Mercurial > repos > bimib > cobraxy
comparison COBRAxy/src/ras_to_bounds.py @ 539:2fb97466e404 draft
Uploaded
| author | francesco_lapi |
|---|---|
| date | Sat, 25 Oct 2025 14:55:13 +0000 |
| parents | |
| children | fcdbc81feb45 |
comparison
equal
deleted
inserted
replaced
| 538:fd53d42348bd | 539:2fb97466e404 |
|---|---|
| 1 """ | |
| 2 Apply RAS-based scaling to reaction bounds and optionally save updated models. | |
| 3 | |
| 4 Workflow: | |
| 5 - Read one or more RAS matrices (patients/samples x reactions) | |
| 6 - Normalize and merge them, optionally adding class suffixes to sample IDs | |
| 7 - Build a COBRA model from a tabular CSV | |
| 8 - Run FVA to initialize bounds, then scale per-sample based on RAS values | |
| 9 - Save bounds per sample and optionally export updated models in chosen formats | |
| 10 """ | |
| 11 import argparse | |
| 12 import utils.general_utils as utils | |
| 13 from typing import Optional, Dict, Set, List, Tuple, Union | |
| 14 import os | |
| 15 import numpy as np | |
| 16 import pandas as pd | |
| 17 import cobra | |
| 18 from cobra import Model | |
| 19 import sys | |
| 20 from joblib import Parallel, delayed, cpu_count | |
| 21 import utils.model_utils as modelUtils | |
| 22 | |
| 23 ################################# process args ############################### | |
| 24 def process_args(args :List[str] = None) -> argparse.Namespace: | |
| 25 """ | |
| 26 Processes command-line arguments. | |
| 27 | |
| 28 Args: | |
| 29 args (list): List of command-line arguments. | |
| 30 | |
| 31 Returns: | |
| 32 Namespace: An object containing parsed arguments. | |
| 33 """ | |
| 34 parser = argparse.ArgumentParser(usage = '%(prog)s [options]', | |
| 35 description = 'process some value\'s') | |
| 36 | |
| 37 | |
| 38 parser.add_argument("-mo", "--model_upload", type = str, | |
| 39 help = "path to input file with custom rules, if provided") | |
| 40 | |
| 41 parser.add_argument('-ol', '--out_log', | |
| 42 help = "Output log") | |
| 43 | |
| 44 parser.add_argument('-td', '--tool_dir', | |
| 45 type = str, | |
| 46 required = True, | |
| 47 help = 'your tool directory') | |
| 48 | |
| 49 parser.add_argument('-ir', '--input_ras', | |
| 50 type=str, | |
| 51 required = False, | |
| 52 help = 'input ras') | |
| 53 | |
| 54 parser.add_argument('-rn', '--name', | |
| 55 type=str, | |
| 56 help = 'ras class names') | |
| 57 | |
| 58 parser.add_argument('-cc', '--cell_class', | |
| 59 type = str, | |
| 60 help = 'output of cell class') | |
| 61 parser.add_argument( | |
| 62 '-idop', '--output_path', | |
| 63 type = str, | |
| 64 default='ras_to_bounds/', | |
| 65 help = 'output path for maps') | |
| 66 | |
| 67 parser.add_argument('-sm', '--save_models', | |
| 68 type=utils.Bool("save_models"), | |
| 69 default=False, | |
| 70 help = 'whether to save models with applied bounds') | |
| 71 | |
| 72 parser.add_argument('-smp', '--save_models_path', | |
| 73 type = str, | |
| 74 default='saved_models/', | |
| 75 help = 'output path for saved models') | |
| 76 | |
| 77 parser.add_argument('-smf', '--save_models_format', | |
| 78 type = str, | |
| 79 default='csv', | |
| 80 help = 'format for saved models (csv, xml, json, mat, yaml, tabular)') | |
| 81 | |
| 82 | |
| 83 ARGS = parser.parse_args(args) | |
| 84 return ARGS | |
| 85 | |
| 86 ########################### warning ########################################### | |
| 87 def warning(s :str) -> None: | |
| 88 """ | |
| 89 Log a warning message to an output log file and print it to the console. | |
| 90 | |
| 91 Args: | |
| 92 s (str): The warning message to be logged and printed. | |
| 93 | |
| 94 Returns: | |
| 95 None | |
| 96 """ | |
| 97 if ARGS.out_log: | |
| 98 with open(ARGS.out_log, 'a') as log: | |
| 99 log.write(s + "\n\n") | |
| 100 print(s) | |
| 101 | |
| 102 ############################ dataset input #################################### | |
| 103 def read_dataset(data :str, name :str) -> pd.DataFrame: | |
| 104 """ | |
| 105 Read a dataset from a CSV file and return it as a pandas DataFrame. | |
| 106 | |
| 107 Args: | |
| 108 data (str): Path to the CSV file containing the dataset. | |
| 109 name (str): Name of the dataset, used in error messages. | |
| 110 | |
| 111 Returns: | |
| 112 pandas.DataFrame: DataFrame containing the dataset. | |
| 113 | |
| 114 Raises: | |
| 115 pd.errors.EmptyDataError: If the CSV file is empty. | |
| 116 sys.exit: If the CSV file has the wrong format, the execution is aborted. | |
| 117 """ | |
| 118 try: | |
| 119 dataset = pd.read_csv(data, sep = '\t', header = 0, engine='python') | |
| 120 except pd.errors.EmptyDataError: | |
| 121 sys.exit('Execution aborted: wrong format of ' + name + '\n') | |
| 122 if len(dataset.columns) < 2: | |
| 123 sys.exit('Execution aborted: wrong format of ' + name + '\n') | |
| 124 return dataset | |
| 125 | |
| 126 | |
| 127 def apply_ras_bounds(bounds, ras_row): | |
| 128 """ | |
| 129 Adjust the bounds of reactions in the model based on RAS values. | |
| 130 | |
| 131 Args: | |
| 132 bounds (pd.DataFrame): Model bounds. | |
| 133 ras_row (pd.Series): A row from a RAS DataFrame containing scaling factors for reaction bounds. | |
| 134 Returns: | |
| 135 new_bounds (pd.DataFrame): integrated bounds. | |
| 136 """ | |
| 137 new_bounds = bounds.copy() | |
| 138 for reaction in ras_row.index: | |
| 139 scaling_factor = ras_row[reaction] | |
| 140 if not np.isnan(scaling_factor): | |
| 141 lower_bound=bounds.loc[reaction, "lower_bound"] | |
| 142 upper_bound=bounds.loc[reaction, "upper_bound"] | |
| 143 valMax=float((upper_bound)*scaling_factor) | |
| 144 valMin=float((lower_bound)*scaling_factor) | |
| 145 if upper_bound!=0 and lower_bound==0: | |
| 146 new_bounds.loc[reaction, "upper_bound"] = valMax | |
| 147 if upper_bound==0 and lower_bound!=0: | |
| 148 new_bounds.loc[reaction, "lower_bound"] = valMin | |
| 149 if upper_bound!=0 and lower_bound!=0: | |
| 150 new_bounds.loc[reaction, "lower_bound"] = valMin | |
| 151 new_bounds.loc[reaction, "upper_bound"] = valMax | |
| 152 return new_bounds | |
| 153 | |
| 154 | |
| 155 def save_model(model, filename, output_folder, file_format='csv'): | |
| 156 """ | |
| 157 Save a COBRA model to file in the specified format. | |
| 158 | |
| 159 Args: | |
| 160 model (cobra.Model): The model to save. | |
| 161 filename (str): Base filename (without extension). | |
| 162 output_folder (str): Output directory. | |
| 163 file_format (str): File format ('xml', 'json', 'mat', 'yaml', 'tabular', 'csv'). | |
| 164 | |
| 165 Returns: | |
| 166 None | |
| 167 """ | |
| 168 if not os.path.exists(output_folder): | |
| 169 os.makedirs(output_folder) | |
| 170 | |
| 171 try: | |
| 172 if file_format == 'tabular' or file_format == 'csv': | |
| 173 # Special handling for tabular format using utils functions | |
| 174 filepath = os.path.join(output_folder, f"{filename}.csv") | |
| 175 | |
| 176 # Use unified function for tabular export | |
| 177 merged = modelUtils.export_model_to_tabular( | |
| 178 model=model, | |
| 179 output_path=filepath, | |
| 180 include_objective=True | |
| 181 ) | |
| 182 | |
| 183 else: | |
| 184 # Standard COBRA formats | |
| 185 filepath = os.path.join(output_folder, f"{filename}.{file_format}") | |
| 186 | |
| 187 if file_format == 'xml': | |
| 188 cobra.io.write_sbml_model(model, filepath) | |
| 189 elif file_format == 'json': | |
| 190 cobra.io.save_json_model(model, filepath) | |
| 191 elif file_format == 'mat': | |
| 192 cobra.io.save_matlab_model(model, filepath) | |
| 193 elif file_format == 'yaml': | |
| 194 cobra.io.save_yaml_model(model, filepath) | |
| 195 else: | |
| 196 raise ValueError(f"Unsupported format: {file_format}") | |
| 197 | |
| 198 print(f"Model saved: {filepath}") | |
| 199 | |
| 200 except Exception as e: | |
| 201 warning(f"Error saving model {filename}: {str(e)}") | |
| 202 | |
| 203 def apply_bounds_to_model(model, bounds): | |
| 204 """ | |
| 205 Apply bounds from a DataFrame to a COBRA model. | |
| 206 | |
| 207 Args: | |
| 208 model (cobra.Model): The metabolic model to modify. | |
| 209 bounds (pd.DataFrame): DataFrame with reaction bounds. | |
| 210 | |
| 211 Returns: | |
| 212 cobra.Model: Modified model with new bounds. | |
| 213 """ | |
| 214 model_copy = model.copy() | |
| 215 for reaction_id in bounds.index: | |
| 216 try: | |
| 217 reaction = model_copy.reactions.get_by_id(reaction_id) | |
| 218 reaction.lower_bound = bounds.loc[reaction_id, "lower_bound"] | |
| 219 reaction.upper_bound = bounds.loc[reaction_id, "upper_bound"] | |
| 220 except KeyError: | |
| 221 # Reaction not found in model, skip | |
| 222 continue | |
| 223 return model_copy | |
| 224 | |
| 225 def process_ras_cell(cellName, ras_row, model, rxns_ids, output_folder, save_models=False, save_models_path='saved_models/', save_models_format='csv'): | |
| 226 """ | |
| 227 Process a single RAS cell, apply bounds, and save the bounds to a CSV file. | |
| 228 | |
| 229 Args: | |
| 230 cellName (str): The name of the RAS cell (used for naming the output file). | |
| 231 ras_row (pd.Series): A row from a RAS DataFrame containing scaling factors for reaction bounds. | |
| 232 model (cobra.Model): The metabolic model to be modified. | |
| 233 rxns_ids (list of str): List of reaction IDs to which the scaling factors will be applied. | |
| 234 output_folder (str): Folder path where the output CSV file will be saved. | |
| 235 save_models (bool): Whether to save models with applied bounds. | |
| 236 save_models_path (str): Path where to save models. | |
| 237 save_models_format (str): Format for saved models. | |
| 238 | |
| 239 Returns: | |
| 240 None | |
| 241 """ | |
| 242 bounds = pd.DataFrame([(rxn.lower_bound, rxn.upper_bound) for rxn in model.reactions], index=rxns_ids, columns=["lower_bound", "upper_bound"]) | |
| 243 new_bounds = apply_ras_bounds(bounds, ras_row) | |
| 244 new_bounds.to_csv(output_folder + cellName + ".csv", sep='\t', index=True) | |
| 245 | |
| 246 # Save model if requested | |
| 247 if save_models: | |
| 248 modified_model = apply_bounds_to_model(model, new_bounds) | |
| 249 save_model(modified_model, cellName, save_models_path, save_models_format) | |
| 250 | |
| 251 return | |
| 252 | |
| 253 def generate_bounds_model(model: cobra.Model, ras=None, output_folder='output/', save_models=False, save_models_path='saved_models/', save_models_format='csv') -> pd.DataFrame: | |
| 254 """ | |
| 255 Generate reaction bounds for a metabolic model based on medium conditions and optional RAS adjustments. | |
| 256 | |
| 257 Args: | |
| 258 model (cobra.Model): The metabolic model for which bounds will be generated. | |
| 259 ras (pd.DataFrame, optional): RAS pandas dataframe. Defaults to None. | |
| 260 output_folder (str, optional): Folder path where output CSV files will be saved. Defaults to 'output/'. | |
| 261 save_models (bool): Whether to save models with applied bounds. | |
| 262 save_models_path (str): Path where to save models. | |
| 263 save_models_format (str): Format for saved models. | |
| 264 | |
| 265 Returns: | |
| 266 pd.DataFrame: DataFrame containing the bounds of reactions in the model. | |
| 267 """ | |
| 268 rxns_ids = [rxn.id for rxn in model.reactions] | |
| 269 | |
| 270 # Perform Flux Variability Analysis (FVA) on this medium | |
| 271 df_FVA = cobra.flux_analysis.flux_variability_analysis(model, fraction_of_optimum=0, processes=1).round(8) | |
| 272 | |
| 273 # Set FVA bounds | |
| 274 for reaction in rxns_ids: | |
| 275 model.reactions.get_by_id(reaction).lower_bound = float(df_FVA.loc[reaction, "minimum"]) | |
| 276 model.reactions.get_by_id(reaction).upper_bound = float(df_FVA.loc[reaction, "maximum"]) | |
| 277 | |
| 278 if ras is not None: | |
| 279 Parallel(n_jobs=cpu_count())(delayed(process_ras_cell)( | |
| 280 cellName, ras_row, model, rxns_ids, output_folder, | |
| 281 save_models, save_models_path, save_models_format | |
| 282 ) for cellName, ras_row in ras.iterrows()) | |
| 283 else: | |
| 284 raise ValueError("RAS DataFrame is None. Cannot generate bounds without RAS data.") | |
| 285 return | |
| 286 | |
| 287 ############################# main ########################################### | |
| 288 def main(args:List[str] = None) -> None: | |
| 289 """ | |
| 290 Initialize and execute RAS-to-bounds pipeline based on the frontend input arguments. | |
| 291 | |
| 292 Returns: | |
| 293 None | |
| 294 """ | |
| 295 if not os.path.exists('ras_to_bounds'): | |
| 296 os.makedirs('ras_to_bounds') | |
| 297 | |
| 298 global ARGS | |
| 299 ARGS = process_args(args) | |
| 300 | |
| 301 | |
| 302 ras_file_list = ARGS.input_ras.split(",") | |
| 303 ras_file_names = ARGS.name.split(",") | |
| 304 if len(ras_file_names) != len(set(ras_file_names)): | |
| 305 error_message = "Duplicated file names in the uploaded RAS matrices." | |
| 306 warning(error_message) | |
| 307 raise ValueError(error_message) | |
| 308 | |
| 309 ras_class_names = [] | |
| 310 for file in ras_file_names: | |
| 311 ras_class_names.append(file.rsplit(".", 1)[0]) | |
| 312 ras_list = [] | |
| 313 class_assignments = pd.DataFrame(columns=["Patient_ID", "Class"]) | |
| 314 for ras_matrix, ras_class_name in zip(ras_file_list, ras_class_names): | |
| 315 ras = read_dataset(ras_matrix, "ras dataset") | |
| 316 ras.replace("None", None, inplace=True) | |
| 317 ras.set_index("Reactions", drop=True, inplace=True) | |
| 318 ras = ras.T | |
| 319 ras = ras.astype(float) | |
| 320 if(len(ras_file_list)>1): | |
| 321 # Append class name to patient id (DataFrame index) | |
| 322 ras.index = [f"{idx}_{ras_class_name}" for idx in ras.index] | |
| 323 else: | |
| 324 ras.index = [f"{idx}" for idx in ras.index] | |
| 325 ras_list.append(ras) | |
| 326 for patient_id in ras.index: | |
| 327 class_assignments.loc[class_assignments.shape[0]] = [patient_id, ras_class_name] | |
| 328 | |
| 329 | |
| 330 # Concatenate all RAS DataFrames into a single DataFrame | |
| 331 ras_combined = pd.concat(ras_list, axis=0) | |
| 332 # Normalize RAS values column-wise by max RAS | |
| 333 ras_combined = ras_combined.div(ras_combined.max(axis=0)) | |
| 334 ras_combined.dropna(axis=1, how='all', inplace=True) | |
| 335 | |
| 336 model = modelUtils.build_cobra_model_from_csv(ARGS.model_upload) | |
| 337 | |
| 338 validation = modelUtils.validate_model(model) | |
| 339 | |
| 340 print("\n=== MODEL VALIDATION ===") | |
| 341 for key, value in validation.items(): | |
| 342 print(f"{key}: {value}") | |
| 343 | |
| 344 | |
| 345 generate_bounds_model(model, ras=ras_combined, output_folder=ARGS.output_path, | |
| 346 save_models=ARGS.save_models, save_models_path=ARGS.save_models_path, | |
| 347 save_models_format=ARGS.save_models_format) | |
| 348 class_assignments.to_csv(ARGS.cell_class, sep='\t', index=False) | |
| 349 | |
| 350 | |
| 351 return | |
| 352 | |
| 353 ############################################################################## | |
| 354 if __name__ == "__main__": | |
| 355 main() |
