Mercurial > repos > bimib > cobraxy
comparison COBRAxy/utils/general_utils.py @ 411:6b015d3184ab draft
Uploaded
| author | francesco_lapi |
|---|---|
| date | Mon, 08 Sep 2025 21:07:34 +0000 |
| parents | 71850bdf9e1e |
| children | bdf4630ac1eb |
comparison
equal
deleted
inserted
replaced
| 410:d660c5b03c14 | 411:6b015d3184ab |
|---|---|
| 15 | 15 |
| 16 import zipfile | 16 import zipfile |
| 17 import gzip | 17 import gzip |
| 18 import bz2 | 18 import bz2 |
| 19 from io import StringIO | 19 from io import StringIO |
| 20 import rule_parsing as rulesUtils | |
| 21 import reaction_parsing as reactionUtils | |
| 20 | 22 |
| 21 | 23 |
| 22 | 24 |
| 23 class ValueErr(Exception): | 25 class ValueErr(Exception): |
| 24 def __init__(self, param_name, expected, actual): | 26 def __init__(self, param_name, expected, actual): |
| 979 except Exception as e: | 981 except Exception as e: |
| 980 validation['growth_rate'] = None | 982 validation['growth_rate'] = None |
| 981 validation['status'] = f"Error: {e}" | 983 validation['status'] = f"Error: {e}" |
| 982 | 984 |
| 983 return validation | 985 return validation |
| 986 | |
| 987 | |
| 988 ################################- DATA GENERATION -################################ | |
| 989 ReactionId = str | |
| 990 def generate_rules(model: cobra.Model, *, asParsed = True) -> Union[Dict[ReactionId, rulesUtils.OpList], Dict[ReactionId, str]]: | |
| 991 """ | |
| 992 Generates a dictionary mapping reaction ids to rules from the model. | |
| 993 | |
| 994 Args: | |
| 995 model : the model to derive data from. | |
| 996 asParsed : if True parses the rules to an optimized runtime format, otherwise leaves them as strings. | |
| 997 | |
| 998 Returns: | |
| 999 Dict[ReactionId, rulesUtils.OpList] : the generated dictionary of parsed rules. | |
| 1000 Dict[ReactionId, str] : the generated dictionary of raw rules. | |
| 1001 """ | |
| 1002 # Is the below approach convoluted? yes | |
| 1003 # Ok but is it inefficient? probably | |
| 1004 # Ok but at least I don't have to repeat the check at every rule (I'm clinically insane) | |
| 1005 _ruleGetter = lambda reaction : reaction.gene_reaction_rule | |
| 1006 ruleExtractor = (lambda reaction : | |
| 1007 rulesUtils.parseRuleToNestedList(_ruleGetter(reaction))) if asParsed else _ruleGetter | |
| 1008 | |
| 1009 return { | |
| 1010 reaction.id : ruleExtractor(reaction) | |
| 1011 for reaction in model.reactions | |
| 1012 if reaction.gene_reaction_rule } | |
| 1013 | |
| 1014 def generate_reactions(model :cobra.Model, *, asParsed = True) -> Dict[ReactionId, str]: | |
| 1015 """ | |
| 1016 Generates a dictionary mapping reaction ids to reaction formulas from the model. | |
| 1017 | |
| 1018 Args: | |
| 1019 model : the model to derive data from. | |
| 1020 asParsed : if True parses the reactions to an optimized runtime format, otherwise leaves them as they are. | |
| 1021 | |
| 1022 Returns: | |
| 1023 Dict[ReactionId, str] : the generated dictionary. | |
| 1024 """ | |
| 1025 | |
| 1026 unparsedReactions = { | |
| 1027 reaction.id : reaction.reaction | |
| 1028 for reaction in model.reactions | |
| 1029 if reaction.reaction | |
| 1030 } | |
| 1031 | |
| 1032 if not asParsed: return unparsedReactions | |
| 1033 | |
| 1034 return reactionUtils.create_reaction_dict(unparsedReactions) | |
| 1035 | |
| 1036 def get_medium(model:cobra.Model) -> pd.DataFrame: | |
| 1037 trueMedium=[] | |
| 1038 for r in model.reactions: | |
| 1039 positiveCoeff=0 | |
| 1040 for m in r.metabolites: | |
| 1041 if r.get_coefficient(m.id)>0: | |
| 1042 positiveCoeff=1; | |
| 1043 if (positiveCoeff==0 and r.lower_bound<0): | |
| 1044 trueMedium.append(r.id) | |
| 1045 | |
| 1046 df_medium = pd.DataFrame() | |
| 1047 df_medium["reaction"] = trueMedium | |
| 1048 return df_medium | |
| 1049 | |
| 1050 def generate_bounds(model:cobra.Model) -> pd.DataFrame: | |
| 1051 | |
| 1052 rxns = [] | |
| 1053 for reaction in model.reactions: | |
| 1054 rxns.append(reaction.id) | |
| 1055 | |
| 1056 bounds = pd.DataFrame(columns = ["lower_bound", "upper_bound"], index=rxns) | |
| 1057 | |
| 1058 for reaction in model.reactions: | |
| 1059 bounds.loc[reaction.id] = [reaction.lower_bound, reaction.upper_bound] | |
| 1060 return bounds | |
| 1061 | |
| 1062 | |
| 1063 | |
| 1064 def generate_compartments(model: cobra.Model) -> pd.DataFrame: | |
| 1065 """ | |
| 1066 Generates a DataFrame containing compartment information for each reaction. | |
| 1067 Creates columns for each compartment position (Compartment_1, Compartment_2, etc.) | |
| 1068 | |
| 1069 Args: | |
| 1070 model: the COBRA model to extract compartment data from. | |
| 1071 | |
| 1072 Returns: | |
| 1073 pd.DataFrame: DataFrame with ReactionID and compartment columns | |
| 1074 """ | |
| 1075 pathway_data = [] | |
| 1076 | |
| 1077 # First pass: determine the maximum number of pathways any reaction has | |
| 1078 max_pathways = 0 | |
| 1079 reaction_pathways = {} | |
| 1080 | |
| 1081 for reaction in model.reactions: | |
| 1082 # Get unique pathways from all metabolites in the reaction | |
| 1083 if type(reaction.annotation['pathways']) == list: | |
| 1084 reaction_pathways[reaction.id] = reaction.annotation['pathways'] | |
| 1085 max_pathways = max(max_pathways, len(reaction.annotation['pathways'])) | |
| 1086 else: | |
| 1087 reaction_pathways[reaction.id] = [reaction.annotation['pathways']] | |
| 1088 | |
| 1089 # Create column names for pathways | |
| 1090 pathway_columns = [f"Pathway_{i+1}" for i in range(max_pathways)] | |
| 1091 | |
| 1092 # Second pass: create the data | |
| 1093 for reaction_id, pathways in reaction_pathways.items(): | |
| 1094 row = {"ReactionID": reaction_id} | |
| 1095 | |
| 1096 # Fill pathway columns | |
| 1097 for i in range(max_pathways): | |
| 1098 col_name = pathway_columns[i] | |
| 1099 if i < len(pathways): | |
| 1100 row[col_name] = pathways[i] | |
| 1101 else: | |
| 1102 row[col_name] = None # or "" if you prefer empty strings | |
| 1103 | |
| 1104 pathway_data.append(row) | |
| 1105 | |
| 1106 return pd.DataFrame(pathway_data) |
