Mercurial > repos > bimib > cobraxy
comparison COBRAxy/ras_to_bounds.py @ 4:41f35c2f0c7b draft
Uploaded
| author | luca_milaz |
|---|---|
| date | Wed, 18 Sep 2024 10:59:10 +0000 |
| parents | |
| children | fac6930e6385 |
comparison
equal
deleted
inserted
replaced
| 3:1f3ac6fd9867 | 4:41f35c2f0c7b |
|---|---|
| 1 import argparse | |
| 2 import utils.general_utils as utils | |
| 3 from typing import Optional, List | |
| 4 import os | |
| 5 import numpy as np | |
| 6 import pandas as pd | |
| 7 import cobra | |
| 8 import sys | |
| 9 import csv | |
| 10 from joblib import Parallel, delayed, cpu_count | |
| 11 | |
| 12 ################################# process args ############################### | |
| 13 def process_args(args :List[str]) -> argparse.Namespace: | |
| 14 """ | |
| 15 Processes command-line arguments. | |
| 16 | |
| 17 Args: | |
| 18 args (list): List of command-line arguments. | |
| 19 | |
| 20 Returns: | |
| 21 Namespace: An object containing parsed arguments. | |
| 22 """ | |
| 23 parser = argparse.ArgumentParser(usage = '%(prog)s [options]', | |
| 24 description = 'process some value\'s') | |
| 25 | |
| 26 parser.add_argument( | |
| 27 '-ms', '--model_selector', | |
| 28 type = utils.Model, default = utils.Model.ENGRO2, choices = [utils.Model.ENGRO2, utils.Model.Custom], | |
| 29 help = 'chose which type of model you want use') | |
| 30 | |
| 31 parser.add_argument("-mo", "--model", type = str, | |
| 32 help = "path to input file with custom rules, if provided") | |
| 33 | |
| 34 parser.add_argument("-mn", "--model_name", type = str, help = "custom mode name") | |
| 35 | |
| 36 parser.add_argument( | |
| 37 '-mes', '--medium_selector', | |
| 38 default = "allOpen", | |
| 39 help = 'chose which type of medium you want use') | |
| 40 | |
| 41 parser.add_argument("-meo", "--medium", type = str, | |
| 42 help = "path to input file with custom medium, if provided") | |
| 43 | |
| 44 parser.add_argument('-ol', '--out_log', | |
| 45 help = "Output log") | |
| 46 | |
| 47 parser.add_argument('-td', '--tool_dir', | |
| 48 type = str, | |
| 49 required = True, | |
| 50 help = 'your tool directory') | |
| 51 | |
| 52 parser.add_argument('-ir', '--input_ras', | |
| 53 type=str, | |
| 54 required = False, | |
| 55 help = 'input ras') | |
| 56 | |
| 57 parser.add_argument('-rs', '--ras_selector', | |
| 58 required = True, | |
| 59 type=utils.Bool("using_RAS"), | |
| 60 help = 'ras selector') | |
| 61 | |
| 62 ARGS = parser.parse_args() | |
| 63 return ARGS | |
| 64 | |
| 65 ########################### warning ########################################### | |
| 66 def warning(s :str) -> None: | |
| 67 """ | |
| 68 Log a warning message to an output log file and print it to the console. | |
| 69 | |
| 70 Args: | |
| 71 s (str): The warning message to be logged and printed. | |
| 72 | |
| 73 Returns: | |
| 74 None | |
| 75 """ | |
| 76 with open(ARGS.out_log, 'a') as log: | |
| 77 log.write(s + "\n\n") | |
| 78 print(s) | |
| 79 | |
| 80 ############################ dataset input #################################### | |
| 81 def read_dataset(data :str, name :str) -> pd.DataFrame: | |
| 82 """ | |
| 83 Read a dataset from a CSV file and return it as a pandas DataFrame. | |
| 84 | |
| 85 Args: | |
| 86 data (str): Path to the CSV file containing the dataset. | |
| 87 name (str): Name of the dataset, used in error messages. | |
| 88 | |
| 89 Returns: | |
| 90 pandas.DataFrame: DataFrame containing the dataset. | |
| 91 | |
| 92 Raises: | |
| 93 pd.errors.EmptyDataError: If the CSV file is empty. | |
| 94 sys.exit: If the CSV file has the wrong format, the execution is aborted. | |
| 95 """ | |
| 96 try: | |
| 97 dataset = pd.read_csv(data, sep = '\t', header = 0, engine='python') | |
| 98 except pd.errors.EmptyDataError: | |
| 99 sys.exit('Execution aborted: wrong format of ' + name + '\n') | |
| 100 if len(dataset.columns) < 2: | |
| 101 sys.exit('Execution aborted: wrong format of ' + name + '\n') | |
| 102 return dataset | |
| 103 | |
| 104 | |
| 105 def apply_ras_bounds(model, ras_row, rxns_ids): | |
| 106 """ | |
| 107 Adjust the bounds of reactions in the model based on RAS values. | |
| 108 | |
| 109 Args: | |
| 110 model (cobra.Model): The metabolic model to be modified. | |
| 111 ras_row (pd.Series): A row from a RAS DataFrame containing scaling factors for reaction bounds. | |
| 112 rxns_ids (list of str): List of reaction IDs to which the scaling factors will be applied. | |
| 113 | |
| 114 Returns: | |
| 115 None | |
| 116 """ | |
| 117 for reaction in rxns_ids: | |
| 118 if reaction in ras_row.index and pd.notna(ras_row[reaction]): | |
| 119 rxn = model.reactions.get_by_id(reaction) | |
| 120 scaling_factor = ras_row[reaction] | |
| 121 rxn.lower_bound *= scaling_factor | |
| 122 rxn.upper_bound *= scaling_factor | |
| 123 | |
| 124 def process_ras_cell(cellName, ras_row, model, rxns_ids, output_folder): | |
| 125 """ | |
| 126 Process a single RAS cell, apply bounds, and save the bounds to a CSV file. | |
| 127 | |
| 128 Args: | |
| 129 cellName (str): The name of the RAS cell (used for naming the output file). | |
| 130 ras_row (pd.Series): A row from a RAS DataFrame containing scaling factors for reaction bounds. | |
| 131 model (cobra.Model): The metabolic model to be modified. | |
| 132 rxns_ids (list of str): List of reaction IDs to which the scaling factors will be applied. | |
| 133 output_folder (str): Folder path where the output CSV file will be saved. | |
| 134 | |
| 135 Returns: | |
| 136 None | |
| 137 """ | |
| 138 model_new = model.copy() | |
| 139 apply_ras_bounds(model_new, ras_row, rxns_ids) | |
| 140 bounds = pd.DataFrame([(rxn.lower_bound, rxn.upper_bound) for rxn in model_new.reactions], index=rxns_ids, columns=["lower_bound", "upper_bound"]) | |
| 141 bounds.to_csv(output_folder + cellName + ".csv", sep='\t', index=True) | |
| 142 | |
| 143 def generate_bounds(model: cobra.Model, medium: dict, ras=None, output_folder='output/') -> pd.DataFrame: | |
| 144 """ | |
| 145 Generate reaction bounds for a metabolic model based on medium conditions and optional RAS adjustments. | |
| 146 | |
| 147 Args: | |
| 148 model (cobra.Model): The metabolic model for which bounds will be generated. | |
| 149 medium (dict): A dictionary where keys are reaction IDs and values are the medium conditions. | |
| 150 ras (pd.DataFrame, optional): A DataFrame with RAS scaling factors for different cell types. Defaults to None. | |
| 151 output_folder (str, optional): Folder path where output CSV files will be saved. Defaults to 'output/'. | |
| 152 | |
| 153 Returns: | |
| 154 pd.DataFrame: DataFrame containing the bounds of reactions in the model. | |
| 155 """ | |
| 156 rxns_ids = [rxn.id for rxn in model.reactions] | |
| 157 | |
| 158 # Set medium conditions | |
| 159 for reaction, value in medium.items(): | |
| 160 if value is not None: | |
| 161 model.reactions.get_by_id(reaction).lower_bound = -float(value) | |
| 162 | |
| 163 # Perform Flux Variability Analysis (FVA) | |
| 164 df_FVA = cobra.flux_analysis.flux_variability_analysis(model, fraction_of_optimum=0, processes=1).round(8) | |
| 165 | |
| 166 # Set FVA bounds | |
| 167 for reaction in rxns_ids: | |
| 168 rxn = model.reactions.get_by_id(reaction) | |
| 169 rxn.lower_bound = float(df_FVA.loc[reaction, "minimum"]) | |
| 170 rxn.upper_bound = float(df_FVA.loc[reaction, "maximum"]) | |
| 171 | |
| 172 if ras is not None: | |
| 173 Parallel(n_jobs=cpu_count())(delayed(process_ras_cell)(cellName, ras_row, model, rxns_ids, output_folder) for cellName, ras_row in ras.iterrows()) | |
| 174 else: | |
| 175 model_new = model.copy() | |
| 176 apply_ras_bounds(model_new, pd.Series([1]*len(rxns_ids), index=rxns_ids), rxns_ids) | |
| 177 bounds = pd.DataFrame([(rxn.lower_bound, rxn.upper_bound) for rxn in model_new.reactions], index=rxns_ids, columns=["lower_bound", "upper_bound"]) | |
| 178 bounds.to_csv(output_folder + "bounds.csv", sep='\t', index=True) | |
| 179 | |
| 180 | |
| 181 ############################# main ########################################### | |
| 182 def main() -> None: | |
| 183 """ | |
| 184 Initializes everything and sets the program in motion based on the fronted input arguments. | |
| 185 | |
| 186 Returns: | |
| 187 None | |
| 188 """ | |
| 189 if not os.path.exists('ras_to_bounds'): | |
| 190 os.makedirs('ras_to_bounds') | |
| 191 | |
| 192 | |
| 193 global ARGS | |
| 194 ARGS = process_args(sys.argv) | |
| 195 | |
| 196 ARGS.output_folder = 'ras_to_bounds/' | |
| 197 | |
| 198 if(ARGS.ras_selector == True): | |
| 199 ras = read_dataset(ARGS.input_ras, "ras dataset") | |
| 200 ras.replace("None", None, inplace=True) | |
| 201 ras.set_index("Reactions", drop=True, inplace=True) | |
| 202 ras = ras.T | |
| 203 ras = ras.astype(float) | |
| 204 | |
| 205 model_type :utils.Model = ARGS.model_selector | |
| 206 if model_type is utils.Model.Custom: | |
| 207 model = model_type.getCOBRAmodel(customPath = utils.FilePath.fromStrPath(ARGS.model), customExtension = utils.FilePath.fromStrPath(ARGS.model_name).ext) | |
| 208 else: | |
| 209 model = model_type.getCOBRAmodel(toolDir=ARGS.tool_dir) | |
| 210 | |
| 211 if(ARGS.medium_selector == "Custom"): | |
| 212 medium = read_dataset(ARGS.medium, "medium dataset") | |
| 213 medium.set_index(medium.columns[0], inplace=True) | |
| 214 medium = medium.astype(float) | |
| 215 medium = medium[medium.columns[0]].to_dict() | |
| 216 else: | |
| 217 df_mediums = pd.read_csv(ARGS.tool_dir + "/local/medium/medium.csv", index_col = 0) | |
| 218 ARGS.medium_selector = ARGS.medium_selector.replace("_", " ") | |
| 219 medium = df_mediums[[ARGS.medium_selector]] | |
| 220 medium = medium[ARGS.medium_selector].to_dict() | |
| 221 | |
| 222 if(ARGS.ras_selector == True): | |
| 223 generate_bounds(model, medium, ras = ras, output_folder=ARGS.output_folder) | |
| 224 else: | |
| 225 generate_bounds(model, medium, output_folder=ARGS.output_folder) | |
| 226 | |
| 227 pass | |
| 228 | |
| 229 ############################################################################## | |
| 230 if __name__ == "__main__": | |
| 231 main() |
