Mercurial > repos > bimib > cobraxy
comparison COBRAxy/marea.py @ 4:41f35c2f0c7b draft
Uploaded
| author | luca_milaz |
|---|---|
| date | Wed, 18 Sep 2024 10:59:10 +0000 |
| parents | |
| children | 507efdc9d226 |
comparison
equal
deleted
inserted
replaced
| 3:1f3ac6fd9867 | 4:41f35c2f0c7b |
|---|---|
| 1 from __future__ import division | |
| 2 import csv | |
| 3 from enum import Enum | |
| 4 import re | |
| 5 import sys | |
| 6 import numpy as np | |
| 7 import pandas as pd | |
| 8 import itertools as it | |
| 9 import scipy.stats as st | |
| 10 import lxml.etree as ET | |
| 11 import math | |
| 12 import utils.general_utils as utils | |
| 13 from PIL import Image | |
| 14 import os | |
| 15 import argparse | |
| 16 import pyvips | |
| 17 from typing import Tuple, Union, Optional, List, Dict | |
| 18 | |
| 19 ERRORS = [] | |
| 20 ########################## argparse ########################################## | |
| 21 ARGS :argparse.Namespace | |
| 22 def process_args() -> argparse.Namespace: | |
| 23 """ | |
| 24 Interfaces the script of a module with its frontend, making the user's choices for various parameters available as values in code. | |
| 25 | |
| 26 Args: | |
| 27 args : Always obtained (in file) from sys.argv | |
| 28 | |
| 29 Returns: | |
| 30 Namespace : An object containing the parsed arguments | |
| 31 """ | |
| 32 parser = argparse.ArgumentParser( | |
| 33 usage = "%(prog)s [options]", | |
| 34 description = "process some value's genes to create a comparison's map.") | |
| 35 | |
| 36 #General: | |
| 37 parser.add_argument( | |
| 38 '-td', '--tool_dir', | |
| 39 type = str, | |
| 40 required = True, | |
| 41 help = 'your tool directory') | |
| 42 | |
| 43 parser.add_argument('-on', '--control', type = str) | |
| 44 parser.add_argument('-ol', '--out_log', help = "Output log") | |
| 45 | |
| 46 #Computation details: | |
| 47 parser.add_argument( | |
| 48 '-co', '--comparison', | |
| 49 type = str, | |
| 50 default = '1vs1', | |
| 51 choices = ['manyvsmany', 'onevsrest', 'onevsmany']) | |
| 52 | |
| 53 parser.add_argument( | |
| 54 '-pv' ,'--pValue', | |
| 55 type = float, | |
| 56 default = 0.1, | |
| 57 help = 'P-Value threshold (default: %(default)s)') | |
| 58 | |
| 59 parser.add_argument( | |
| 60 '-fc', '--fChange', | |
| 61 type = float, | |
| 62 default = 1.5, | |
| 63 help = 'Fold-Change threshold (default: %(default)s)') | |
| 64 | |
| 65 parser.add_argument( | |
| 66 "-ne", "--net", | |
| 67 type = utils.Bool("net"), default = False, | |
| 68 help = "choose if you want net enrichment for RPS") | |
| 69 | |
| 70 parser.add_argument( | |
| 71 '-op', '--option', | |
| 72 type = str, | |
| 73 choices = ['datasets', 'dataset_class'], | |
| 74 help='dataset or dataset and class') | |
| 75 | |
| 76 #RAS: | |
| 77 parser.add_argument( | |
| 78 "-ra", "--using_RAS", | |
| 79 type = utils.Bool("using_RAS"), default = True, | |
| 80 help = "choose whether to use RAS datasets.") | |
| 81 | |
| 82 parser.add_argument( | |
| 83 '-id', '--input_data', | |
| 84 type = str, | |
| 85 help = 'input dataset') | |
| 86 | |
| 87 parser.add_argument( | |
| 88 '-ic', '--input_class', | |
| 89 type = str, | |
| 90 help = 'sample group specification') | |
| 91 | |
| 92 parser.add_argument( | |
| 93 '-ids', '--input_datas', | |
| 94 type = str, | |
| 95 nargs = '+', | |
| 96 help = 'input datasets') | |
| 97 | |
| 98 parser.add_argument( | |
| 99 '-na', '--names', | |
| 100 type = str, | |
| 101 nargs = '+', | |
| 102 help = 'input names') | |
| 103 | |
| 104 #RPS: | |
| 105 parser.add_argument( | |
| 106 "-rp", "--using_RPS", | |
| 107 type = utils.Bool("using_RPS"), default = False, | |
| 108 help = "choose whether to use RPS datasets.") | |
| 109 | |
| 110 parser.add_argument( | |
| 111 '-idr', '--input_data_rps', | |
| 112 type = str, | |
| 113 help = 'input dataset rps') | |
| 114 | |
| 115 parser.add_argument( | |
| 116 '-icr', '--input_class_rps', | |
| 117 type = str, | |
| 118 help = 'sample group specification rps') | |
| 119 | |
| 120 parser.add_argument( | |
| 121 '-idsr', '--input_datas_rps', | |
| 122 type = str, | |
| 123 nargs = '+', | |
| 124 help = 'input datasets rps') | |
| 125 | |
| 126 parser.add_argument( | |
| 127 '-nar', '--names_rps', | |
| 128 type = str, | |
| 129 nargs = '+', | |
| 130 help = 'input names rps') | |
| 131 | |
| 132 #Output: | |
| 133 parser.add_argument( | |
| 134 "-gs", "--generate_svg", | |
| 135 type = utils.Bool("generate_svg"), default = True, | |
| 136 help = "choose whether to use RAS datasets.") | |
| 137 | |
| 138 parser.add_argument( | |
| 139 "-gp", "--generate_pdf", | |
| 140 type = utils.Bool("generate_pdf"), default = True, | |
| 141 help = "choose whether to use RAS datasets.") | |
| 142 | |
| 143 parser.add_argument( | |
| 144 '-cm', '--custom_map', | |
| 145 type = str, | |
| 146 help='custom map to use') | |
| 147 | |
| 148 parser.add_argument( | |
| 149 '-mc', '--choice_map', | |
| 150 type = utils.Model, default = utils.Model.HMRcore, | |
| 151 choices = [utils.Model.HMRcore, utils.Model.ENGRO2, utils.Model.Custom]) | |
| 152 | |
| 153 args :argparse.Namespace = parser.parse_args() | |
| 154 if args.using_RAS and not args.using_RPS: args.net = False | |
| 155 | |
| 156 return args | |
| 157 | |
| 158 ############################ dataset input #################################### | |
| 159 def read_dataset(data :str, name :str) -> pd.DataFrame: | |
| 160 """ | |
| 161 Tries to read the dataset from its path (data) as a tsv and turns it into a DataFrame. | |
| 162 | |
| 163 Args: | |
| 164 data : filepath of a dataset (from frontend input params or literals upon calling) | |
| 165 name : name associated with the dataset (from frontend input params or literals upon calling) | |
| 166 | |
| 167 Returns: | |
| 168 pd.DataFrame : dataset in a runtime operable shape | |
| 169 | |
| 170 Raises: | |
| 171 sys.exit : if there's no data (pd.errors.EmptyDataError) or if the dataset has less than 2 columns | |
| 172 """ | |
| 173 try: | |
| 174 dataset = pd.read_csv(data, sep = '\t', header = 0, engine='python') | |
| 175 except pd.errors.EmptyDataError: | |
| 176 sys.exit('Execution aborted: wrong format of ' + name + '\n') | |
| 177 if len(dataset.columns) < 2: | |
| 178 sys.exit('Execution aborted: wrong format of ' + name + '\n') | |
| 179 return dataset | |
| 180 | |
| 181 ############################ dataset name ##################################### | |
| 182 def name_dataset(name_data :str, count :int) -> str: | |
| 183 """ | |
| 184 Produces a unique name for a dataset based on what was provided by the user. The default name for any dataset is "Dataset", thus if the user didn't change it this function appends f"_{count}" to make it unique. | |
| 185 | |
| 186 Args: | |
| 187 name_data : name associated with the dataset (from frontend input params) | |
| 188 count : counter from 1 to make these names unique (external) | |
| 189 | |
| 190 Returns: | |
| 191 str : the name made unique | |
| 192 """ | |
| 193 if str(name_data) == 'Dataset': | |
| 194 return str(name_data) + '_' + str(count) | |
| 195 else: | |
| 196 return str(name_data) | |
| 197 | |
| 198 ############################ map_methods ###################################### | |
| 199 FoldChange = Union[float, int, str] # Union[float, Literal[0, "-INF", "INF"]] | |
| 200 def fold_change(avg1 :float, avg2 :float) -> FoldChange: | |
| 201 """ | |
| 202 Calculates the fold change between two gene expression values. | |
| 203 | |
| 204 Args: | |
| 205 avg1 : average expression value from one dataset avg2 : average expression value from the other dataset | |
| 206 | |
| 207 Returns: | |
| 208 FoldChange : | |
| 209 0 : when both input values are 0 | |
| 210 "-INF" : when avg1 is 0 | |
| 211 "INF" : when avg2 is 0 | |
| 212 float : for any other combination of values | |
| 213 """ | |
| 214 if avg1 == 0 and avg2 == 0: | |
| 215 return 0 | |
| 216 elif avg1 == 0: | |
| 217 return '-INF' | |
| 218 elif avg2 == 0: | |
| 219 return 'INF' | |
| 220 else: # (threshold_F_C - 1) / (abs(threshold_F_C) + 1) con threshold_F_C > 1 | |
| 221 return (avg1 - avg2) / (abs(avg1) + abs(avg2)) | |
| 222 | |
| 223 def fix_style(l :str, col :Optional[str], width :str, dash :str) -> str: | |
| 224 """ | |
| 225 Produces a "fixed" style string to assign to a reaction arrow in the SVG map, assigning style properties to the corresponding values passed as input params. | |
| 226 | |
| 227 Args: | |
| 228 l : current style string of an SVG element | |
| 229 col : new value for the "stroke" style property | |
| 230 width : new value for the "stroke-width" style property | |
| 231 dash : new value for the "stroke-dasharray" style property | |
| 232 | |
| 233 Returns: | |
| 234 str : the fixed style string | |
| 235 """ | |
| 236 tmp = l.split(';') | |
| 237 flag_col = False | |
| 238 flag_width = False | |
| 239 flag_dash = False | |
| 240 for i in range(len(tmp)): | |
| 241 if tmp[i].startswith('stroke:'): | |
| 242 tmp[i] = 'stroke:' + col | |
| 243 flag_col = True | |
| 244 if tmp[i].startswith('stroke-width:'): | |
| 245 tmp[i] = 'stroke-width:' + width | |
| 246 flag_width = True | |
| 247 if tmp[i].startswith('stroke-dasharray:'): | |
| 248 tmp[i] = 'stroke-dasharray:' + dash | |
| 249 flag_dash = True | |
| 250 if not flag_col: | |
| 251 tmp.append('stroke:' + col) | |
| 252 if not flag_width: | |
| 253 tmp.append('stroke-width:' + width) | |
| 254 if not flag_dash: | |
| 255 tmp.append('stroke-dasharray:' + dash) | |
| 256 return ';'.join(tmp) | |
| 257 | |
| 258 # The type of d values is collapsed, losing precision, because the dict containst lists instead of tuples, please fix! | |
| 259 def fix_map(d :Dict[str, List[Union[float, FoldChange]]], core_map :ET.ElementTree, threshold_P_V :float, threshold_F_C :float, max_z_score :float) -> ET.ElementTree: | |
| 260 """ | |
| 261 Edits the selected SVG map based on the p-value and fold change data (d) and some significance thresholds also passed as inputs. | |
| 262 | |
| 263 Args: | |
| 264 d : dictionary mapping a p-value and a fold-change value (values) to each reaction ID as encoded in the SVG map (keys) | |
| 265 core_map : SVG map to modify | |
| 266 threshold_P_V : threshold for a p-value to be considered significant | |
| 267 threshold_F_C : threshold for a fold change value to be considered significant | |
| 268 max_z_score : highest z-score (absolute value) | |
| 269 | |
| 270 Returns: | |
| 271 ET.ElementTree : the modified core_map | |
| 272 | |
| 273 Side effects: | |
| 274 core_map : mut | |
| 275 """ | |
| 276 maxT = 12 | |
| 277 minT = 2 | |
| 278 grey = '#BEBEBE' | |
| 279 blue = '#6495ed' | |
| 280 red = '#ecac68' | |
| 281 for el in core_map.iter(): | |
| 282 el_id = str(el.get('id')) | |
| 283 if el_id.startswith('R_'): | |
| 284 tmp = d.get(el_id[2:]) | |
| 285 if tmp != None: | |
| 286 p_val :float = tmp[0] | |
| 287 f_c = tmp[1] | |
| 288 z_score = tmp[2] | |
| 289 if p_val < threshold_P_V: | |
| 290 if not isinstance(f_c, str): | |
| 291 if abs(f_c) < ((threshold_F_C - 1) / (abs(threshold_F_C) + 1)): # | |
| 292 col = grey | |
| 293 width = str(minT) | |
| 294 else: | |
| 295 if f_c < 0: | |
| 296 col = blue | |
| 297 elif f_c > 0: | |
| 298 col = red | |
| 299 width = str(max((abs(z_score) * maxT) / max_z_score, minT)) | |
| 300 else: | |
| 301 if f_c == '-INF': | |
| 302 col = blue | |
| 303 elif f_c == 'INF': | |
| 304 col = red | |
| 305 width = str(maxT) | |
| 306 dash = 'none' | |
| 307 else: | |
| 308 dash = '5,5' | |
| 309 col = grey | |
| 310 width = str(minT) | |
| 311 el.set('style', fix_style(el.get('style', ""), col, width, dash)) | |
| 312 return core_map | |
| 313 | |
| 314 def getElementById(reactionId :str, metabMap :ET.ElementTree) -> utils.Result[ET.Element, utils.Result.ResultErr]: | |
| 315 """ | |
| 316 Finds any element in the given map with the given ID. ID uniqueness in an svg file is recommended but | |
| 317 not enforced, if more than one element with the exact ID is found only the first will be returned. | |
| 318 | |
| 319 Args: | |
| 320 reactionId (str): exact ID of the requested element. | |
| 321 metabMap (ET.ElementTree): metabolic map containing the element. | |
| 322 | |
| 323 Returns: | |
| 324 utils.Result[ET.Element, ResultErr]: result of the search, either the first match found or a ResultErr. | |
| 325 """ | |
| 326 return utils.Result.Ok( | |
| 327 f"//*[@id=\"{reactionId}\"]").map( | |
| 328 lambda xPath : metabMap.xpath(xPath)[0]).mapErr( | |
| 329 lambda _ : utils.Result.ResultErr(f"No elements with ID \"{reactionId}\" found in map")) | |
| 330 # ^^^ we shamelessly ignore the contents of the IndexError, it offers nothing to the user. | |
| 331 | |
| 332 def styleMapElement(element :ET.Element, styleStr :str) -> None: | |
| 333 currentStyles :str = element.get("style", "") | |
| 334 if re.search(r";stroke:[^;]+;stroke-width:[^;]+;stroke-dasharray:[^;]+$", currentStyles): | |
| 335 currentStyles = ';'.join(currentStyles.split(';')[:-3]) | |
| 336 | |
| 337 element.set("style", currentStyles + styleStr) | |
| 338 | |
| 339 class ReactionDirection(Enum): | |
| 340 Unknown = "" | |
| 341 Direct = "_F" | |
| 342 Inverse = "_B" | |
| 343 | |
| 344 @classmethod | |
| 345 def fromDir(cls, s :str) -> "ReactionDirection": | |
| 346 # vvv as long as there's so few variants I actually condone the if spam: | |
| 347 if s == ReactionDirection.Direct.value: return ReactionDirection.Direct | |
| 348 if s == ReactionDirection.Inverse.value: return ReactionDirection.Inverse | |
| 349 return ReactionDirection.Unknown | |
| 350 | |
| 351 @classmethod | |
| 352 def fromReactionId(cls, reactionId :str) -> "ReactionDirection": | |
| 353 return ReactionDirection.fromDir(reactionId[-2:]) | |
| 354 | |
| 355 def getArrowBodyElementId(reactionId :str) -> str: | |
| 356 if reactionId.endswith("_RV"): reactionId = reactionId[:-3] #TODO: standardize _RV | |
| 357 elif ReactionDirection.fromReactionId(reactionId) is not ReactionDirection.Unknown: reactionId = reactionId[:-2] | |
| 358 return f"R_{reactionId}" | |
| 359 | |
| 360 def getArrowHeadElementId(reactionId :str) -> Tuple[str, str]: | |
| 361 """ | |
| 362 We attempt extracting the direction information from the provided reaction ID, if unsuccessful we provide the IDs of both directions. | |
| 363 | |
| 364 Args: | |
| 365 reactionId : the provided reaction ID. | |
| 366 | |
| 367 Returns: | |
| 368 Tuple[str, str]: either a single str ID for the correct arrow head followed by an empty string or both options to try. | |
| 369 """ | |
| 370 if reactionId.endswith("_RV"): reactionId = reactionId[:-3] #TODO: standardize _RV | |
| 371 elif ReactionDirection.fromReactionId(reactionId) is not ReactionDirection.Unknown: return reactionId[:-3:-1] + reactionId[:-2], "" | |
| 372 return f"F_{reactionId}", f"B_{reactionId}" | |
| 373 | |
| 374 class ArrowColor(Enum): | |
| 375 """ | |
| 376 Encodes possible arrow colors based on their meaning in the enrichment process. | |
| 377 """ | |
| 378 Invalid = "#BEBEBE" # gray, fold-change under treshold | |
| 379 UpRegulated = "#ecac68" # red, up-regulated reaction | |
| 380 DownRegulated = "#6495ed" # blue, down-regulated reaction | |
| 381 | |
| 382 UpRegulatedInv = "#FF0000" | |
| 383 # ^^^ different shade of red (actually orange), up-regulated net value for a reversible reaction with | |
| 384 # conflicting enrichment in the two directions. | |
| 385 | |
| 386 DownRegulatedInv = "#0000FF" | |
| 387 # ^^^ different shade of blue (actually purple), down-regulated net value for a reversible reaction with | |
| 388 # conflicting enrichment in the two directions. | |
| 389 | |
| 390 @classmethod | |
| 391 def fromFoldChangeSign(cls, foldChange :float, *, useAltColor = False) -> "ArrowColor": | |
| 392 colors = (cls.DownRegulated, cls.DownRegulatedInv) if foldChange < 0 else (cls.UpRegulated, cls.UpRegulatedInv) | |
| 393 return colors[useAltColor] | |
| 394 | |
| 395 def __str__(self) -> str: return self.value | |
| 396 | |
| 397 class Arrow: | |
| 398 """ | |
| 399 Models the properties of a reaction arrow that change based on enrichment. | |
| 400 """ | |
| 401 MIN_W = 2 | |
| 402 MAX_W = 12 | |
| 403 | |
| 404 def __init__(self, width :int, col: ArrowColor, *, isDashed = False) -> None: | |
| 405 """ | |
| 406 (Private) Initializes an instance of Arrow. | |
| 407 | |
| 408 Args: | |
| 409 width : width of the arrow, ideally to be kept within Arrow.MIN_W and Arrow.MAX_W (not enforced). | |
| 410 col : color of the arrow. | |
| 411 isDashed : whether the arrow should be dashed, meaning the associated pValue resulted not significant. | |
| 412 | |
| 413 Returns: | |
| 414 None : practically, a Arrow instance. | |
| 415 """ | |
| 416 self.w = width | |
| 417 self.col = col | |
| 418 self.dash = isDashed | |
| 419 | |
| 420 def applyTo(self, reactionId :str, metabMap :ET.ElementTree, styleStr :str) -> None: | |
| 421 if getElementById(reactionId, metabMap).map(lambda el : styleMapElement(el, styleStr)).isErr: | |
| 422 ERRORS.append(reactionId) | |
| 423 | |
| 424 def styleReactionElements(self, metabMap :ET.ElementTree, reactionId :str, *, mindReactionDir = True) -> None: | |
| 425 # If We're dealing with RAS data or in general don't care about the direction of the reaction we only style the arrow body | |
| 426 if not mindReactionDir: | |
| 427 return self.applyTo(getArrowBodyElementId(reactionId), metabMap, self.toStyleStr()) | |
| 428 | |
| 429 # Now we style the arrow head(s): | |
| 430 idOpt1, idOpt2 = getArrowHeadElementId(reactionId) | |
| 431 self.applyTo(idOpt1, metabMap, self.toStyleStr(downSizedForTips = True)) | |
| 432 if idOpt2: self.applyTo(idOpt2, metabMap, self.toStyleStr(downSizedForTips = True)) | |
| 433 | |
| 434 def getMapReactionId(self, reactionId :str, mindReactionDir :bool) -> str: | |
| 435 """ | |
| 436 Computes the reaction ID as encoded in the map for a given reaction ID from the dataset. | |
| 437 | |
| 438 Args: | |
| 439 reactionId: the reaction ID, as encoded in the dataset. | |
| 440 mindReactionDir: if True forward (F_) and backward (B_) directions will be encoded in the result. | |
| 441 | |
| 442 Returns: | |
| 443 str : the ID of an arrow's body or tips in the map. | |
| 444 """ | |
| 445 # we assume the reactionIds also don't encode reaction dir if they don't mind it when styling the map. | |
| 446 if not mindReactionDir: return "R_" + reactionId | |
| 447 | |
| 448 #TODO: this is clearly something we need to make consistent in RPS | |
| 449 return (reactionId[:-3:-1] + reactionId[:-2]) if reactionId[:-2] in ["_F", "_B"] else f"F_{reactionId}" # "Pyr_F" --> "F_Pyr" | |
| 450 | |
| 451 def toStyleStr(self, *, downSizedForTips = False) -> str: | |
| 452 """ | |
| 453 Collapses the styles of this Arrow into a str, ready to be applied as part of the "style" property on an svg element. | |
| 454 | |
| 455 Returns: | |
| 456 str : the styles string. | |
| 457 """ | |
| 458 width = self.w | |
| 459 if downSizedForTips: width *= 0.8 | |
| 460 return f";stroke:{self.col};stroke-width:{width};stroke-dasharray:{'5,5' if self.dash else 'none'}" | |
| 461 | |
| 462 # vvv These constants could be inside the class itself a static properties, but python | |
| 463 # was built by brainless organisms so here we are! | |
| 464 INVALID_ARROW = Arrow(Arrow.MIN_W, ArrowColor.Invalid) | |
| 465 INSIGNIFICANT_ARROW = Arrow(Arrow.MIN_W, ArrowColor.Invalid, isDashed = True) | |
| 466 | |
| 467 def applyRpsEnrichmentToMap(rpsEnrichmentRes :Dict[str, Union[Tuple[float, FoldChange], Tuple[float, FoldChange, float, float]]], metabMap :ET.ElementTree, maxNumericZScore :float) -> None: | |
| 468 """ | |
| 469 Applies RPS enrichment results to the provided metabolic map. | |
| 470 | |
| 471 Args: | |
| 472 rpsEnrichmentRes : RPS enrichment results. | |
| 473 metabMap : the metabolic map to edit. | |
| 474 maxNumericZScore : biggest finite z-score value found. | |
| 475 | |
| 476 Side effects: | |
| 477 metabMap : mut | |
| 478 | |
| 479 Returns: | |
| 480 None | |
| 481 """ | |
| 482 for reactionId, values in rpsEnrichmentRes.items(): | |
| 483 pValue = values[0] | |
| 484 foldChange = values[1] | |
| 485 z_score = values[2] | |
| 486 | |
| 487 if isinstance(foldChange, str): foldChange = float(foldChange) | |
| 488 if pValue >= ARGS.pValue: # pValue above tresh: dashed arrow | |
| 489 INSIGNIFICANT_ARROW.styleReactionElements(metabMap, reactionId) | |
| 490 continue | |
| 491 | |
| 492 if abs(foldChange) < (ARGS.fChange - 1) / (abs(ARGS.fChange) + 1): | |
| 493 INVALID_ARROW.styleReactionElements(metabMap, reactionId) | |
| 494 continue | |
| 495 | |
| 496 width = Arrow.MAX_W | |
| 497 if not math.isinf(foldChange): | |
| 498 try: width = max(abs(z_score * Arrow.MAX_W) / maxNumericZScore, Arrow.MIN_W) | |
| 499 except ZeroDivisionError: pass | |
| 500 | |
| 501 if not reactionId.endswith("_RV"): # RV stands for reversible reactions | |
| 502 Arrow(width, ArrowColor.fromFoldChangeSign(foldChange)).styleReactionElements(metabMap, reactionId) | |
| 503 continue | |
| 504 | |
| 505 reactionId = reactionId[:-3] # Remove "_RV" | |
| 506 | |
| 507 inversionScore = (values[3] < 0) + (values[4] < 0) # Compacts the signs of averages into 1 easy to check score | |
| 508 if inversionScore == 2: foldChange *= -1 | |
| 509 # ^^^ Style the inverse direction with the opposite sign netValue | |
| 510 | |
| 511 # If the score is 1 (opposite signs) we use alternative colors vvv | |
| 512 arrow = Arrow(width, ArrowColor.fromFoldChangeSign(foldChange, useAltColor = inversionScore == 1)) | |
| 513 | |
| 514 # vvv These 2 if statements can both be true and can both happen | |
| 515 if ARGS.net: # style arrow head(s): | |
| 516 arrow.styleReactionElements(metabMap, reactionId + ("_B" if inversionScore == 2 else "_F")) | |
| 517 | |
| 518 if not ARGS.using_RAS: # style arrow body | |
| 519 arrow.styleReactionElements(metabMap, reactionId, mindReactionDir = False) | |
| 520 | |
| 521 ############################ split class ###################################### | |
| 522 def split_class(classes :pd.DataFrame, resolve_rules :Dict[str, List[float]]) -> Dict[str, List[List[float]]]: | |
| 523 """ | |
| 524 Generates a :dict that groups together data from a :DataFrame based on classes the data is related to. | |
| 525 | |
| 526 Args: | |
| 527 classes : a :DataFrame of only string values, containing class information (rows) and keys to query the resolve_rules :dict | |
| 528 resolve_rules : a :dict containing :float data | |
| 529 | |
| 530 Returns: | |
| 531 dict : the dict with data grouped by class | |
| 532 | |
| 533 Side effects: | |
| 534 classes : mut | |
| 535 """ | |
| 536 class_pat :Dict[str, List[List[float]]] = {} | |
| 537 for i in range(len(classes)): | |
| 538 classe :str = classes.iloc[i, 1] | |
| 539 if pd.isnull(classe): continue | |
| 540 | |
| 541 l :List[List[float]] = [] | |
| 542 for j in range(i, len(classes)): | |
| 543 if classes.iloc[j, 1] == classe: | |
| 544 pat_id :str = classes.iloc[j, 0] | |
| 545 tmp = resolve_rules.get(pat_id, None) | |
| 546 if tmp != None: | |
| 547 l.append(tmp) | |
| 548 classes.iloc[j, 1] = None | |
| 549 | |
| 550 if l: | |
| 551 class_pat[classe] = list(map(list, zip(*l))) | |
| 552 continue | |
| 553 | |
| 554 utils.logWarning( | |
| 555 f"Warning: no sample found in class \"{classe}\", the class has been disregarded", ARGS.out_log) | |
| 556 | |
| 557 return class_pat | |
| 558 | |
| 559 ############################ conversion ############################################## | |
| 560 #conversion from svg to png | |
| 561 def svg_to_png_with_background(svg_path :utils.FilePath, png_path :utils.FilePath, dpi :int = 72, scale :int = 1, size :Optional[float] = None) -> None: | |
| 562 """ | |
| 563 Internal utility to convert an SVG to PNG (forced opaque) to aid in PDF conversion. | |
| 564 | |
| 565 Args: | |
| 566 svg_path : path to SVG file | |
| 567 png_path : path for new PNG file | |
| 568 dpi : dots per inch of the generated PNG | |
| 569 scale : scaling factor for the generated PNG, computed internally when a size is provided | |
| 570 size : final effective width of the generated PNG | |
| 571 | |
| 572 Returns: | |
| 573 None | |
| 574 """ | |
| 575 if size: | |
| 576 image = pyvips.Image.new_from_file(svg_path.show(), dpi=dpi, scale=1) | |
| 577 scale = size / image.width | |
| 578 image = image.resize(scale) | |
| 579 else: | |
| 580 image = pyvips.Image.new_from_file(svg_path.show(), dpi=dpi, scale=scale) | |
| 581 | |
| 582 white_background = pyvips.Image.black(image.width, image.height).new_from_image([255, 255, 255]) | |
| 583 white_background = white_background.affine([scale, 0, 0, scale]) | |
| 584 | |
| 585 if white_background.bands != image.bands: | |
| 586 white_background = white_background.extract_band(0) | |
| 587 | |
| 588 composite_image = white_background.composite2(image, 'over') | |
| 589 composite_image.write_to_file(png_path.show()) | |
| 590 | |
| 591 #funzione unica, lascio fuori i file e li passo in input | |
| 592 #conversion from png to pdf | |
| 593 def convert_png_to_pdf(png_file :utils.FilePath, pdf_file :utils.FilePath) -> None: | |
| 594 """ | |
| 595 Internal utility to convert a PNG to PDF to aid from SVG conversion. | |
| 596 | |
| 597 Args: | |
| 598 png_file : path to PNG file | |
| 599 pdf_file : path to new PDF file | |
| 600 | |
| 601 Returns: | |
| 602 None | |
| 603 """ | |
| 604 image = Image.open(png_file.show()) | |
| 605 image = image.convert("RGB") | |
| 606 image.save(pdf_file.show(), "PDF", resolution=100.0) | |
| 607 | |
| 608 #function called to reduce redundancy in the code | |
| 609 def convert_to_pdf(file_svg :utils.FilePath, file_png :utils.FilePath, file_pdf :utils.FilePath) -> None: | |
| 610 """ | |
| 611 Converts the SVG map at the provided path to PDF. | |
| 612 | |
| 613 Args: | |
| 614 file_svg : path to SVG file | |
| 615 file_png : path to PNG file | |
| 616 file_pdf : path to new PDF file | |
| 617 | |
| 618 Returns: | |
| 619 None | |
| 620 """ | |
| 621 svg_to_png_with_background(file_svg, file_png) | |
| 622 try: | |
| 623 convert_png_to_pdf(file_png, file_pdf) | |
| 624 print(f'PDF file {file_pdf.filePath} successfully generated.') | |
| 625 | |
| 626 except Exception as e: | |
| 627 raise utils.DataErr(file_pdf.show(), f'Error generating PDF file: {e}') | |
| 628 | |
| 629 ############################ map ############################################## | |
| 630 def buildOutputPath(dataset1Name :str, dataset2Name = "rest", *, details = "", ext :utils.FileFormat) -> utils.FilePath: | |
| 631 """ | |
| 632 Builds a FilePath instance from the names of confronted datasets ready to point to a location in the | |
| 633 "result/" folder, used by this tool for output files in collections. | |
| 634 | |
| 635 Args: | |
| 636 dataset1Name : _description_ | |
| 637 dataset2Name : _description_. Defaults to "rest". | |
| 638 details : _description_ | |
| 639 ext : _description_ | |
| 640 | |
| 641 Returns: | |
| 642 utils.FilePath : _description_ | |
| 643 """ | |
| 644 # This function returns a util data structure but is extremely specific to this module. | |
| 645 # RAS also uses collections as output and as such might benefit from a method like this, but I'd wait | |
| 646 # TODO: until a third tool with multiple outputs appears before porting this to utils. | |
| 647 return utils.FilePath( | |
| 648 f"{dataset1Name}_vs_{dataset2Name}" + (f" ({details})" if details else ""), | |
| 649 # ^^^ yes this string is built every time even if the form is the same for the same 2 datasets in | |
| 650 # all output files: I don't care, this was never the performance bottleneck of the tool and | |
| 651 # there is no other net gain in saving and re-using the built string. | |
| 652 ext, | |
| 653 prefix = "result") | |
| 654 | |
| 655 FIELD_NOT_AVAILABLE = '/' | |
| 656 def writeToCsv(rows: List[list], fieldNames :List[str], outPath :utils.FilePath) -> None: | |
| 657 fieldsAmt = len(fieldNames) | |
| 658 with open(outPath.show(), "w", newline = "") as fd: | |
| 659 writer = csv.DictWriter(fd, fieldnames = fieldNames, delimiter = '\t') | |
| 660 writer.writeheader() | |
| 661 | |
| 662 for row in rows: | |
| 663 sizeMismatch = fieldsAmt - len(row) | |
| 664 if sizeMismatch > 0: row.extend([FIELD_NOT_AVAILABLE] * sizeMismatch) | |
| 665 writer.writerow({ field : data for field, data in zip(fieldNames, row) }) | |
| 666 | |
| 667 OldEnrichedScores = Dict[str, List[Union[float, FoldChange]]] #TODO: try to use Tuple whenever possible | |
| 668 def writeTabularResult(enrichedScores : OldEnrichedScores, ras_enrichment: bool, outPath :utils.FilePath) -> None: | |
| 669 fieldNames = ["ids", "P_Value", "fold change"] | |
| 670 if not ras_enrichment: fieldNames.extend(["average_1", "average_2"]) | |
| 671 | |
| 672 writeToCsv([ [reactId] + values for reactId, values in enrichedScores.items() ], fieldNames, outPath) | |
| 673 | |
| 674 def temp_thingsInCommon(tmp :Dict[str, List[Union[float, FoldChange]]], core_map :ET.ElementTree, max_z_score :float, dataset1Name :str, dataset2Name = "rest", ras_enrichment = True) -> None: | |
| 675 # this function compiles the things always in common between comparison modes after enrichment. | |
| 676 # TODO: organize, name better. | |
| 677 writeTabularResult(tmp, ras_enrichment, buildOutputPath(dataset1Name, dataset2Name, details = "Tabular Result", ext = utils.FileFormat.TSV)) | |
| 678 | |
| 679 if ras_enrichment: | |
| 680 fix_map(tmp, core_map, ARGS.pValue, ARGS.fChange, max_z_score) | |
| 681 return | |
| 682 | |
| 683 for reactId, enrichData in tmp.items(): tmp[reactId] = tuple(enrichData) | |
| 684 applyRpsEnrichmentToMap(tmp, core_map, max_z_score) | |
| 685 | |
| 686 def computePValue(dataset1Data: List[float], dataset2Data: List[float]) -> Tuple[float, float]: | |
| 687 """ | |
| 688 Computes the statistical significance score (P-value) of the comparison between coherent data | |
| 689 from two datasets. The data is supposed to, in both datasets: | |
| 690 - be related to the same reaction ID; | |
| 691 - be ordered by sample, such that the item at position i in both lists is related to the | |
| 692 same sample or cell line. | |
| 693 | |
| 694 Args: | |
| 695 dataset1Data : data from the 1st dataset. | |
| 696 dataset2Data : data from the 2nd dataset. | |
| 697 | |
| 698 Returns: | |
| 699 tuple: (P-value, Z-score) | |
| 700 - P-value from a Kolmogorov-Smirnov test on the provided data. | |
| 701 - Z-score of the difference between means of the two datasets. | |
| 702 """ | |
| 703 # Perform Kolmogorov-Smirnov test | |
| 704 ks_statistic, p_value = st.ks_2samp(dataset1Data, dataset2Data) | |
| 705 | |
| 706 # Calculate means and standard deviations | |
| 707 mean1 = np.mean(dataset1Data) | |
| 708 mean2 = np.mean(dataset2Data) | |
| 709 std1 = np.std(dataset1Data, ddof=1) | |
| 710 std2 = np.std(dataset2Data, ddof=1) | |
| 711 | |
| 712 n1 = len(dataset1Data) | |
| 713 n2 = len(dataset2Data) | |
| 714 | |
| 715 # Calculate Z-score | |
| 716 z_score = (mean1 - mean2) / np.sqrt((std1**2 / n1) + (std2**2 / n2)) | |
| 717 | |
| 718 return p_value, z_score | |
| 719 | |
| 720 def compareDatasetPair(dataset1Data :List[List[float]], dataset2Data :List[List[float]], ids :List[str]) -> Tuple[Dict[str, List[Union[float, FoldChange]]], float]: | |
| 721 #TODO: the following code still suffers from "dumbvarnames-osis" | |
| 722 tmp :Dict[str, List[Union[float, FoldChange]]] = {} | |
| 723 count = 0 | |
| 724 max_z_score = 0 | |
| 725 | |
| 726 for l1, l2 in zip(dataset1Data, dataset2Data): | |
| 727 reactId = ids[count] | |
| 728 count += 1 | |
| 729 if not reactId: continue # we skip ids that have already been processed | |
| 730 | |
| 731 try: #TODO: identify the source of these errors and minimize code in the try block | |
| 732 reactDir = ReactionDirection.fromReactionId(reactId) | |
| 733 # Net score is computed only for reversible reactions when user wants it on arrow tips or when RAS datasets aren't used | |
| 734 if (ARGS.net or not ARGS.using_RAS) and reactDir is not ReactionDirection.Unknown: | |
| 735 try: position = ids.index(reactId[:-1] + ('B' if reactDir is ReactionDirection.Direct else 'F')) | |
| 736 except ValueError: continue # we look for the complementary id, if not found we skip | |
| 737 | |
| 738 nets1 = np.subtract(l1, dataset1Data[position]) | |
| 739 nets2 = np.subtract(l2, dataset2Data[position]) | |
| 740 | |
| 741 p_value, z_score = computePValue(nets1, nets2) | |
| 742 avg1 = sum(nets1) / len(nets1) | |
| 743 avg2 = sum(nets2) / len(nets2) | |
| 744 net = fold_change(avg1, avg2) | |
| 745 | |
| 746 if math.isnan(net): continue | |
| 747 tmp[reactId[:-1] + "RV"] = [p_value, net, z_score, avg1, avg2] | |
| 748 | |
| 749 # vvv complementary directional ids are set to None once processed if net is to be applied to tips | |
| 750 if ARGS.net: | |
| 751 ids[position] = None | |
| 752 continue | |
| 753 | |
| 754 # fallthrough is intended, regular scores need to be computed when tips aren't net but RAS datasets aren't used | |
| 755 p_value, z_score = computePValue(l1, l2) | |
| 756 avg = fold_change(sum(l1) / len(l1), sum(l2) / len(l2)) | |
| 757 if not isinstance(z_score, str) and max_z_score < abs(z_score): max_z_score = abs(z_score) | |
| 758 tmp[reactId] = [float(p_value), avg, z_score] | |
| 759 | |
| 760 except (TypeError, ZeroDivisionError): continue | |
| 761 | |
| 762 return tmp, max_z_score | |
| 763 | |
| 764 def computeEnrichment(metabMap :ET.ElementTree, class_pat :Dict[str, List[List[float]]], ids :List[str], *, fromRAS = True) -> None: | |
| 765 """ | |
| 766 Compares clustered data based on a given comparison mode and applies enrichment-based styling on the | |
| 767 provided metabolic map. | |
| 768 | |
| 769 Args: | |
| 770 metabMap : SVG map to modify. | |
| 771 class_pat : the clustered data. | |
| 772 ids : ids for data association. | |
| 773 fromRAS : whether the data to enrich consists of RAS scores. | |
| 774 | |
| 775 Returns: | |
| 776 None | |
| 777 | |
| 778 Raises: | |
| 779 sys.exit : if there are less than 2 classes for comparison | |
| 780 | |
| 781 Side effects: | |
| 782 metabMap : mut | |
| 783 ids : mut | |
| 784 """ | |
| 785 class_pat = { k.strip() : v for k, v in class_pat.items() } | |
| 786 #TODO: simplfy this stuff vvv and stop using sys.exit (raise the correct utils error) | |
| 787 if (not class_pat) or (len(class_pat.keys()) < 2): sys.exit('Execution aborted: classes provided for comparisons are less than two\n') | |
| 788 | |
| 789 if ARGS.comparison == "manyvsmany": | |
| 790 for i, j in it.combinations(class_pat.keys(), 2): | |
| 791 #TODO: these 2 functions are always called in pair and in this order and need common data, | |
| 792 # some clever refactoring would be appreciated. | |
| 793 comparisonDict, max_z_score = compareDatasetPair(class_pat.get(i), class_pat.get(j), ids) | |
| 794 temp_thingsInCommon(comparisonDict, metabMap, max_z_score, i, j, fromRAS) | |
| 795 | |
| 796 elif ARGS.comparison == "onevsrest": | |
| 797 for single_cluster in class_pat.keys(): | |
| 798 t :List[List[List[float]]] = [] | |
| 799 for k in class_pat.keys(): | |
| 800 if k != single_cluster: | |
| 801 t.append(class_pat.get(k)) | |
| 802 | |
| 803 rest :List[List[float]] = [] | |
| 804 for i in t: | |
| 805 rest = rest + i | |
| 806 | |
| 807 comparisonDict, max_z_score = compareDatasetPair(class_pat.get(single_cluster), rest, ids) | |
| 808 temp_thingsInCommon(comparisonDict, metabMap, max_z_score, single_cluster, fromRAS) | |
| 809 | |
| 810 elif ARGS.comparison == "onevsmany": | |
| 811 controlItems = class_pat.get(ARGS.control) | |
| 812 for otherDataset in class_pat.keys(): | |
| 813 if otherDataset == ARGS.control: continue | |
| 814 | |
| 815 comparisonDict, max_z_score = compareDatasetPair(controlItems, class_pat.get(otherDataset), ids) | |
| 816 temp_thingsInCommon(comparisonDict, metabMap, max_z_score, ARGS.control, otherDataset, fromRAS) | |
| 817 | |
| 818 def createOutputMaps(dataset1Name :str, dataset2Name :str, core_map :ET.ElementTree) -> None: | |
| 819 svgFilePath = buildOutputPath(dataset1Name, dataset2Name, details = "SVG Map", ext = utils.FileFormat.SVG) | |
| 820 utils.writeSvg(svgFilePath, core_map) | |
| 821 | |
| 822 if ARGS.generate_pdf: | |
| 823 pngPath = buildOutputPath(dataset1Name, dataset2Name, details = "PNG Map", ext = utils.FileFormat.PNG) | |
| 824 pdfPath = buildOutputPath(dataset1Name, dataset2Name, details = "PDF Map", ext = utils.FileFormat.PDF) | |
| 825 convert_to_pdf(svgFilePath, pngPath, pdfPath) | |
| 826 | |
| 827 if not ARGS.generate_svg: os.remove(svgFilePath.show()) | |
| 828 | |
| 829 ClassPat = Dict[str, List[List[float]]] | |
| 830 def getClassesAndIdsFromDatasets(datasetsPaths :List[str], datasetPath :str, classPath :str, names :List[str]) -> Tuple[List[str], ClassPat]: | |
| 831 # TODO: I suggest creating dicts with ids as keys instead of keeping class_pat and ids separate, | |
| 832 # for the sake of everyone's sanity. | |
| 833 class_pat :ClassPat = {} | |
| 834 if ARGS.option == 'datasets': | |
| 835 num = 1 #TODO: the dataset naming function could be a generator | |
| 836 for path, name in zip(datasetsPaths, names): | |
| 837 name = name_dataset(name, num) | |
| 838 resolve_rules_float, ids = getDatasetValues(path, name) | |
| 839 if resolve_rules_float != None: | |
| 840 class_pat[name] = list(map(list, zip(*resolve_rules_float.values()))) | |
| 841 | |
| 842 num += 1 | |
| 843 | |
| 844 elif ARGS.option == "dataset_class": | |
| 845 classes = read_dataset(classPath, "class") | |
| 846 classes = classes.astype(str) | |
| 847 | |
| 848 resolve_rules_float, ids = getDatasetValues(datasetPath, "Dataset Class (not actual name)") | |
| 849 if resolve_rules_float != None: class_pat = split_class(classes, resolve_rules_float) | |
| 850 | |
| 851 return ids, class_pat | |
| 852 #^^^ TODO: this could be a match statement over an enum, make it happen future marea dev with python 3.12! (it's why I kept the ifs) | |
| 853 | |
| 854 #TODO: create these damn args as FilePath objects | |
| 855 def getDatasetValues(datasetPath :str, datasetName :str) -> Tuple[ClassPat, List[str]]: | |
| 856 """ | |
| 857 Opens the dataset at the given path and extracts the values (expected nullable numerics) and the IDs. | |
| 858 | |
| 859 Args: | |
| 860 datasetPath : path to the dataset | |
| 861 datasetName (str): dataset name, used in error reporting | |
| 862 | |
| 863 Returns: | |
| 864 Tuple[ClassPat, List[str]]: values and IDs extracted from the dataset | |
| 865 """ | |
| 866 dataset = read_dataset(datasetPath, datasetName) | |
| 867 IDs = pd.Series.tolist(dataset.iloc[:, 0].astype(str)) | |
| 868 | |
| 869 dataset = dataset.drop(dataset.columns[0], axis = "columns").to_dict("list") | |
| 870 return { id : list(map(utils.Float("Dataset values, not an argument"), values)) for id, values in dataset.items() }, IDs | |
| 871 | |
| 872 ############################ MAIN ############################################# | |
| 873 def main() -> None: | |
| 874 """ | |
| 875 Initializes everything and sets the program in motion based on the fronted input arguments. | |
| 876 | |
| 877 Returns: | |
| 878 None | |
| 879 | |
| 880 Raises: | |
| 881 sys.exit : if a user-provided custom map is in the wrong format (ET.XMLSyntaxError, ET.XMLSchemaParseError) | |
| 882 """ | |
| 883 | |
| 884 global ARGS | |
| 885 ARGS = process_args() | |
| 886 | |
| 887 if os.path.isdir('result') == False: os.makedirs('result') | |
| 888 | |
| 889 core_map :ET.ElementTree = ARGS.choice_map.getMap( | |
| 890 ARGS.tool_dir, | |
| 891 utils.FilePath.fromStrPath(ARGS.custom_map) if ARGS.custom_map else None) | |
| 892 # TODO: ^^^ ugly but fine for now, the argument is None if the model isn't custom because no file was given. | |
| 893 # getMap will None-check the customPath and panic when the model IS custom but there's no file (good). A cleaner | |
| 894 # solution can be derived from my comment in FilePath.fromStrPath | |
| 895 | |
| 896 if ARGS.using_RAS: | |
| 897 ids, class_pat = getClassesAndIdsFromDatasets(ARGS.input_datas, ARGS.input_data, ARGS.input_class, ARGS.names) | |
| 898 computeEnrichment(core_map, class_pat, ids) | |
| 899 | |
| 900 if ARGS.using_RPS: | |
| 901 ids, class_pat = getClassesAndIdsFromDatasets(ARGS.input_datas_rps, ARGS.input_data_rps, ARGS.input_class_rps, ARGS.names_rps) | |
| 902 computeEnrichment(core_map, class_pat, ids, fromRAS = False) | |
| 903 | |
| 904 # create output files: TODO: this is the same comparison happening in "maps", find a better way to organize this | |
| 905 if ARGS.comparison == "manyvsmany": | |
| 906 for i, j in it.combinations(class_pat.keys(), 2): createOutputMaps(i, j, core_map) | |
| 907 return | |
| 908 | |
| 909 if ARGS.comparison == "onevsrest": | |
| 910 for single_cluster in class_pat.keys(): createOutputMaps(single_cluster, "rest", core_map) | |
| 911 return | |
| 912 | |
| 913 for otherDataset in class_pat.keys(): | |
| 914 if otherDataset != ARGS.control: createOutputMaps(i, j, core_map) | |
| 915 | |
| 916 if not ERRORS: return | |
| 917 utils.logWarning( | |
| 918 f"The following reaction IDs were mentioned in the dataset but weren't found in the map: {ERRORS}", | |
| 919 ARGS.out_log) | |
| 920 | |
| 921 print('Execution succeded') | |
| 922 | |
| 923 ############################################################################### | |
| 924 if __name__ == "__main__": | |
| 925 main() |
