Mercurial > repos > bimib > cobraxy
comparison COBRAxy/marea_cluster.py @ 4:41f35c2f0c7b draft
Uploaded
| author | luca_milaz |
|---|---|
| date | Wed, 18 Sep 2024 10:59:10 +0000 |
| parents | |
| children | 3fca9b568faf |
comparison
equal
deleted
inserted
replaced
| 3:1f3ac6fd9867 | 4:41f35c2f0c7b |
|---|---|
| 1 # -*- coding: utf-8 -*- | |
| 2 """ | |
| 3 Created on Mon Jun 3 19:51:00 2019 | |
| 4 @author: Narger | |
| 5 """ | |
| 6 | |
| 7 import sys | |
| 8 import argparse | |
| 9 import os | |
| 10 import numpy as np | |
| 11 import pandas as pd | |
| 12 from sklearn.datasets import make_blobs | |
| 13 from sklearn.cluster import KMeans, DBSCAN, AgglomerativeClustering | |
| 14 from sklearn.metrics import silhouette_samples, silhouette_score, cluster | |
| 15 import matplotlib | |
| 16 matplotlib.use('agg') | |
| 17 import matplotlib.pyplot as plt | |
| 18 import scipy.cluster.hierarchy as shc | |
| 19 import matplotlib.cm as cm | |
| 20 from typing import Optional, Dict, List | |
| 21 | |
| 22 ################################# process args ############################### | |
| 23 def process_args(args :List[str]) -> argparse.Namespace: | |
| 24 """ | |
| 25 Processes command-line arguments. | |
| 26 | |
| 27 Args: | |
| 28 args (list): List of command-line arguments. | |
| 29 | |
| 30 Returns: | |
| 31 Namespace: An object containing parsed arguments. | |
| 32 """ | |
| 33 parser = argparse.ArgumentParser(usage = '%(prog)s [options]', | |
| 34 description = 'process some value\'s' + | |
| 35 ' genes to create class.') | |
| 36 | |
| 37 parser.add_argument('-ol', '--out_log', | |
| 38 help = "Output log") | |
| 39 | |
| 40 parser.add_argument('-in', '--input', | |
| 41 type = str, | |
| 42 help = 'input dataset') | |
| 43 | |
| 44 parser.add_argument('-cy', '--cluster_type', | |
| 45 type = str, | |
| 46 choices = ['kmeans', 'dbscan', 'hierarchy'], | |
| 47 default = 'kmeans', | |
| 48 help = 'choose clustering algorythm') | |
| 49 | |
| 50 parser.add_argument('-k1', '--k_min', | |
| 51 type = int, | |
| 52 default = 2, | |
| 53 help = 'choose minimun cluster number to be generated') | |
| 54 | |
| 55 parser.add_argument('-k2', '--k_max', | |
| 56 type = int, | |
| 57 default = 7, | |
| 58 help = 'choose maximum cluster number to be generated') | |
| 59 | |
| 60 parser.add_argument('-el', '--elbow', | |
| 61 type = str, | |
| 62 default = 'false', | |
| 63 choices = ['true', 'false'], | |
| 64 help = 'choose if you want to generate an elbow plot for kmeans') | |
| 65 | |
| 66 parser.add_argument('-si', '--silhouette', | |
| 67 type = str, | |
| 68 default = 'false', | |
| 69 choices = ['true', 'false'], | |
| 70 help = 'choose if you want silhouette plots') | |
| 71 | |
| 72 parser.add_argument('-td', '--tool_dir', | |
| 73 type = str, | |
| 74 required = True, | |
| 75 help = 'your tool directory') | |
| 76 | |
| 77 parser.add_argument('-ms', '--min_samples', | |
| 78 type = float, | |
| 79 help = 'min samples for dbscan (optional)') | |
| 80 | |
| 81 parser.add_argument('-ep', '--eps', | |
| 82 type = float, | |
| 83 help = 'eps for dbscan (optional)') | |
| 84 | |
| 85 parser.add_argument('-bc', '--best_cluster', | |
| 86 type = str, | |
| 87 help = 'output of best cluster tsv') | |
| 88 | |
| 89 | |
| 90 | |
| 91 args = parser.parse_args() | |
| 92 return args | |
| 93 | |
| 94 ########################### warning ########################################### | |
| 95 def warning(s :str) -> None: | |
| 96 """ | |
| 97 Log a warning message to an output log file and print it to the console. | |
| 98 | |
| 99 Args: | |
| 100 s (str): The warning message to be logged and printed. | |
| 101 | |
| 102 Returns: | |
| 103 None | |
| 104 """ | |
| 105 args = process_args(sys.argv) | |
| 106 with open(args.out_log, 'a') as log: | |
| 107 log.write(s + "\n\n") | |
| 108 print(s) | |
| 109 | |
| 110 ########################## read dataset ###################################### | |
| 111 def read_dataset(dataset :str) -> pd.DataFrame: | |
| 112 """ | |
| 113 Read dataset from a CSV file and return it as a Pandas DataFrame. | |
| 114 | |
| 115 Args: | |
| 116 dataset (str): the path to the dataset to convert into a DataFrame | |
| 117 | |
| 118 Returns: | |
| 119 pandas.DataFrame: The dataset loaded as a Pandas DataFrame. | |
| 120 | |
| 121 Raises: | |
| 122 pandas.errors.EmptyDataError: If the dataset file is empty. | |
| 123 sys.exit: If the dataset file has the wrong format (e.g., fewer than 2 columns) | |
| 124 """ | |
| 125 try: | |
| 126 dataset = pd.read_csv(dataset, sep = '\t', header = 0) | |
| 127 except pd.errors.EmptyDataError: | |
| 128 sys.exit('Execution aborted: wrong format of dataset\n') | |
| 129 if len(dataset.columns) < 2: | |
| 130 sys.exit('Execution aborted: wrong format of dataset\n') | |
| 131 return dataset | |
| 132 | |
| 133 ############################ rewrite_input ################################### | |
| 134 def rewrite_input(dataset :pd.DataFrame) -> Dict[str, List[Optional[float]]]: | |
| 135 """ | |
| 136 Rewrite the dataset as a dictionary of lists instead of as a dictionary of dictionaries. | |
| 137 | |
| 138 Args: | |
| 139 dataset (pandas.DataFrame): The dataset to be rewritten. | |
| 140 | |
| 141 Returns: | |
| 142 dict: The rewritten dataset as a dictionary of lists. | |
| 143 """ | |
| 144 #Riscrivo il dataset come dizionario di liste, | |
| 145 #non come dizionario di dizionari | |
| 146 | |
| 147 dataset.pop('Reactions', None) | |
| 148 | |
| 149 for key, val in dataset.items(): | |
| 150 l = [] | |
| 151 for i in val: | |
| 152 if i == 'None': | |
| 153 l.append(None) | |
| 154 else: | |
| 155 l.append(float(i)) | |
| 156 | |
| 157 dataset[key] = l | |
| 158 | |
| 159 return dataset | |
| 160 | |
| 161 ############################## write to csv ################################## | |
| 162 def write_to_csv (dataset :pd.DataFrame, labels :List[str], name :str) -> None: | |
| 163 """ | |
| 164 Write dataset and predicted labels to a CSV file. | |
| 165 | |
| 166 Args: | |
| 167 dataset (pandas.DataFrame): The dataset to be written. | |
| 168 labels (list): The predicted labels for each data point. | |
| 169 name (str): The name of the output CSV file. | |
| 170 | |
| 171 Returns: | |
| 172 None | |
| 173 """ | |
| 174 #labels = predict | |
| 175 predict = [x+1 for x in labels] | |
| 176 | |
| 177 classe = (pd.DataFrame(list(zip(dataset.index, predict)))).astype(str) | |
| 178 | |
| 179 dest = name | |
| 180 classe.to_csv(dest, sep = '\t', index = False, | |
| 181 header = ['Patient_ID', 'Class']) | |
| 182 | |
| 183 ########################### trova il massimo in lista ######################## | |
| 184 def max_index (lista :List[int]) -> int: | |
| 185 """ | |
| 186 Find the index of the maximum value in a list. | |
| 187 | |
| 188 Args: | |
| 189 lista (list): The list in which we search for the index of the maximum value. | |
| 190 | |
| 191 Returns: | |
| 192 int: The index of the maximum value in the list. | |
| 193 """ | |
| 194 best = -1 | |
| 195 best_index = 0 | |
| 196 for i in range(len(lista)): | |
| 197 if lista[i] > best: | |
| 198 best = lista [i] | |
| 199 best_index = i | |
| 200 | |
| 201 return best_index | |
| 202 | |
| 203 ################################ kmeans ##################################### | |
| 204 def kmeans (k_min: int, k_max: int, dataset: pd.DataFrame, elbow: str, silhouette: str, best_cluster: str) -> None: | |
| 205 """ | |
| 206 Perform k-means clustering on the given dataset, which is an algorithm used to partition a dataset into groups (clusters) based on their characteristics. | |
| 207 The goal is to divide the data into homogeneous groups, where the elements within each group are similar to each other and different from the elements in other groups. | |
| 208 | |
| 209 Args: | |
| 210 k_min (int): The minimum number of clusters to consider. | |
| 211 k_max (int): The maximum number of clusters to consider. | |
| 212 dataset (pandas.DataFrame): The dataset to perform clustering on. | |
| 213 elbow (str): Whether to generate an elbow plot for kmeans ('true' or 'false'). | |
| 214 silhouette (str): Whether to generate silhouette plots ('true' or 'false'). | |
| 215 best_cluster (str): The file path to save the output of the best cluster. | |
| 216 | |
| 217 Returns: | |
| 218 None | |
| 219 """ | |
| 220 if not os.path.exists('clustering'): | |
| 221 os.makedirs('clustering') | |
| 222 | |
| 223 | |
| 224 if elbow == 'true': | |
| 225 elbow = True | |
| 226 else: | |
| 227 elbow = False | |
| 228 | |
| 229 if silhouette == 'true': | |
| 230 silhouette = True | |
| 231 else: | |
| 232 silhouette = False | |
| 233 | |
| 234 range_n_clusters = [i for i in range(k_min, k_max+1)] | |
| 235 distortions = [] | |
| 236 scores = [] | |
| 237 all_labels = [] | |
| 238 | |
| 239 clusterer = KMeans(n_clusters=1, random_state=10) | |
| 240 distortions.append(clusterer.fit(dataset).inertia_) | |
| 241 | |
| 242 | |
| 243 for n_clusters in range_n_clusters: | |
| 244 clusterer = KMeans(n_clusters=n_clusters, random_state=10) | |
| 245 cluster_labels = clusterer.fit_predict(dataset) | |
| 246 | |
| 247 all_labels.append(cluster_labels) | |
| 248 if n_clusters == 1: | |
| 249 silhouette_avg = 0 | |
| 250 else: | |
| 251 silhouette_avg = silhouette_score(dataset, cluster_labels) | |
| 252 scores.append(silhouette_avg) | |
| 253 distortions.append(clusterer.fit(dataset).inertia_) | |
| 254 | |
| 255 best = max_index(scores) + k_min | |
| 256 | |
| 257 for i in range(len(all_labels)): | |
| 258 prefix = '' | |
| 259 if (i + k_min == best): | |
| 260 prefix = '_BEST' | |
| 261 | |
| 262 write_to_csv(dataset, all_labels[i], 'clustering/kmeans_with_' + str(i + k_min) + prefix + '_clusters.tsv') | |
| 263 | |
| 264 | |
| 265 if (prefix == '_BEST'): | |
| 266 labels = all_labels[i] | |
| 267 predict = [x+1 for x in labels] | |
| 268 classe = (pd.DataFrame(list(zip(dataset.index, predict)))).astype(str) | |
| 269 classe.to_csv(best_cluster, sep = '\t', index = False, header = ['Patient_ID', 'Class']) | |
| 270 | |
| 271 | |
| 272 | |
| 273 | |
| 274 if silhouette: | |
| 275 silhouette_draw(dataset, all_labels[i], i + k_min, 'clustering/silhouette_with_' + str(i + k_min) + prefix + '_clusters.png') | |
| 276 | |
| 277 | |
| 278 if elbow: | |
| 279 elbow_plot(distortions, k_min,k_max) | |
| 280 | |
| 281 | |
| 282 | |
| 283 | |
| 284 | |
| 285 ############################## elbow_plot #################################### | |
| 286 def elbow_plot (distortions: List[float], k_min: int, k_max: int) -> None: | |
| 287 """ | |
| 288 Generate an elbow plot to visualize the distortion for different numbers of clusters. | |
| 289 The elbow plot is a graphical tool used in clustering analysis to help identifying the appropriate number of clusters by looking for the point where the rate of decrease | |
| 290 in distortion sharply decreases, indicating the optimal balance between model complexity and clustering quality. | |
| 291 | |
| 292 Args: | |
| 293 distortions (list): List of distortion values for different numbers of clusters. | |
| 294 k_min (int): The minimum number of clusters considered. | |
| 295 k_max (int): The maximum number of clusters considered. | |
| 296 | |
| 297 Returns: | |
| 298 None | |
| 299 """ | |
| 300 plt.figure(0) | |
| 301 x = list(range(k_min, k_max + 1)) | |
| 302 x.insert(0, 1) | |
| 303 plt.plot(x, distortions, marker = 'o') | |
| 304 plt.xlabel('Number of clusters (k)') | |
| 305 plt.ylabel('Distortion') | |
| 306 s = 'clustering/elbow_plot.png' | |
| 307 fig = plt.gcf() | |
| 308 fig.set_size_inches(18.5, 10.5, forward = True) | |
| 309 fig.savefig(s, dpi=100) | |
| 310 | |
| 311 | |
| 312 ############################## silhouette plot ############################### | |
| 313 def silhouette_draw(dataset: pd.DataFrame, labels: List[str], n_clusters: int, path:str) -> None: | |
| 314 """ | |
| 315 Generate a silhouette plot for the clustering results. | |
| 316 The silhouette coefficient is a measure used to evaluate the quality of clusters obtained from a clustering algorithmand it quantifies how similar an object is to its own cluster compared to other clusters. | |
| 317 The silhouette coefficient ranges from -1 to 1, where: | |
| 318 - A value close to +1 indicates that the object is well matched to its own cluster and poorly matched to neighboring clusters. This implies that the object is in a dense, well-separated cluster. | |
| 319 - A value close to 0 indicates that the object is close to the decision boundary between two neighboring clusters. | |
| 320 - A value close to -1 indicates that the object may have been assigned to the wrong cluster. | |
| 321 | |
| 322 Args: | |
| 323 dataset (pandas.DataFrame): The dataset used for clustering. | |
| 324 labels (list): The cluster labels assigned to each data point. | |
| 325 n_clusters (int): The number of clusters. | |
| 326 path (str): The path to save the silhouette plot image. | |
| 327 | |
| 328 Returns: | |
| 329 None | |
| 330 """ | |
| 331 if n_clusters == 1: | |
| 332 return None | |
| 333 | |
| 334 silhouette_avg = silhouette_score(dataset, labels) | |
| 335 warning("For n_clusters = " + str(n_clusters) + | |
| 336 " The average silhouette_score is: " + str(silhouette_avg)) | |
| 337 | |
| 338 plt.close('all') | |
| 339 # Create a subplot with 1 row and 2 columns | |
| 340 fig, (ax1) = plt.subplots(1, 1) | |
| 341 | |
| 342 fig.set_size_inches(18, 7) | |
| 343 | |
| 344 # The 1st subplot is the silhouette plot | |
| 345 # The silhouette coefficient can range from -1, 1 but in this example all | |
| 346 # lie within [-0.1, 1] | |
| 347 ax1.set_xlim([-1, 1]) | |
| 348 # The (n_clusters+1)*10 is for inserting blank space between silhouette | |
| 349 # plots of individual clusters, to demarcate them clearly. | |
| 350 ax1.set_ylim([0, len(dataset) + (n_clusters + 1) * 10]) | |
| 351 | |
| 352 # Compute the silhouette scores for each sample | |
| 353 sample_silhouette_values = silhouette_samples(dataset, labels) | |
| 354 | |
| 355 y_lower = 10 | |
| 356 for i in range(n_clusters): | |
| 357 # Aggregate the silhouette scores for samples belonging to | |
| 358 # cluster i, and sort them | |
| 359 ith_cluster_silhouette_values = \ | |
| 360 sample_silhouette_values[labels == i] | |
| 361 | |
| 362 ith_cluster_silhouette_values.sort() | |
| 363 | |
| 364 size_cluster_i = ith_cluster_silhouette_values.shape[0] | |
| 365 y_upper = y_lower + size_cluster_i | |
| 366 | |
| 367 color = cm.nipy_spectral(float(i) / n_clusters) | |
| 368 ax1.fill_betweenx(np.arange(y_lower, y_upper), | |
| 369 0, ith_cluster_silhouette_values, | |
| 370 facecolor=color, edgecolor=color, alpha=0.7) | |
| 371 | |
| 372 # Label the silhouette plots with their cluster numbers at the middle | |
| 373 ax1.text(-0.05, y_lower + 0.5 * size_cluster_i, str(i)) | |
| 374 | |
| 375 # Compute the new y_lower for next plot | |
| 376 y_lower = y_upper + 10 # 10 for the 0 samples | |
| 377 | |
| 378 ax1.set_title("The silhouette plot for the various clusters.") | |
| 379 ax1.set_xlabel("The silhouette coefficient values") | |
| 380 ax1.set_ylabel("Cluster label") | |
| 381 | |
| 382 # The vertical line for average silhouette score of all the values | |
| 383 ax1.axvline(x=silhouette_avg, color="red", linestyle="--") | |
| 384 | |
| 385 ax1.set_yticks([]) # Clear the yaxis labels / ticks | |
| 386 ax1.set_xticks([-0.1, 0, 0.2, 0.4, 0.6, 0.8, 1]) | |
| 387 | |
| 388 | |
| 389 plt.suptitle(("Silhouette analysis for clustering on sample data " | |
| 390 "with n_clusters = " + str(n_clusters) + "\nAverage silhouette_score = " + str(silhouette_avg)), fontsize=12, fontweight='bold') | |
| 391 | |
| 392 | |
| 393 plt.savefig(path, bbox_inches='tight') | |
| 394 | |
| 395 ######################## dbscan ############################################## | |
| 396 def dbscan(dataset: pd.DataFrame, eps: float, min_samples: float, best_cluster: str) -> None: | |
| 397 """ | |
| 398 Perform DBSCAN clustering on the given dataset, which is a clustering algorithm that groups together closely packed points based on the notion of density. | |
| 399 | |
| 400 Args: | |
| 401 dataset (pandas.DataFrame): The dataset to be clustered. | |
| 402 eps (float): The maximum distance between two samples for one to be considered as in the neighborhood of the other. | |
| 403 min_samples (float): The number of samples in a neighborhood for a point to be considered as a core point. | |
| 404 best_cluster (str): The file path to save the output of the best cluster. | |
| 405 | |
| 406 Returns: | |
| 407 None | |
| 408 """ | |
| 409 if not os.path.exists('clustering'): | |
| 410 os.makedirs('clustering') | |
| 411 | |
| 412 if eps is not None: | |
| 413 clusterer = DBSCAN(eps = eps, min_samples = min_samples) | |
| 414 else: | |
| 415 clusterer = DBSCAN() | |
| 416 | |
| 417 clustering = clusterer.fit(dataset) | |
| 418 | |
| 419 core_samples_mask = np.zeros_like(clustering.labels_, dtype=bool) | |
| 420 core_samples_mask[clustering.core_sample_indices_] = True | |
| 421 labels = clustering.labels_ | |
| 422 | |
| 423 # Number of clusters in labels, ignoring noise if present. | |
| 424 n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0) | |
| 425 | |
| 426 | |
| 427 labels = labels | |
| 428 predict = [x+1 for x in labels] | |
| 429 classe = (pd.DataFrame(list(zip(dataset.index, predict)))).astype(str) | |
| 430 classe.to_csv(best_cluster, sep = '\t', index = False, header = ['Patient_ID', 'Class']) | |
| 431 | |
| 432 | |
| 433 ########################## hierachical ####################################### | |
| 434 def hierachical_agglomerative(dataset: pd.DataFrame, k_min: int, k_max: int, best_cluster: str, silhouette: str) -> None: | |
| 435 """ | |
| 436 Perform hierarchical agglomerative clustering on the given dataset. | |
| 437 | |
| 438 Args: | |
| 439 dataset (pandas.DataFrame): The dataset to be clustered. | |
| 440 k_min (int): The minimum number of clusters to consider. | |
| 441 k_max (int): The maximum number of clusters to consider. | |
| 442 best_cluster (str): The file path to save the output of the best cluster. | |
| 443 silhouette (str): Whether to generate silhouette plots ('true' or 'false'). | |
| 444 | |
| 445 Returns: | |
| 446 None | |
| 447 """ | |
| 448 if not os.path.exists('clustering'): | |
| 449 os.makedirs('clustering') | |
| 450 | |
| 451 plt.figure(figsize=(10, 7)) | |
| 452 plt.title("Customer Dendograms") | |
| 453 shc.dendrogram(shc.linkage(dataset, method='ward'), labels=dataset.index.values.tolist()) | |
| 454 fig = plt.gcf() | |
| 455 fig.savefig('clustering/dendogram.png', dpi=200) | |
| 456 | |
| 457 range_n_clusters = [i for i in range(k_min, k_max+1)] | |
| 458 | |
| 459 scores = [] | |
| 460 labels = [] | |
| 461 | |
| 462 n_classi = dataset.shape[0] | |
| 463 | |
| 464 for n_clusters in range_n_clusters: | |
| 465 cluster = AgglomerativeClustering(n_clusters=n_clusters, affinity='euclidean', linkage='ward') | |
| 466 cluster.fit_predict(dataset) | |
| 467 cluster_labels = cluster.labels_ | |
| 468 labels.append(cluster_labels) | |
| 469 write_to_csv(dataset, cluster_labels, 'clustering/hierarchical_with_' + str(n_clusters) + '_clusters.tsv') | |
| 470 | |
| 471 best = max_index(scores) + k_min | |
| 472 | |
| 473 for i in range(len(labels)): | |
| 474 prefix = '' | |
| 475 if (i + k_min == best): | |
| 476 prefix = '_BEST' | |
| 477 if silhouette == 'true': | |
| 478 silhouette_draw(dataset, labels[i], i + k_min, 'clustering/silhouette_with_' + str(i + k_min) + prefix + '_clusters.png') | |
| 479 | |
| 480 for i in range(len(labels)): | |
| 481 if (i + k_min == best): | |
| 482 labels = labels[i] | |
| 483 predict = [x+1 for x in labels] | |
| 484 classe = (pd.DataFrame(list(zip(dataset.index, predict)))).astype(str) | |
| 485 classe.to_csv(best_cluster, sep = '\t', index = False, header = ['Patient_ID', 'Class']) | |
| 486 | |
| 487 | |
| 488 ############################# main ########################################### | |
| 489 def main() -> None: | |
| 490 """ | |
| 491 Initializes everything and sets the program in motion based on the fronted input arguments. | |
| 492 | |
| 493 Returns: | |
| 494 None | |
| 495 """ | |
| 496 if not os.path.exists('clustering'): | |
| 497 os.makedirs('clustering') | |
| 498 | |
| 499 args = process_args(sys.argv) | |
| 500 | |
| 501 #Data read | |
| 502 | |
| 503 X = read_dataset(args.input) | |
| 504 X = pd.DataFrame.to_dict(X, orient='list') | |
| 505 X = rewrite_input(X) | |
| 506 X = pd.DataFrame.from_dict(X, orient = 'index') | |
| 507 | |
| 508 for i in X.columns: | |
| 509 tmp = X[i][0] | |
| 510 if tmp == None: | |
| 511 X = X.drop(columns=[i]) | |
| 512 | |
| 513 ## NAN TO HANLDE | |
| 514 | |
| 515 if args.k_max != None: | |
| 516 numero_classi = X.shape[0] | |
| 517 while args.k_max >= numero_classi: | |
| 518 err = 'Skipping k = ' + str(args.k_max) + ' since it is >= number of classes of dataset' | |
| 519 warning(err) | |
| 520 args.k_max = args.k_max - 1 | |
| 521 | |
| 522 | |
| 523 if args.cluster_type == 'kmeans': | |
| 524 kmeans(args.k_min, args.k_max, X, args.elbow, args.silhouette, args.best_cluster) | |
| 525 | |
| 526 if args.cluster_type == 'dbscan': | |
| 527 dbscan(X, args.eps, args.min_samples, args.best_cluster) | |
| 528 | |
| 529 if args.cluster_type == 'hierarchy': | |
| 530 hierachical_agglomerative(X, args.k_min, args.k_max, args.best_cluster, args.silhouette) | |
| 531 | |
| 532 ############################################################################## | |
| 533 if __name__ == "__main__": | |
| 534 main() |
