provided reaction ID. | |
| 262 | |
| 263 Returns: | |
| 264 Tuple[str, str]: either a single str ID for the correct arrow head followed by an empty string or both options to try. | |
| 265 """ | |
| 266 if reactionId.endswith("_RV"): reactionId = reactionId[:-3] #TODO: standardize _RV | |
| 267 elif ReactionDirection.fromReactionId(reactionId) is not ReactionDirection.Unknown: return reactionId[:-3:-1] + reactionId[:-2], "" | |
| 268 return f"F_{reactionId}", f"B_{reactionId}" | |
| 269 | |
| 270 class ArrowColor(Enum): | |
| 271 """ | |
| 272 Encodes possible arrow colors based on their meaning in the enrichment process. | |
| 273 """ | |
| 274 Invalid = "#BEBEBE" # gray, fold-change under treshold or not significant p-value | |
| 275 Transparent = "#ffffff00" # transparent, to make some arrow segments disappear | |
| 276 UpRegulated = "#ecac68" # red, up-regulated reaction | |
| 277 DownRegulated = "#6495ed" # blue, down-regulated reaction | |
| 278 | |
| 279 UpRegulatedInv = "#FF0000" | |
| 280 # ^^^ different shade of red (actually orange), up-regulated net value for a reversible reaction with | |
| 281 # conflicting enrichment in the two directions. | |
| 282 | |
| 283 DownRegulatedInv = "#0000FF" | |
| 284 # ^^^ different shade of blue (actually purple), down-regulated net value for a reversible reaction with | |
| 285 # conflicting enrichment in the two directions. | |
| 286 | |
| 287 @classmethod | |
| 288 def fromFoldChangeSign(cls, foldChange :float, *, useAltColor = False) -> "ArrowColor": | |
| 289 colors = (cls.DownRegulated, cls.DownRegulatedInv) if foldChange < 0 else (cls.UpRegulated, cls.UpRegulatedInv) | |
| 290 return colors[useAltColor] | |
| 291 | |
| 292 def __str__(self) -> str: return self.value | |
| 293 | |
| 294 class Arrow: | |
| 295 """ | |
| 296 Models the properties of a reaction arrow that change based on enrichment. | |
| 297 """ | |
| 298 MIN_W = 2 | |
| 299 MAX_W = 12 | |
| 300 | |
| 301 def __init__(self, width :int, col: ArrowColor, *, isDashed = False) -> None: | |
| 302 """ | |
| 303 (Private) Initializes an instance of Arrow. | |
| 304 | |
| 305 Args: | |
| 306 width : width of the arrow, ideally to be kept within Arrow.MIN_W and Arrow.MAX_W (not enforced). | |
| 307 col : color of the arrow. | |
| 308 isDashed : whether the arrow should be dashed, meaning the associated pValue resulted not significant. | |
| 309 | |
| 310 Returns: | |
| 311 None : practically, a Arrow instance. | |
| 312 """ | |
| 313 self.w = width | |
| 314 self.col = col | |
| 315 self.dash = isDashed | |
| 316 | |
| 317 def applyTo(self, reactionId :str, metabMap :ET.ElementTree, styleStr :str) -> None: | |
| 318 if getElementById(reactionId, metabMap).map(lambda el : styleMapElement(el, styleStr)).isErr: | |
| 319 ERRORS.append(reactionId) | |
| 320 | |
| 321 def styleReactionElements(self, metabMap :ET.ElementTree, reactionId :str, *, mindReactionDir = True) -> None: | |
| 322 if not mindReactionDir: | |
| 323 return self.applyTo(getArrowBodyElementId(reactionId), metabMap, self.toStyleStr()) | |
| 324 | |
| 325 # Now we style the arrow head(s): | |
| 326 idOpt1, idOpt2 = getArrowHeadElementId(reactionId) | |
| 327 self.applyTo(idOpt1, metabMap, self.toStyleStr(downSizedForTips = True)) | |
| 328 if idOpt2: self.applyTo(idOpt2, metabMap, self.toStyleStr(downSizedForTips = True)) | |
| 329 | |
| 330 def styleReactionElementsMeanMedian(self, metabMap :ET.ElementTree, reactionId :str, isNegative:bool) -> None: | |
| 331 | |
| 332 self.applyTo(getArrowBodyElementId(reactionId), metabMap, self.toStyleStr()) | |
| 333 idOpt1, idOpt2 = getArrowHeadElementId(reactionId) | |
| 334 | |
| 335 if(isNegative): | |
| 336 self.applyTo(idOpt2, metabMap, self.toStyleStr(downSizedForTips = True)) | |
| 337 self.col = ArrowColor.Transparent | |
| 338 self.applyTo(idOpt1, metabMap, self.toStyleStr(downSizedForTips = True)) #trasp | |
| 339 else: | |
| 340 self.applyTo(idOpt1, metabMap, self.toStyleStr(downSizedForTips = True)) | |
| 341 self.col = ArrowColor.Transparent | |
| 342 self.applyTo(idOpt2, metabMap, self.toStyleStr(downSizedForTips = True)) #trasp | |
| 343 | |
| 344 | |
| 345 | |
| 346 def getMapReactionId(self, reactionId :str, mindReactionDir :bool) -> str: | |
| 347 """ | |
| 348 Computes the reaction ID as encoded in the map for a given reaction ID from the dataset. | |
| 349 | |
| 350 Args: | |
| 351 reactionId: the reaction ID, as encoded in the dataset. | |
| 352 mindReactionDir: if True forward (F_) and backward (B_) directions will be encoded in the result. | |
| 353 | |
| 354 Returns: | |
| 355 str : the ID of an arrow's body or tips in the map. | |
| 356 """ | |
| 357 # we assume the reactionIds also don't encode reaction dir if they don't mind it when styling the map. | |
| 358 if not mindReactionDir: return "R_" + reactionId | |
| 359 | |
| 360 #TODO: this is clearly something we need to make consistent in fluxes | |
| 361 return (reactionId[:-3:-1] + reactionId[:-2]) if reactionId[:-2] in ["_F", "_B"] else f"F_{reactionId}" # "Pyr_F" --> "F_Pyr" | |
| 362 | |
| 363 def toStyleStr(self, *, downSizedForTips = False) -> str: | |
| 364 """ | |
| 365 Collapses the styles of this Arrow into a str, ready to be applied as part of the "style" property on an svg element. | |
| 366 | |
| 367 Returns: | |
| 368 str : the styles string. | |
| 369 """ | |
| 370 width = self.w | |
| 371 if downSizedForTips: width *= 0.8 | |
| 372 return f";stroke:{self.col};stroke-width:{width};stroke-dasharray:{'5,5' if self.dash else 'none'}" | |
| 373 | |
| 374 # vvv These constants could be inside the class itself a static properties, but python | |
| 375 # was built by brainless organisms so here we are! | |
| 376 INVALID_ARROW = Arrow(Arrow.MIN_W, ArrowColor.Invalid) | |
| 377 INSIGNIFICANT_ARROW = Arrow(Arrow.MIN_W, ArrowColor.Invalid, isDashed = True) | |
| 378 | |
| 379 def applyFluxesEnrichmentToMap(fluxesEnrichmentRes :Dict[str, Union[Tuple[float, FoldChange], Tuple[float, FoldChange, float, float]]], metabMap :ET.ElementTree, maxNumericZScore :float) -> None: | |
| 380 """ | |
| 381 Applies fluxes enrichment results to the provided metabolic map. | |
| 382 | |
| 383 Args: | |
| 384 fluxesEnrichmentRes : fluxes enrichment results. | |
| 385 metabMap : the metabolic map to edit. | |
| 386 maxNumericZScore : biggest finite z-score value found. | |
| 387 | |
| 388 Side effects: | |
| 389 metabMap : mut | |
| 390 | |
| 391 Returns: | |
| 392 None | |
| 393 """ | |
| 394 for reactionId, values in fluxesEnrichmentRes.items(): | |
| 395 pValue = values[0] | |
| 396 foldChange = values[1] | |
| 397 z_score = values[2] | |
| 398 | |
| 399 if math.isnan(pValue) or (isinstance(foldChange, float) and math.isnan(foldChange)): | |
| 400 continue | |
| 401 | |
| 402 if isinstance(foldChange, str): foldChange = float(foldChange) | |
| 403 if pValue > ARGS.pValue: # pValue above tresh: dashed arrow | |
| 404 INSIGNIFICANT_ARROW.styleReactionElements(metabMap, reactionId) | |
| 405 INSIGNIFICANT_ARROW.styleReactionElements(metabMap, reactionId, mindReactionDir = False) | |
| 406 | |
| 407 continue | |
| 408 | |
| 409 if abs(foldChange) < (ARGS.fChange - 1) / (abs(ARGS.fChange) + 1): | |
| 410 INVALID_ARROW.styleReactionElements(metabMap, reactionId) | |
| 411 INVALID_ARROW.styleReactionElements(metabMap, reactionId, mindReactionDir = False) | |
| 412 | |
| 413 continue | |
| 414 | |
| 415 width = Arrow.MAX_W | |
| 416 if not math.isinf(z_score): | |
| 417 try: | |
| 418 width = min( | |
| 419 max(abs(z_score * Arrow.MAX_W) / maxNumericZScore, Arrow.MIN_W), | |
| 420 Arrow.MAX_W) | |
| 421 | |
| 422 except ZeroDivisionError: pass | |
| 423 # TODO CHECK RV | |
| 424 #if not reactionId.endswith("_RV"): # RV stands for reversible reactions | |
| 425 # Arrow(width, ArrowColor.fromFoldChangeSign(foldChange)).styleReactionElements(metabMap, reactionId) | |
| 426 # continue | |
| 427 | |
| 428 #reactionId = reactionId[:-3] # Remove "_RV" | |
| 429 | |
| 430 inversionScore = (values[3] < 0) + (values[4] < 0) # Compacts the signs of averages into 1 easy to check score | |
| 431 if inversionScore == 2: foldChange *= -1 | |
| 432 # ^^^ Style the inverse direction with the opposite sign netValue | |
| 433 | |
| 434 # If the score is 1 (opposite signs) we use alternative colors vvv | |
| 435 arrow = Arrow(width, ArrowColor.fromFoldChangeSign(foldChange, useAltColor = inversionScore == 1)) | |
| 436 | |
| 437 # vvv These 2 if statements can both be true and can both happen | |
| 438 if ARGS.net: # style arrow head(s): | |
| 439 arrow.styleReactionElements(metabMap, reactionId + ("_B" if inversionScore == 2 else "_F")) | |
| 440 arrow.applyTo(("F_" if inversionScore == 2 else "B_") + reactionId, metabMap, f";stroke:{ArrowColor.Transparent};stroke-width:0;stroke-dasharray:None") | |
| 441 | |
| 442 arrow.styleReactionElements(metabMap, reactionId, mindReactionDir = False) | |
| 443 | |
| 444 | |
| 445 ############################ split class ###################################### | |
| 446 def split_class(classes :pd.DataFrame, resolve_rules :Dict[str, List[float]]) -> Dict[str, List[List[float]]]: | |
| 447 """ | |
| 448 Generates a :dict that groups together data from a :DataFrame based on classes the data is related to. | |
| 449 | |
| 450 Args: | |
| 451 classes : a :DataFrame of only string values, containing class information (rows) and keys to query the resolve_rules :dict | |
| 452 resolve_rules : a :dict containing :float data | |
| 453 | |
| 454 Returns: | |
| 455 dict : the dict with data grouped by class | |
| 456 | |
| 457 Side effects: | |
| 458 classes : mut | |
| 459 """ | |
| 460 class_pat :Dict[str, List[List[float]]] = {} | |
| 461 for i in range(len(classes)): | |
| 462 classe :str = classes.iloc[i, 1] | |
| 463 if pd.isnull(classe): continue | |
| 464 | |
| 465 l :List[List[float]] = [] | |
| 466 for j in range(i, len(classes)): | |
| 467 if classes.iloc[j, 1] == classe: | |
| 468 pat_id :str = classes.iloc[j, 0] | |
| 469 tmp = resolve_rules.get(pat_id, None) | |
| 470 if tmp != None: | |
| 471 l.append(tmp) | |
| 472 classes.iloc[j, 1] = None | |
| 473 | |
| 474 if l: | |
| 475 class_pat[classe] = list(map(list, zip(*l))) | |
| 476 continue | |
| 477 | |
| 478 utils.logWarning( | |
| 479 f"Warning: no sample found in class \"{classe}\", the class has been disregarded", ARGS.out_log) | |
| 480 | |
| 481 return class_pat | |
| 482 | |
| 483 ############################ conversion ############################################## | |
| 484 #conversion from svg to png | |
| 485 def svg_to_png_with_background(svg_path :utils.FilePath, png_path :utils.FilePath, dpi :int = 72, scale :int = 1, size :Optional[float] = None) -> None: | |
| 486 """ | |
| 487 Internal utility to convert an SVG to PNG (forced opaque) to aid in PDF conversion. | |
| 488 | |
| 489 Args: | |
| 490 svg_path : path to SVG file | |
| 491 png_path : path for new PNG file | |
| 492 dpi : dots per inch of the generated PNG | |
| 493 scale : scaling factor for the generated PNG, computed internally when a size is provided | |
| 494 size : final effective width of the generated PNG | |
| 495 | |
| 496 Returns: | |
| 497 None | |
| 498 """ | |
| 499 if size: | |
| 500 image = pyvips.Image.new_from_file(svg_path.show(), dpi=dpi, scale=1) | |
| 501 scale = size / image.width | |
| 502 image = image.resize(scale) | |
| 503 else: | |
| 504 image = pyvips.Image.new_from_file(svg_path.show(), dpi=dpi, scale=scale) | |
| 505 | |
| 506 white_background = pyvips.Image.black(image.width, image.height).new_from_image([255, 255, 255]) | |
| 507 white_background = white_background.affine([scale, 0, 0, scale]) | |
| 508 | |
| 509 if white_background.bands != image.bands: | |
| 510 white_background = white_background.extract_band(0) | |
| 511 | |
| 512 composite_image = white_background.composite2(image, 'over') | |
| 513 composite_image.write_to_file(png_path.show()) | |
| 514 | |
| 515 #funzione unica, lascio fuori i file e li passo in input | |
| 516 #conversion from png to pdf | |
| 517 def convert_png_to_pdf(png_file :utils.FilePath, pdf_file :utils.FilePath) -> None: | |
| 518 """ | |
| 519 Internal utility to convert a PNG to PDF to aid from SVG conversion. | |
| 520 | |
| 521 Args: | |
| 522 png_file : path to PNG file | |
| 523 pdf_file : path to new PDF file | |
| 524 | |
| 525 Returns: | |
| 526 None | |
| 527 """ | |
| 528 image = Image.open(png_file.show()) | |
| 529 image = image.convert("RGB") | |
| 530 image.save(pdf_file.show(), "PDF", resolution=100.0) | |
| 531 | |
| 532 #function called to reduce redundancy in the code | |
| 533 def convert_to_pdf(file_svg :utils.FilePath, file_png :utils.FilePath, file_pdf :utils.FilePath) -> None: | |
| 534 """ | |
| 535 Converts the SVG map at the provided path to PDF. | |
| 536 | |
| 537 Args: | |
| 538 file_svg : path to SVG file | |
| 539 file_png : path to PNG file | |
| 540 file_pdf : path to new PDF file | |
| 541 | |
| 542 Returns: | |
| 543 None | |
| 544 """ | |
| 545 svg_to_png_with_background(file_svg, file_png) | |
| 546 try: | |
| 547 convert_png_to_pdf(file_png, file_pdf) | |
| 548 print(f'PDF file {file_pdf.filePath} successfully generated.') | |
| 549 | |
| 550 except Exception as e: | |
| 551 raise utils.DataErr(file_pdf.show(), f'Error generating PDF file: {e}') | |
| 552 | |
| 553 ############################ map ############################################## | |
| 554 def buildOutputPath(dataset1Name :str, dataset2Name = "rest", *, details = "", ext :utils.FileFormat) -> utils.FilePath: | |
| 555 """ | |
| 556 Builds a FilePath instance from the names of confronted datasets ready to point to a location in the | |
| 557 "result/" folder, used by this tool for output files in collections. | |
| 558 | |
| 559 Args: | |
| 560 dataset1Name : _description_ | |
| 561 dataset2Name : _description_. Defaults to "rest". | |
| 562 details : _description_ | |
| 563 ext : _description_ | |
| 564 | |
| 565 Returns: | |
| 566 utils.FilePath : _description_ | |
| 567 """ | |
| 568 # This function returns a util data structure but is extremely specific to this module. | |
| 569 # RAS also uses collections as output and as such might benefit from a method like this, but I'd wait | |
| 570 # TODO: until a third tool with multiple outputs appears before porting this to utils. | |
| 571 return utils.FilePath( | |
| 572 f"{dataset1Name}_vs_{dataset2Name}" + (f" ({details})" if details else ""), | |
| 573 # ^^^ yes this string is built every time even if the form is the same for the same 2 datasets in | |
| 574 # all output files: I don't care, this was never the performance bottleneck of the tool and | |
| 575 # there is no other net gain in saving and re-using the built string. | |
| 576 ext, | |
| 577 prefix = ARGS.output_path) | |
| 578 | |
| 579 FIELD_NOT_AVAILABLE = '/' | |
| 580 def writeToCsv(rows: List[list], fieldNames :List[str], outPath :utils.FilePath) -> None: | |
| 581 fieldsAmt = len(fieldNames) | |
| 582 with open(outPath.show(), "w", newline = "") as fd: | |
| 583 writer = csv.DictWriter(fd, fieldnames = fieldNames, delimiter = '\t') | |
| 584 writer.writeheader() | |
| 585 | |
| 586 for row in rows: | |
| 587 sizeMismatch = fieldsAmt - len(row) | |
| 588 if sizeMismatch > 0: row.extend([FIELD_NOT_AVAILABLE] * sizeMismatch) | |
| 589 writer.writerow({ field : data for field, data in zip(fieldNames, row) }) | |
| 590 | |
| 591 OldEnrichedScores = Dict[str, List[Union[float, FoldChange]]] #TODO: try to use Tuple whenever possible | |
| 592 def writeTabularResult(enrichedScores : OldEnrichedScores, outPath :utils.FilePath) -> None: | |
| 593 fieldNames = ["ids", "P_Value", "fold change", "z-score"] | |
| 594 fieldNames.extend(["average_1", "average_2"]) | |
| 595 | |
| 596 writeToCsv([ [reactId] + values for reactId, values in enrichedScores.items() ], fieldNames, outPath) | |
| 597 | |
| 598 def temp_thingsInCommon(tmp :Dict[str, List[Union[float, FoldChange]]], core_map :ET.ElementTree, max_z_score :float, dataset1Name :str, dataset2Name = "rest") -> None: | |
| 599 # this function compiles the things always in common between comparison modes after enrichment. | |
| 600 # TODO: organize, name better. | |
| 601 writeTabularResult(tmp, buildOutputPath(dataset1Name, dataset2Name, details = "Tabular Result", ext = utils.FileFormat.TSV)) | |
| 602 for reactId, enrichData in tmp.items(): tmp[reactId] = tuple(enrichData) | |
| 603 applyFluxesEnrichmentToMap(tmp, core_map, max_z_score) | |
| 604 | |
| 605 def computePValue(dataset1Data: List[float], dataset2Data: List[float]) -> Tuple[float, float]: | |
| 606 """ | |
| 607 Computes the statistical significance score (P-value) of the comparison between coherent data | |
| 608 from two datasets. The data is supposed to, in both datasets: | |
| 609 - be related to the same reaction ID; | |
| 610 - be ordered by sample, such that the item at position i in both lists is related to the | |
| 611 same sample or cell line. | |
| 612 | |
| 613 Args: | |
| 614 dataset1Data : data from the 1st dataset. | |
| 615 dataset2Data : data from the 2nd dataset. | |
| 616 | |
| 617 Returns: | |
| 618 tuple: (P-value, Z-score) | |
| 619 - P-value from the selected test on the provided data. | |
| 620 - Z-score of the difference between means of the two datasets. | |
| 621 """ | |
| 622 | |
| 623 match ARGS.test: | |
| 624 case "ks": | |
| 625 # Perform Kolmogorov-Smirnov test | |
| 626 _, p_value = st.ks_2samp(dataset1Data, dataset2Data) | |
| 627 case "ttest_p": | |
| 628 # Datasets should have same size | |
| 629 if len(dataset1Data) != len(dataset2Data): | |
| 630 raise ValueError("Datasets must have the same size for paired t-test.") | |
| 631 # Perform t-test for paired samples | |
| 632 _, p_value = st.ttest_rel(dataset1Data, dataset2Data) | |
| 633 case "ttest_ind": | |
| 634 # Perform t-test for independent samples | |
| 635 _, p_value = st.ttest_ind(dataset1Data, dataset2Data) | |
| 636 case "wilcoxon": | |
| 637 # Datasets should have same size | |
| 638 if len(dataset1Data) != len(dataset2Data): | |
| 639 raise ValueError("Datasets must have the same size for Wilcoxon signed-rank test.") | |
| 640 # Perform Wilcoxon signed-rank test | |
| 641 np.random.seed(42) # Ensure reproducibility since zsplit method is used | |
| 642 _, p_value = st.wilcoxon(dataset1Data, dataset2Data, zero_method="zsplit") | |
| 643 case "mw": | |
| 644 # Perform Mann-Whitney U test | |
| 645 _, p_value = st.mannwhitneyu(dataset1Data, dataset2Data) | |
| 646 | |
| 647 # Calculate means and standard deviations | |
| 648 mean1 = np.nanmean(dataset1Data) | |
| 649 mean2 = np.nanmean(dataset2Data) | |
| 650 std1 = np.nanstd(dataset1Data, ddof=1) | |
| 651 std2 = np.nanstd(dataset2Data, ddof=1) | |
| 652 | |
| 653 n1 = len(dataset1Data) | |
| 654 n2 = len(dataset2Data) | |
| 655 | |
| 656 # Calculate Z-score | |
| 657 z_score = (mean1 - mean2) / np.sqrt((std1**2 / n1) + (std2**2 / n2)) | |
| 658 | |
| 659 return p_value, z_score | |
| 660 | |
| 661 def compareDatasetPair(dataset1Data :List[List[float]], dataset2Data :List[List[float]], ids :List[str]) -> Tuple[Dict[str, List[Union[float, FoldChange]]], float]: | |
| 662 #TODO: the following code still suffers from "dumbvarnames-osis" | |
| 663 comparisonResult :Dict[str, List[Union[float, FoldChange]]] = {} | |
| 664 count = 0 | |
| 665 max_z_score = 0 | |
| 666 for l1, l2 in zip(dataset1Data, dataset2Data): | |
| 667 reactId = ids[count] | |
| 668 count += 1 | |
| 669 if not reactId: continue # we skip ids that have already been processed | |
| 670 | |
| 671 try: | |
| 672 p_value, z_score = computePValue(l1, l2) | |
| 673 avg1 = sum(l1) / len(l1) | |
| 674 avg2 = sum(l2) / len(l2) | |
| 675 f_c = fold_change(avg1, avg2) | |
| 676 if np.isfinite(z_score) and max_z_score < abs(z_score): max_z_score = abs(z_score) | |
| 677 | |
| 678 comparisonResult[reactId] = [float(p_value), f_c, z_score, avg1, avg2] | |
| 679 except (TypeError, ZeroDivisionError): continue | |
| 680 | |
| 681 # Apply multiple testing correction if set by the user | |
| 682 if ARGS.adjusted: | |
| 683 | |
| 684 # Retrieve the p-values from the comparisonResult dictionary, they have to be different from NaN | |
| 685 validPValues = [(reactId, result[0]) for reactId, result in comparisonResult.items() if not np.isnan(result[0])] | |
| 686 | |
| 687 if not validPValues: | |
| 688 return comparisonResult, max_z_score | |
| 689 | |
| 690 # Unpack the valid p-values | |
| 691 reactIds, pValues = zip(*validPValues) | |
| 692 # Adjust the p-values using the Benjamini-Hochberg method | |
| 693 adjustedPValues = st.false_discovery_control(pValues) | |
| 694 # Update the comparisonResult dictionary with the adjusted p-values | |
| 695 for reactId , adjustedPValue in zip(reactIds, adjustedPValues): | |
| 696 comparisonResult[reactId][0] = adjustedPValue | |
| 697 | |
| 698 return comparisonResult, max_z_score | |
| 699 | |
| 700 def computeEnrichment(class_pat :Dict[str, List[List[float]]], ids :List[str]) -> List[Tuple[str, str, dict, float]]: | |
| 701 """ | |
| 702 Compares clustered data based on a given comparison mode and applies enrichment-based styling on the | |
| 703 provided metabolic map. | |
| 704 | |
| 705 Args: | |
| 706 class_pat : the clustered data. | |
| 707 ids : ids for data association. | |
| 708 | |
| 709 | |
| 710 Returns: | |
| 711 List[Tuple[str, str, dict, float]]: List of tuples with pairs of dataset names, comparison dictionary, and max z-score. | |
| 712 | |
| 713 Raises: | |
| 714 sys.exit : if there are less than 2 classes for comparison | |
| 715 | |
| 716 """ | |
| 717 class_pat = { k.strip() : v for k, v in class_pat.items() } | |
| 718 #TODO: simplfy this stuff vvv and stop using sys.exit (raise the correct utils error) | |
| 719 if (not class_pat) or (len(class_pat.keys()) < 2): sys.exit('Execution aborted: classes provided for comparisons are less than two\n') | |
| 720 | |
| 721 enrichment_results = [] | |
| 722 | |
| 723 | |
| 724 if ARGS.comparison == "manyvsmany": | |
| 725 for i, j in it.combinations(class_pat.keys(), 2): | |
| 726 comparisonDict, max_z_score = compareDatasetPair(class_pat.get(i), class_pat.get(j), ids) | |
| 727 enrichment_results.append((i, j, comparisonDict, max_z_score)) | |
| 728 | |
| 729 elif ARGS.comparison == "onevsrest": | |
| 730 for single_cluster in class_pat.keys(): | |
| 731 rest = [item for k, v in class_pat.items() if k != single_cluster for item in v] | |
| 732 | |
| 733 comparisonDict, max_z_score = compareDatasetPair(class_pat.get(single_cluster), rest, ids) | |
| 734 enrichment_results.append((single_cluster, "rest", comparisonDict, max_z_score)) | |
| 735 | |
| 736 #elif ARGS.comparison == "onevsmany": | |
| 737 # controlItems = class_pat.get(ARGS.control) | |
| 738 # for otherDataset in class_pat.keys(): | |
| 739 # if otherDataset == ARGS.control: | |
| 740 # continue | |
| 741 # comparisonDict, max_z_score = compareDatasetPair(controlItems, class_pat.get(otherDataset), ids) | |
| 742 # enrichment_results.append((ARGS.control, otherDataset, comparisonDict, max_z_score)) | |
| 743 elif ARGS.comparison == "onevsmany": | |
| 744 controlItems = class_pat.get(ARGS.control) | |
| 745 for otherDataset in class_pat.keys(): | |
| 746 if otherDataset == ARGS.control: | |
| 747 continue | |
| 748 comparisonDict, max_z_score = compareDatasetPair(class_pat.get(otherDataset),controlItems, ids) | |
| 749 enrichment_results.append(( otherDataset,ARGS.control, comparisonDict, max_z_score)) | |
| 750 | |
| 751 return enrichment_results | |
| 752 | |
| 753 def createOutputMaps(dataset1Name :str, dataset2Name :str, core_map :ET.ElementTree) -> None: | |
| 754 svgFilePath = buildOutputPath(dataset1Name, dataset2Name, details="SVG Map", ext=utils.FileFormat.SVG) | |
| 755 utils.writeSvg(svgFilePath, core_map) | |
| 756 | |
| 757 if ARGS.generate_pdf: | |
| 758 pngPath = buildOutputPath(dataset1Name, dataset2Name, details="PNG Map", ext=utils.FileFormat.PNG) | |
| 759 pdfPath = buildOutputPath(dataset1Name, dataset2Name, details="PDF Map", ext=utils.FileFormat.PDF) | |
| 760 convert_to_pdf(svgFilePath, pngPath, pdfPath) | |
| 761 | |
| 762 if not ARGS.generate_svg: | |
| 763 os.remove(svgFilePath.show()) | |
| 764 | |
| 765 ClassPat = Dict[str, List[List[float]]] | |
| 766 def getClassesAndIdsFromDatasets(datasetsPaths :List[str], datasetPath :str, classPath :str, names :List[str]) -> Tuple[List[str], ClassPat]: | |
| 767 # TODO: I suggest creating dicts with ids as keys instead of keeping class_pat and ids separate, | |
| 768 # for the sake of everyone's sanity. | |
| 769 class_pat :ClassPat = {} | |
| 770 if ARGS.option == 'datasets': | |
| 771 num = 1 #TODO: the dataset naming function could be a generator | |
| 772 for path, name in zip(datasetsPaths, names): | |
| 773 name = name_dataset(name, num) | |
| 774 resolve_rules_float, ids = getDatasetValues(path, name) | |
| 775 if resolve_rules_float != None: | |
| 776 class_pat[name] = list(map(list, zip(*resolve_rules_float.values()))) | |
| 777 | |
| 778 num += 1 | |
| 779 | |
| 780 elif ARGS.option == "dataset_class": | |
| 781 classes = read_dataset(classPath, "class") | |
| 782 classes = classes.astype(str) | |
| 783 resolve_rules_float, ids = getDatasetValues(datasetPath, "Dataset Class (not actual name)") | |
| 784 #check if classes have match on ids | |
| 785 if not all(classes.iloc[:, 0].isin(ids)): | |
| 786 utils.logWarning( | |
| 787 "No match between classes and sample IDs", ARGS.out_log) | |
| 788 if resolve_rules_float != None: class_pat = split_class(classes, resolve_rules_float) | |
| 789 | |
| 790 return ids, class_pat | |
| 791 #^^^ TODO: this could be a match statement over an enum, make it happen future marea dev with python 3.12! (it's why I kept the ifs) | |
| 792 | |
| 793 #TODO: create these damn args as FilePath objects | |
| 794 def getDatasetValues(datasetPath :str, datasetName :str) -> Tuple[ClassPat, List[str]]: | |
| 795 """ | |
| 796 Opens the dataset at the given path and extracts the values (expected nullable numerics) and the IDs. | |
| 797 | |
| 798 Args: | |
| 799 datasetPath : path to the dataset | |
| 800 datasetName (str): dataset name, used in error reporting | |
| 801 | |
| 802 Returns: | |
| 803 Tuple[ClassPat, List[str]]: values and IDs extracted from the dataset | |
| 804 """ | |
| 805 dataset = read_dataset(datasetPath, datasetName) | |
| 806 | |
| 807 # Ensure the first column is treated as the reaction name | |
| 808 dataset = dataset.set_index(dataset.columns[0]) | |
| 809 | |
| 810 # Check if required reactions exist in the dataset | |
| 811 required_reactions = ['EX_lac__L_e', 'EX_glc__D_e', 'EX_gln__L_e', 'EX_glu__L_e'] | |
| 812 missing_reactions = [reaction for reaction in required_reactions if reaction not in dataset.index] | |
| 813 | |
| 814 if missing_reactions: | |
| 815 sys.exit(f'Execution aborted: Missing required reactions {missing_reactions} in {datasetName}\n') | |
| 816 | |
| 817 # Calculate new rows using safe division | |
| 818 lact_glc = np.divide( | |
| 819 np.clip(dataset.loc['EX_lac__L_e'].to_numpy(), a_min=0, a_max=None), | |
| 820 np.clip(dataset.loc['EX_glc__D_e'].to_numpy(), a_min=None, a_max=0), | |
| 821 out=np.full_like(dataset.loc['EX_lac__L_e'].to_numpy(), np.nan), # Prepara un array con NaN come output di default | |
| 822 where=dataset.loc['EX_glc__D_e'].to_numpy() != 0 # Condizione per evitare la divisione per zero | |
| 823 ) | |
| 824 lact_gln = np.divide( | |
| 825 np.clip(dataset.loc['EX_lac__L_e'].to_numpy(), a_min=0, a_max=None), | |
| 826 np.clip(dataset.loc['EX_gln__L_e'].to_numpy(), a_min=None, a_max=0), | |
| 827 out=np.full_like(dataset.loc['EX_lac__L_e'].to_numpy(), np.nan), | |
| 828 where=dataset.loc['EX_gln__L_e'].to_numpy() != 0 | |
| 829 ) | |
| 830 lact_o2 = np.divide( | |
| 831 np.clip(dataset.loc['EX_lac__L_e'].to_numpy(), a_min=0, a_max=None), | |
| 832 np.clip(dataset.loc['EX_o2_e'].to_numpy(), a_min=None, a_max=0), | |
| 833 out=np.full_like(dataset.loc['EX_lac__L_e'].to_numpy(), np.nan), | |
| 834 where=dataset.loc['EX_o2_e'].to_numpy() != 0 | |
| 835 ) | |
| 836 glu_gln = np.divide( | |
| 837 dataset.loc['EX_glu__L_e'].to_numpy(), | |
| 838 np.clip(dataset.loc['EX_gln__L_e'].to_numpy(), a_min=None, a_max=0), | |
| 839 out=np.full_like(dataset.loc['EX_lac__L_e'].to_numpy(), np.nan), | |
| 840 where=dataset.loc['EX_gln__L_e'].to_numpy() != 0 | |
| 841 ) | |
| 842 | |
| 843 | |
| 844 values = {'lact_glc': lact_glc, 'lact_gln': lact_gln, 'lact_o2': lact_o2, 'glu_gln': glu_gln} | |
| 845 | |
| 846 # Sostituzione di inf e NaN con 0 se necessario | |
| 847 for key in values: | |
| 848 values[key] = np.nan_to_num(values[key], nan=0.0, posinf=0.0, neginf=0.0) | |
| 849 | |
| 850 # Creazione delle nuove righe da aggiungere al dataset | |
| 851 new_rows = pd.DataFrame({ | |
| 852 dataset.index.name: ['LactGlc', 'LactGln', 'LactO2', 'GluGln'], | |
| 853 **{col: [values['lact_glc'][i], values['lact_gln'][i], values['lact_o2'][i], values['glu_gln'][i]] | |
| 854 for i, col in enumerate(dataset.columns)} | |
| 855 }) | |
| 856 | |
| 857 #print(new_rows) | |
| 858 | |
| 859 # Ritorna il dataset originale con le nuove righe | |
| 860 dataset.reset_index(inplace=True) | |
| 861 dataset = pd.concat([dataset, new_rows], ignore_index=True) | |
| 862 | |
| 863 IDs = pd.Series.tolist(dataset.iloc[:, 0].astype(str)) | |
| 864 | |
| 865 dataset = dataset.drop(dataset.columns[0], axis = "columns").to_dict("list") | |
| 866 return { id : list(map(utils.Float("Dataset values, not an argument"), values)) for id, values in dataset.items() }, IDs | |
| 867 | |
| 868 def rgb_to_hex(rgb): | |
| 869 """ | |
| 870 Convert RGB values (0-1 range) to hexadecimal color format. | |
| 871 | |
| 872 Args: | |
| 873 rgb (numpy.ndarray): An array of RGB color components (in the range [0, 1]). | |
| 874 | |
| 875 Returns: | |
| 876 str: The color in hexadecimal format (e.g., '#ff0000' for red). | |
| 877 """ | |
| 878 # Convert RGB values (0-1 range) to hexadecimal format | |
| 879 rgb = (np.array(rgb) * 255).astype(int) | |
| 880 return '#{:02x}{:02x}{:02x}'.format(rgb[0], rgb[1], rgb[2]) | |
| 881 | |
| 882 def save_colormap_image(min_value: float, max_value: float, path: utils.FilePath, colorMap:str="viridis"): | |
| 883 """ | |
| 884 Create and save an image of the colormap showing the gradient and its range. | |
| 885 | |
| 886 Args: | |
| 887 min_value (float): The minimum value of the colormap range. | |
| 888 max_value (float): The maximum value of the colormap range. | |
| 889 filename (str): The filename for saving the image. | |
| 890 """ | |
| 891 | |
| 892 # Create a colormap using matplotlib | |
| 893 cmap = plt.get_cmap(colorMap) | |
| 894 | |
| 895 # Create a figure and axis | |
| 896 fig, ax = plt.subplots(figsize=(6, 1)) | |
| 897 fig.subplots_adjust(bottom=0.5) | |
| 898 | |
| 899 # Create a gradient image | |
| 900 gradient = np.linspace(0, 1, 256) | |
| 901 gradient = np.vstack((gradient, gradient)) | |
| 902 | |
| 903 # Add min and max value annotations | |
| 904 ax.text(0, 0.5, f'{np.round(min_value, 3)}', va='center', ha='right', transform=ax.transAxes, fontsize=12, color='black') | |
| 905 ax.text(1, 0.5, f'{np.round(max_value, 3)}', va='center', ha='left', transform=ax.transAxes, fontsize=12, color='black') | |
| 906 | |
| 907 | |
| 908 # Display the gradient image | |
| 909 ax.imshow(gradient, aspect='auto', cmap=cmap) | |
| 910 ax.set_axis_off() | |
| 911 | |
| 912 # Save the image | |
| 913 plt.savefig(path.show(), bbox_inches='tight', pad_inches=0) | |
| 914 plt.close() | |
| 915 pass | |
| 916 | |
| 917 def min_nonzero_abs(arr): | |
| 918 # Flatten the array and filter out zeros, then find the minimum of the remaining values | |
| 919 non_zero_elements = np.abs(arr)[np.abs(arr) > 0] | |
| 920 return np.min(non_zero_elements) if non_zero_elements.size > 0 else None | |
| 921 | |
| 922 def computeEnrichmentMeanMedian(metabMap: ET.ElementTree, class_pat: Dict[str, List[List[float]]], ids: List[str], colormap:str) -> None: | |
| 923 """ | |
| 924 Compute and visualize the metabolic map based on mean and median of the input fluxes. | |
| 925 The fluxes are normalised across classes/datasets and visualised using the given colormap. | |
| 926 | |
| 927 Args: | |
| 928 metabMap (ET.ElementTree): An XML tree representing the metabolic map. | |
| 929 class_pat (Dict[str, List[List[float]]]): A dictionary where keys are class names and values are lists of enrichment values. | |
| 930 ids (List[str]): A list of reaction IDs to be used for coloring arrows. | |
| 931 | |
| 932 Returns: | |
| 933 None | |
| 934 """ | |
| 935 # Create copies only if they are needed | |
| 936 metabMap_mean = copy.deepcopy(metabMap) | |
| 937 metabMap_median = copy.deepcopy(metabMap) | |
| 938 | |
| 939 # Compute medians and means | |
| 940 medians = {key: np.round(np.nanmedian(np.array(value), axis=1), 6) for key, value in class_pat.items()} | |
| 941 means = {key: np.round(np.nanmean(np.array(value), axis=1),6) for key, value in class_pat.items()} | |
| 942 | |
| 943 # Normalize medians and means | |
| 944 max_flux_medians = max(np.max(np.abs(arr)) for arr in medians.values()) | |
| 945 max_flux_means = max(np.max(np.abs(arr)) for arr in means.values()) | |
| 946 | |
| 947 min_flux_medians = min(min_nonzero_abs(arr) for arr in medians.values()) | |
| 948 min_flux_means = min(min_nonzero_abs(arr) for arr in means.values()) | |
| 949 | |
| 950 medians = {key: median/max_flux_medians for key, median in medians.items()} | |
| 951 means = {key: mean/max_flux_means for key, mean in means.items()} | |
| 952 | |
| 953 save_colormap_image(min_flux_medians, max_flux_medians, utils.FilePath("Color map median", ext=utils.FileFormat.PNG, prefix=ARGS.output_path), colormap) | |
| 954 save_colormap_image(min_flux_means, max_flux_means, utils.FilePath("Color map mean", ext=utils.FileFormat.PNG, prefix=ARGS.output_path), colormap) | |
| 955 | |
| 956 cmap = plt.get_cmap(colormap) | |
| 957 | |
| 958 min_width = 2.0 # Minimum arrow width | |
| 959 max_width = 15.0 # Maximum arrow width | |
| 960 | |
| 961 for key in class_pat: | |
| 962 # Create color mappings for median and mean | |
| 963 colors_median = { | |
| 964 rxn_id: rgb_to_hex(cmap(abs(medians[key][i]))) if medians[key][i] != 0 else '#bebebe' #grey blocked | |
| 965 for i, rxn_id in enumerate(ids) | |
| 966 } | |
| 967 | |
| 968 colors_mean = { | |
| 969 rxn_id: rgb_to_hex(cmap(abs(means[key][i]))) if means[key][i] != 0 else '#bebebe' #grey blocked | |
| 970 for i, rxn_id in enumerate(ids) | |
| 971 } | |
| 972 | |
| 973 for i, rxn_id in enumerate(ids): | |
| 974 # Calculate arrow width for median | |
| 975 width_median = np.interp(abs(medians[key][i]), [0, 1], [min_width, max_width]) | |
| 976 isNegative = medians[key][i] < 0 | |
| 977 apply_arrow(metabMap_median, rxn_id, colors_median[rxn_id], isNegative, width_median) | |
| 978 | |
| 979 # Calculate arrow width for mean | |
| 980 width_mean = np.interp(abs(means[key][i]), [0, 1], [min_width, max_width]) | |
| 981 isNegative = means[key][i] < 0 | |
| 982 apply_arrow(metabMap_mean, rxn_id, colors_mean[rxn_id], isNegative, width_mean) | |
| 983 | |
| 984 # Save and convert the SVG files | |
| 985 save_and_convert(metabMap_mean, "mean", key) | |
| 986 save_and_convert(metabMap_median, "median", key) | |
| 987 | |
| 988 def apply_arrow(metabMap, rxn_id, color, isNegative, width=5): | |
| 989 """ | |
| 990 Apply an arrow to a specific reaction in the metabolic map with a given color. | |
| 991 | |
| 992 Args: | |
| 993 metabMap (ET.ElementTree): An XML tree representing the metabolic map. | |
| 994 rxn_id (str): The ID of the reaction to which the arrow will be applied. | |
| 995 color (str): The color of the arrow in hexadecimal format. | |
| 996 isNegative (bool): A boolean indicating if the arrow represents a negative value. | |
| 997 width (int): The width of the arrow. | |
| 998 | |
| 999 Returns: | |
| 1000 None | |
| 1001 """ | |
| 1002 arrow = Arrow(width=width, col=color) | |
| 1003 arrow.styleReactionElementsMeanMedian(metabMap, rxn_id, isNegative) | |
| 1004 pass | |
| 1005 | |
| 1006 def save_and_convert(metabMap, map_type, key): | |
| 1007 """ | |
| 1008 Save the metabolic map as an SVG file and optionally convert it to PNG and PDF formats. | |
| 1009 | |
| 1010 Args: | |
| 1011 metabMap (ET.ElementTree): An XML tree representing the metabolic map. | |
| 1012 map_type (str): The type of map ('mean' or 'median'). | |
| 1013 key (str): The key identifying the specific map. | |
| 1014 | |
| 1015 Returns: | |
| 1016 None | |
| 1017 """ | |
| 1018 svgFilePath = utils.FilePath(f"SVG Map {map_type} - {key}", ext=utils.FileFormat.SVG, prefix=ARGS.output_path) | |
| 1019 utils.writeSvg(svgFilePath, metabMap) | |
| 1020 if ARGS.generate_pdf: | |
| 1021 pngPath = utils.FilePath(f"PNG Map {map_type} - {key}", ext=utils.FileFormat.PNG, prefix=ARGS.output_path) | |
| 1022 pdfPath = utils.FilePath(f"PDF Map {map_type} - {key}", ext=utils.FileFormat.PDF, prefix=ARGS.output_path) | |
| 1023 convert_to_pdf(svgFilePath, pngPath, pdfPath) | |
| 1024 if not ARGS.generate_svg: | |
| 1025 os.remove(svgFilePath.show()) | |
| 1026 | |
| 1027 ############################ MAIN ############################################# | |
| 1028 def main(args:List[str] = None) -> None: | |
| 1029 """ | |
| 1030 Initializes everything and sets the program in motion based on the fronted input arguments. | |
| 1031 | |
| 1032 Returns: | |
| 1033 None | |
| 1034 | |
| 1035 Raises: | |
| 1036 sys.exit : if a user-provided custom map is in the wrong format (ET.XMLSyntaxError, ET.XMLSchemaParseError) | |
| 1037 """ | |
| 1038 | |
| 1039 global ARGS | |
| 1040 ARGS = process_args(args) | |
| 1041 | |
| 1042 if ARGS.custom_map == 'None': | |
| 1043 ARGS.custom_map = None | |
| 1044 | |
| 1045 if os.path.isdir(ARGS.output_path) == False: os.makedirs(ARGS.output_path) | |
| 1046 | |
| 1047 core_map :ET.ElementTree = ARGS.choice_map.getMap( | |
| 1048 ARGS.tool_dir, | |
| 1049 utils.FilePath.fromStrPath(ARGS.custom_map) if ARGS.custom_map else None) | |
| 1050 # TODO: ^^^ ugly but fine for now, the argument is None if the model isn't custom because no file was given. | |
| 1051 # getMap will None-check the customPath and panic when the model IS custom but there's no file (good). A cleaner | |
| 1052 # solution can be derived from my comment in FilePath.fromStrPath | |
| 1053 | |
| 1054 ids, class_pat = getClassesAndIdsFromDatasets(ARGS.input_datas_fluxes, ARGS.input_data_fluxes, ARGS.input_class_fluxes, ARGS.names_fluxes) | |
| 1055 | |
| 1056 if(ARGS.choice_map == utils.Model.HMRcore): | |
| 1057 temp_map = utils.Model.HMRcore_no_legend | |
| 1058 computeEnrichmentMeanMedian(temp_map.getMap(ARGS.tool_dir), class_pat, ids, ARGS.color_map) | |
| 1059 elif(ARGS.choice_map == utils.Model.ENGRO2): | |
| 1060 temp_map = utils.Model.ENGRO2_no_legend | |
| 1061 computeEnrichmentMeanMedian(temp_map.getMap(ARGS.tool_dir), class_pat, ids, ARGS.color_map) | |
| 1062 else: | |
| 1063 computeEnrichmentMeanMedian(core_map, class_pat, ids, ARGS.color_map) | |
| 1064 | |
| 1065 | |
| 1066 enrichment_results = computeEnrichment(class_pat, ids) | |
| 1067 for i, j, comparisonDict, max_z_score in enrichment_results: | |
| 1068 map_copy = copy.deepcopy(core_map) | |
| 1069 temp_thingsInCommon(comparisonDict, map_copy, max_z_score, i, j) | |
| 1070 createOutputMaps(i, j, map_copy) | |
| 1071 | |
| 1072 if not ERRORS: return | |
| 1073 utils.logWarning( | |
| 1074 f"The following reaction IDs were mentioned in the dataset but weren't found in the map: {ERRORS}", | |
| 1075 ARGS.out_log) | |
| 1076 | |
| 1077 print('Execution succeded') | |
| 1078 | |
| 1079 ############################################################################### | |
| 1080 if __name__ == "__main__": | |
| 1081 main() | |
| 1082 |
