Mercurial > repos > bimib > cobraxy
comparison COBRAxy/rps_generator.py @ 4:41f35c2f0c7b draft
Uploaded
| author | luca_milaz | 
|---|---|
| date | Wed, 18 Sep 2024 10:59:10 +0000 | 
| parents | |
| children | 3fca9b568faf | 
   comparison
  equal
  deleted
  inserted
  replaced
| 3:1f3ac6fd9867 | 4:41f35c2f0c7b | 
|---|---|
| 1 import re | |
| 2 import sys | |
| 3 import csv | |
| 4 import math | |
| 5 import argparse | |
| 6 | |
| 7 import numpy as np | |
| 8 import pickle as pk | |
| 9 import pandas as pd | |
| 10 | |
| 11 from enum import Enum | |
| 12 from typing import Optional, List, Dict, Tuple | |
| 13 | |
| 14 import utils.general_utils as utils | |
| 15 import utils.reaction_parsing as reactionUtils | |
| 16 | |
| 17 ########################## argparse ########################################## | |
| 18 ARGS :argparse.Namespace | |
| 19 def process_args() -> argparse.Namespace: | |
| 20 """ | |
| 21 Processes command-line arguments. | |
| 22 | |
| 23 Args: | |
| 24 args (list): List of command-line arguments. | |
| 25 | |
| 26 Returns: | |
| 27 Namespace: An object containing parsed arguments. | |
| 28 """ | |
| 29 parser = argparse.ArgumentParser(usage = '%(prog)s [options]', | |
| 30 description = 'process some value\'s'+ | |
| 31 ' abundances and reactions to create RPS scores.') | |
| 32 parser.add_argument('-rc', '--reaction_choice', | |
| 33 type = str, | |
| 34 default = 'default', | |
| 35 choices = ['default','custom'], | |
| 36 help = 'chose which type of reaction dataset you want use') | |
| 37 parser.add_argument('-cm', '--custom', | |
| 38 type = str, | |
| 39 help='your dataset if you want custom reactions') | |
| 40 parser.add_argument('-td', '--tool_dir', | |
| 41 type = str, | |
| 42 required = True, | |
| 43 help = 'your tool directory') | |
| 44 parser.add_argument('-ol', '--out_log', | |
| 45 help = "Output log") | |
| 46 parser.add_argument('-id', '--input', | |
| 47 type = str, | |
| 48 help = 'input dataset') | |
| 49 parser.add_argument('-rp', '--rps_output', | |
| 50 type = str, | |
| 51 required = True, | |
| 52 help = 'rps output') | |
| 53 | |
| 54 args = parser.parse_args() | |
| 55 return args | |
| 56 | |
| 57 ############################ dataset name ##################################### | |
| 58 def name_dataset(name_data :str, count :int) -> str: | |
| 59 """ | |
| 60 Produces a unique name for a dataset based on what was provided by the user. The default name for any dataset is "Dataset", thus if the user didn't change it this function appends f"_{count}" to make it unique. | |
| 61 | |
| 62 Args: | |
| 63 name_data : name associated with the dataset (from frontend input params) | |
| 64 count : counter from 1 to make these names unique (external) | |
| 65 | |
| 66 Returns: | |
| 67 str : the name made unique | |
| 68 """ | |
| 69 if str(name_data) == 'Dataset': | |
| 70 return str(name_data) + '_' + str(count) | |
| 71 else: | |
| 72 return str(name_data) | |
| 73 | |
| 74 | |
| 75 ############################ get_abund_data #################################### | |
| 76 def get_abund_data(dataset: pd.DataFrame, cell_line_index:int) -> Optional[pd.Series]: | |
| 77 """ | |
| 78 Extracts abundance data and turns it into a series for a specific cell line from the dataset, which rows are | |
| 79 metabolites and columns are cell lines. | |
| 80 | |
| 81 Args: | |
| 82 dataset (pandas.DataFrame): The DataFrame containing abundance data for all cell lines and metabolites. | |
| 83 cell_line_index (int): The index of the cell line of interest in the dataset. | |
| 84 | |
| 85 Returns: | |
| 86 pd.Series or None: A series containing abundance values for the specified cell line. | |
| 87 The name of the series is the name of the cell line. | |
| 88 Returns None if the cell index is invalid. | |
| 89 """ | |
| 90 if cell_line_index < 0 or cell_line_index >= len(dataset.index): | |
| 91 print(f"Errore: This cell line index: '{cell_line_index}' is not valid.") | |
| 92 return None | |
| 93 | |
| 94 cell_line_name = dataset.columns[cell_line_index] | |
| 95 abundances_series = dataset[cell_line_name][1:] | |
| 96 | |
| 97 return abundances_series | |
| 98 | |
| 99 | |
| 100 ############################ clean_metabolite_name #################################### | |
| 101 def clean_metabolite_name(name :str) -> str: | |
| 102 """ | |
| 103 Removes some characters from a metabolite's name, provided as input, and makes it lowercase in order to simplify | |
| 104 the search of a match in the dictionary of synonyms. | |
| 105 | |
| 106 Args: | |
| 107 name : the metabolite's name, as given in the dataset. | |
| 108 | |
| 109 Returns: | |
| 110 str : a new string with the cleaned name. | |
| 111 """ | |
| 112 return "".join(ch for ch in name if ch not in ",;-_'([{ }])").lower() | |
| 113 | |
| 114 | |
| 115 ############################ get_metabolite_id #################################### | |
| 116 def get_metabolite_id(name :str, syn_dict :Dict[str, List[str]]) -> str: | |
| 117 """ | |
| 118 Looks through a dictionary of synonyms to find a match for a given metabolite's name. | |
| 119 | |
| 120 Args: | |
| 121 name : the metabolite's name, as given in the dataset. | |
| 122 syn_dict : the dictionary of synonyms, using unique identifiers as keys and lists of clean synonyms as values. | |
| 123 | |
| 124 Returns: | |
| 125 str : the internal :str unique identifier of that metabolite, used in all other parts of the model in use. | |
| 126 An empty string is returned if a match isn't found. | |
| 127 """ | |
| 128 name = clean_metabolite_name(name) | |
| 129 for id, synonyms in syn_dict.items(): | |
| 130 if name in synonyms: return id | |
| 131 | |
| 132 return "" | |
| 133 | |
| 134 ############################ check_missing_metab #################################### | |
| 135 def check_missing_metab(reactions: Dict[str, Dict[str, int]], dataset_by_rows: Dict[str, List[float]], cell_lines_amt :int) -> List[str]: | |
| 136 """ | |
| 137 Check for missing metabolites in the abundances dictionary compared to the reactions dictionary and update abundances accordingly. | |
| 138 | |
| 139 Parameters: | |
| 140 reactions (dict): A dictionary representing reactions where keys are reaction names and values are dictionaries containing metabolite names as keys and stoichiometric coefficients as values. | |
| 141 dataset_by_rows (dict): A dictionary representing abundances where keys are metabolite names and values are their corresponding abundances for all cell lines. | |
| 142 cell_lines_amt : amount of cell lines, needed to add a new list of abundances for missing metabolites. | |
| 143 | |
| 144 Returns: | |
| 145 list[str] : list of metabolite names that were missing in the original abundances dictionary and thus their aboundances were set to 1. | |
| 146 | |
| 147 Side effects: | |
| 148 dataset_by_rows : mut | |
| 149 """ | |
| 150 missing_list = [] | |
| 151 for reaction in reactions.values(): | |
| 152 for metabolite in reaction.keys(): | |
| 153 if metabolite not in dataset_by_rows: | |
| 154 dataset_by_rows[metabolite] = [1] * cell_lines_amt | |
| 155 missing_list.append(metabolite) | |
| 156 | |
| 157 return missing_list | |
| 158 | |
| 159 ############################ calculate_rps #################################### | |
| 160 def calculate_rps(reactions: Dict[str, Dict[str, int]], abundances: Dict[str, float], black_list: List[str], missing_list: List[str]) -> Dict[str, float]: | |
| 161 """ | |
| 162 Calculate the Reaction Propensity scores (RPS) based on the availability of reaction substrates, for (ideally) each input model reaction and for each sample. | |
| 163 The score is computed as the product of the concentrations of the reacting substances, with each concentration raised to a power equal to its stoichiometric coefficient | |
| 164 for each reaction using the provided coefficient and abundance values. | |
| 165 | |
| 166 Parameters: | |
| 167 reactions (dict): A dictionary representing reactions where keys are reaction names and values are dictionaries containing metabolite names as keys and stoichiometric coefficients as values. | |
| 168 abundances (dict): A dictionary representing metabolite abundances where keys are metabolite names and values are their corresponding abundances. | |
| 169 black_list (list): A list containing metabolite names that should be excluded from the RPS calculation. | |
| 170 missing_list (list): A list containing metabolite names that were missing in the original abundances dictionary and thus their values were set to 1. | |
| 171 | |
| 172 Returns: | |
| 173 dict: A dictionary containing Reaction Propensity Scores (RPS) where keys are reaction names and values are the corresponding RPS scores. | |
| 174 """ | |
| 175 rps_scores = {} | |
| 176 | |
| 177 for reaction_name, substrates in reactions.items(): | |
| 178 total_contribution = 1 | |
| 179 metab_significant = False | |
| 180 for metabolite, stoichiometry in substrates.items(): | |
| 181 temp = 1 if math.isnan(abundances[metabolite]) else abundances[metabolite] | |
| 182 if metabolite not in black_list and metabolite not in missing_list: | |
| 183 metab_significant = True | |
| 184 total_contribution *= temp ** stoichiometry | |
| 185 | |
| 186 rps_scores[reaction_name] = total_contribution if metab_significant else math.nan | |
| 187 | |
| 188 return rps_scores | |
| 189 | |
| 190 | |
| 191 ############################ rps_for_cell_lines #################################### | |
| 192 def rps_for_cell_lines(dataset: List[List[str]], reactions: Dict[str, Dict[str, int]], black_list: List[str], syn_dict: Dict[str, List[str]]) -> None: | |
| 193 """ | |
| 194 Calculate Reaction Propensity Scores (RPS) for each cell line represented in the dataframe and creates an output file. | |
| 195 | |
| 196 Parameters: | |
| 197 dataset : the dataset's data, by rows | |
| 198 reactions (dict): A dictionary representing reactions where keys are reaction names and values are dictionaries containing metabolite names as keys and stoichiometric coefficients as values. | |
| 199 black_list (list): A list containing metabolite names that should be excluded from the RPS calculation. | |
| 200 syn_dict (dict): A dictionary where keys are general metabolite names and values are lists of possible synonyms. | |
| 201 | |
| 202 Returns: | |
| 203 None | |
| 204 """ | |
| 205 cell_lines = dataset[0][1:] | |
| 206 abundances_dict = {} | |
| 207 | |
| 208 translationIsApplied = ARGS.reaction_choice == "default" | |
| 209 for row in dataset[1:]: | |
| 210 id = get_metabolite_id(row[0], syn_dict) if translationIsApplied else row[0] | |
| 211 if id: abundances_dict[id] = list(map(utils.Float(), row[1:])) | |
| 212 | |
| 213 missing_list = check_missing_metab(reactions, abundances_dict, len((cell_lines))) | |
| 214 | |
| 215 rps_scores :Dict[Dict[str, float]] = {} | |
| 216 for pos, cell_line_name in enumerate(cell_lines): | |
| 217 abundances = { metab : abundances[pos] for metab, abundances in abundances_dict.items() } | |
| 218 rps_scores[cell_line_name] = calculate_rps(reactions, abundances, black_list, missing_list) | |
| 219 | |
| 220 df = pd.DataFrame.from_dict(rps_scores) | |
| 221 df.rename(columns={'Unnamed: 0': 'Reactions'}, inplace=True) | |
| 222 df.to_csv(ARGS.rps_output, sep = '\t', na_rep = "None", index = False) | |
| 223 | |
| 224 ############################ main #################################### | |
| 225 def main() -> None: | |
| 226 """ | |
| 227 Initializes everything and sets the program in motion based on the fronted input arguments. | |
| 228 | |
| 229 Returns: | |
| 230 None | |
| 231 """ | |
| 232 global ARGS | |
| 233 ARGS = process_args() | |
| 234 | |
| 235 # TODO:use utils functions vvv | |
| 236 with open(ARGS.tool_dir + '/local/pickle files/black_list.pickle', 'rb') as bl: | |
| 237 black_list = pk.load(bl) | |
| 238 | |
| 239 with open(ARGS.tool_dir + '/local/pickle files/synonyms.pickle', 'rb') as sd: | |
| 240 syn_dict = pk.load(sd) | |
| 241 | |
| 242 dataset = utils.readCsv(utils.FilePath.fromStrPath(ARGS.input), '\t', skipHeader = False) | |
| 243 | |
| 244 if ARGS.reaction_choice == 'default': | |
| 245 reactions = pk.load(open(ARGS.tool_dir + '/local/pickle files/reactions.pickle', 'rb')) | |
| 246 | |
| 247 elif ARGS.reaction_choice == 'custom': | |
| 248 reactions = reactionUtils.parse_custom_reactions(ARGS.custom) | |
| 249 | |
| 250 rps_for_cell_lines(dataset, reactions, black_list, syn_dict) | |
| 251 print('Execution succeded') | |
| 252 | |
| 253 ############################################################################## | |
| 254 if __name__ == "__main__": | |
| 255 main() | 
