Mercurial > repos > bimib > cobraxy
comparison COBRAxy/flux_to_map.py @ 293:7b8d9de81a86 draft
Uploaded
| author | francesco_lapi |
|---|---|
| date | Thu, 15 May 2025 18:23:52 +0000 |
| parents | e87aeb3a33cd |
| children | 626b6d1de075 |
comparison
equal
deleted
inserted
replaced
| 292:31bc171a6ba5 | 293:7b8d9de81a86 |
|---|---|
| 13 from PIL import Image | 13 from PIL import Image |
| 14 import os | 14 import os |
| 15 import copy | 15 import copy |
| 16 import argparse | 16 import argparse |
| 17 import pyvips | 17 import pyvips |
| 18 from PIL import Image, ImageDraw, ImageFont | 18 from PIL import Image |
| 19 from typing import Tuple, Union, Optional, List, Dict | 19 from typing import Tuple, Union, Optional, List, Dict |
| 20 import matplotlib.pyplot as plt | 20 import matplotlib.pyplot as plt |
| 21 | 21 |
| 22 ERRORS = [] | 22 ERRORS = [] |
| 23 ########################## argparse ########################################## | 23 ########################## argparse ########################################## |
| 48 | 48 |
| 49 #Computation details: | 49 #Computation details: |
| 50 parser.add_argument( | 50 parser.add_argument( |
| 51 '-co', '--comparison', | 51 '-co', '--comparison', |
| 52 type = str, | 52 type = str, |
| 53 default = '1vs1', | 53 default = 'manyvsmany', |
| 54 choices = ['manyvsmany', 'onevsrest', 'onevsmany']) | 54 choices = ['manyvsmany', 'onevsrest', 'onevsmany']) |
| 55 | |
| 56 parser.add_argument( | |
| 57 '-te' ,'--test', | |
| 58 type = str, | |
| 59 default = 'ks', | |
| 60 choices = ['ks', 'ttest_p', 'ttest_ind', 'wilcoxon', 'mw'], | |
| 61 help = 'Statistical test to use (default: %(default)s)') | |
| 55 | 62 |
| 56 parser.add_argument( | 63 parser.add_argument( |
| 57 '-pv' ,'--pValue', | 64 '-pv' ,'--pValue', |
| 58 type = float, | 65 type = float, |
| 59 default = 0.1, | 66 default = 0.1, |
| 128 | 135 |
| 129 args :argparse.Namespace = parser.parse_args(args) | 136 args :argparse.Namespace = parser.parse_args(args) |
| 130 args.net = True # TODO SICCOME I FLUSSI POSSONO ESSERE ANCHE NEGATIVI SONO SEMPRE CONSIDERATI NETTI | 137 args.net = True # TODO SICCOME I FLUSSI POSSONO ESSERE ANCHE NEGATIVI SONO SEMPRE CONSIDERATI NETTI |
| 131 | 138 |
| 132 return args | 139 return args |
| 133 | 140 |
| 134 ############################ dataset input #################################### | 141 ############################ dataset input #################################### |
| 135 def read_dataset(data :str, name :str) -> pd.DataFrame: | 142 def read_dataset(data :str, name :str) -> pd.DataFrame: |
| 136 """ | 143 """ |
| 137 Tries to read the dataset from its path (data) as a tsv and turns it into a DataFrame. | 144 Tries to read the dataset from its path (data) as a tsv and turns it into a DataFrame. |
| 138 | 145 |
| 193 return '-INF' | 200 return '-INF' |
| 194 elif avg2 == 0: | 201 elif avg2 == 0: |
| 195 return 'INF' | 202 return 'INF' |
| 196 else: # (threshold_F_C - 1) / (abs(threshold_F_C) + 1) con threshold_F_C > 1 | 203 else: # (threshold_F_C - 1) / (abs(threshold_F_C) + 1) con threshold_F_C > 1 |
| 197 return (avg1 - avg2) / (abs(avg1) + abs(avg2)) | 204 return (avg1 - avg2) / (abs(avg1) + abs(avg2)) |
| 198 | |
| 199 def fix_style(l :str, col :Optional[str], width :str, dash :str) -> str: | |
| 200 """ | |
| 201 Produces a "fixed" style string to assign to a reaction arrow in the SVG map, assigning style properties to the corresponding values passed as input params. | |
| 202 | |
| 203 Args: | |
| 204 l : current style string of an SVG element | |
| 205 col : new value for the "stroke" style property | |
| 206 width : new value for the "stroke-width" style property | |
| 207 dash : new value for the "stroke-dasharray" style property | |
| 208 | |
| 209 Returns: | |
| 210 str : the fixed style string | |
| 211 """ | |
| 212 tmp = l.split(';') | |
| 213 flag_col = False | |
| 214 flag_width = False | |
| 215 flag_dash = False | |
| 216 for i in range(len(tmp)): | |
| 217 if tmp[i].startswith('stroke:'): | |
| 218 tmp[i] = 'stroke:' + col | |
| 219 flag_col = True | |
| 220 if tmp[i].startswith('stroke-width:'): | |
| 221 tmp[i] = 'stroke-width:' + width | |
| 222 flag_width = True | |
| 223 if tmp[i].startswith('stroke-dasharray:'): | |
| 224 tmp[i] = 'stroke-dasharray:' + dash | |
| 225 flag_dash = True | |
| 226 if not flag_col: | |
| 227 tmp.append('stroke:' + col) | |
| 228 if not flag_width: | |
| 229 tmp.append('stroke-width:' + width) | |
| 230 if not flag_dash: | |
| 231 tmp.append('stroke-dasharray:' + dash) | |
| 232 return ';'.join(tmp) | |
| 233 | |
| 234 # The type of d values is collapsed, losing precision, because the dict containst lists instead of tuples, please fix! | |
| 235 def fix_map(d :Dict[str, List[Union[float, FoldChange]]], core_map :ET.ElementTree, threshold_P_V :float, threshold_F_C :float, max_z_score :float) -> ET.ElementTree: | |
| 236 """ | |
| 237 Edits the selected SVG map based on the p-value and fold change data (d) and some significance thresholds also passed as inputs. | |
| 238 | |
| 239 Args: | |
| 240 d : dictionary mapping a p-value and a fold-change value (values) to each reaction ID as encoded in the SVG map (keys) | |
| 241 core_map : SVG map to modify | |
| 242 threshold_P_V : threshold for a p-value to be considered significant | |
| 243 threshold_F_C : threshold for a fold change value to be considered significant | |
| 244 max_z_score : highest z-score (absolute value) | |
| 245 | |
| 246 Returns: | |
| 247 ET.ElementTree : the modified core_map | |
| 248 | |
| 249 Side effects: | |
| 250 core_map : mut | |
| 251 """ | |
| 252 maxT = 12 | |
| 253 minT = 2 | |
| 254 grey = '#BEBEBE' | |
| 255 blue = '#6495ed' # azzurrino | |
| 256 red = '#ecac68' # arancione | |
| 257 for el in core_map.iter(): | |
| 258 el_id = str(el.get('id')) | |
| 259 if el_id.startswith('R_'): | |
| 260 tmp = d.get(el_id[2:]) | |
| 261 if tmp != None: | |
| 262 p_val :float = tmp[0] | |
| 263 f_c = tmp[1] | |
| 264 z_score = tmp[2] | |
| 265 | |
| 266 if math.isnan(p_val) or (isinstance(f_c, float) and math.isnan(f_c)): continue | |
| 267 | |
| 268 if p_val < threshold_P_V: | |
| 269 if not isinstance(f_c, str): | |
| 270 if abs(f_c) < ((threshold_F_C - 1) / (abs(threshold_F_C) + 1)): # | |
| 271 col = grey | |
| 272 width = str(minT) | |
| 273 else: | |
| 274 if f_c < 0: | |
| 275 col = blue | |
| 276 elif f_c > 0: | |
| 277 col = red | |
| 278 width = str(max((abs(z_score) * maxT) / max_z_score, minT)) | |
| 279 else: | |
| 280 if f_c == '-INF': | |
| 281 col = blue | |
| 282 elif f_c == 'INF': | |
| 283 col = red | |
| 284 width = str(maxT) | |
| 285 dash = 'none' | |
| 286 else: | |
| 287 dash = '5,5' | |
| 288 col = grey | |
| 289 width = str(minT) | |
| 290 el.set('style', fix_style(el.get('style', ""), col, width, dash)) | |
| 291 return core_map | |
| 292 | 205 |
| 293 def getElementById(reactionId :str, metabMap :ET.ElementTree) -> utils.Result[ET.Element, utils.Result.ResultErr]: | 206 def getElementById(reactionId :str, metabMap :ET.ElementTree) -> utils.Result[ET.Element, utils.Result.ResultErr]: |
| 294 """ | 207 """ |
| 295 Finds any element in the given map with the given ID. ID uniqueness in an svg file is recommended but | 208 Finds any element in the given map with the given ID. ID uniqueness in an svg file is recommended but |
| 296 not enforced, if more than one element with the exact ID is found only the first will be returned. | 209 not enforced, if more than one element with the exact ID is found only the first will be returned. |
| 494 INVALID_ARROW.styleReactionElements(metabMap, reactionId, mindReactionDir = False) | 407 INVALID_ARROW.styleReactionElements(metabMap, reactionId, mindReactionDir = False) |
| 495 | 408 |
| 496 continue | 409 continue |
| 497 | 410 |
| 498 width = Arrow.MAX_W | 411 width = Arrow.MAX_W |
| 499 if not math.isinf(foldChange): | 412 if not math.isinf(z_score): |
| 500 try: | 413 try: |
| 501 width = max(abs(z_score * Arrow.MAX_W) / maxNumericZScore, Arrow.MIN_W) | 414 width = min( |
| 415 max(abs(z_score * Arrow.MAX_W) / maxNumericZScore, Arrow.MIN_W), | |
| 416 Arrow.MAX_W) | |
| 502 | 417 |
| 503 except ZeroDivisionError: pass | 418 except ZeroDivisionError: pass |
| 504 # TODO CHECK RV | 419 # TODO CHECK RV |
| 505 #if not reactionId.endswith("_RV"): # RV stands for reversible reactions | 420 #if not reactionId.endswith("_RV"): # RV stands for reversible reactions |
| 506 # Arrow(width, ArrowColor.fromFoldChangeSign(foldChange)).styleReactionElements(metabMap, reactionId) | 421 # Arrow(width, ArrowColor.fromFoldChangeSign(foldChange)).styleReactionElements(metabMap, reactionId) |
| 695 dataset1Data : data from the 1st dataset. | 610 dataset1Data : data from the 1st dataset. |
| 696 dataset2Data : data from the 2nd dataset. | 611 dataset2Data : data from the 2nd dataset. |
| 697 | 612 |
| 698 Returns: | 613 Returns: |
| 699 tuple: (P-value, Z-score) | 614 tuple: (P-value, Z-score) |
| 700 - P-value from a Kolmogorov-Smirnov test on the provided data. | 615 - P-value from the selected test on the provided data. |
| 701 - Z-score of the difference between means of the two datasets. | 616 - Z-score of the difference between means of the two datasets. |
| 702 """ | 617 """ |
| 703 # Perform Kolmogorov-Smirnov test | 618 |
| 704 ks_statistic, p_value = st.ks_2samp(dataset1Data, dataset2Data) | 619 match ARGS.test: |
| 620 case "ks": | |
| 621 # Perform Kolmogorov-Smirnov test | |
| 622 _, p_value = st.ks_2samp(dataset1Data, dataset2Data) | |
| 623 case "ttest_p": | |
| 624 # Perform t-test for paired samples | |
| 625 _, p_value = st.ttest_rel(dataset1Data, dataset2Data) | |
| 626 case "ttest_ind": | |
| 627 # Perform t-test for independent samples | |
| 628 _, p_value = st.ttest_ind(dataset1Data, dataset2Data) | |
| 629 case "wilcoxon": | |
| 630 # Perform Wilcoxon signed-rank test | |
| 631 _, p_value = st.wilcoxon(dataset1Data, dataset2Data) | |
| 632 case "mw": | |
| 633 # Perform Mann-Whitney U test | |
| 634 _, p_value = st.mannwhitneyu(dataset1Data, dataset2Data) | |
| 705 | 635 |
| 706 # Calculate means and standard deviations | 636 # Calculate means and standard deviations |
| 707 mean1 = np.nanmean(dataset1Data) | 637 mean1 = np.nanmean(dataset1Data) |
| 708 mean2 = np.nanmean(dataset2Data) | 638 mean2 = np.nanmean(dataset2Data) |
| 709 std1 = np.nanstd(dataset1Data, ddof=1) | 639 std1 = np.nanstd(dataset1Data, ddof=1) |
| 730 try: | 660 try: |
| 731 p_value, z_score = computePValue(l1, l2) | 661 p_value, z_score = computePValue(l1, l2) |
| 732 avg1 = sum(l1) / len(l1) | 662 avg1 = sum(l1) / len(l1) |
| 733 avg2 = sum(l2) / len(l2) | 663 avg2 = sum(l2) / len(l2) |
| 734 f_c = fold_change(avg1, avg2) | 664 f_c = fold_change(avg1, avg2) |
| 735 if not isinstance(z_score, str) and max_z_score < abs(z_score): max_z_score = abs(z_score) | 665 if np.isfinite(z_score) and max_z_score < abs(z_score): max_z_score = abs(z_score) |
| 736 | 666 |
| 737 tmp[reactId] = [float(p_value), f_c, z_score, avg1, avg2] | 667 tmp[reactId] = [float(p_value), f_c, z_score, avg1, avg2] |
| 738 except (TypeError, ZeroDivisionError): continue | 668 except (TypeError, ZeroDivisionError): continue |
| 739 | 669 |
| 740 return tmp, max_z_score | 670 return tmp, max_z_score |
| 813 | 743 |
| 814 elif ARGS.option == "dataset_class": | 744 elif ARGS.option == "dataset_class": |
| 815 classes = read_dataset(classPath, "class") | 745 classes = read_dataset(classPath, "class") |
| 816 classes = classes.astype(str) | 746 classes = classes.astype(str) |
| 817 resolve_rules_float, ids = getDatasetValues(datasetPath, "Dataset Class (not actual name)") | 747 resolve_rules_float, ids = getDatasetValues(datasetPath, "Dataset Class (not actual name)") |
| 818 #check if classes have mathc on ids | 748 #check if classes have match on ids |
| 819 if not all(classes.iloc[:, 0].isin(ids)): | 749 if not all(classes.iloc[:, 0].isin(ids)): |
| 820 utils.logWarning( | 750 utils.logWarning( |
| 821 "No match between classes and sample IDs", ARGS.out_log) | 751 "No match between classes and sample IDs", ARGS.out_log) |
| 822 if resolve_rules_float != None: class_pat = split_class(classes, resolve_rules_float) | 752 if resolve_rules_float != None: class_pat = split_class(classes, resolve_rules_float) |
| 823 | 753 |
| 886 dataset.index.name: ['LactGlc', 'LactGln', 'LactO2', 'GluGln'], | 816 dataset.index.name: ['LactGlc', 'LactGln', 'LactO2', 'GluGln'], |
| 887 **{col: [values['lact_glc'][i], values['lact_gln'][i], values['lact_o2'][i], values['glu_gln'][i]] | 817 **{col: [values['lact_glc'][i], values['lact_gln'][i], values['lact_o2'][i], values['glu_gln'][i]] |
| 888 for i, col in enumerate(dataset.columns)} | 818 for i, col in enumerate(dataset.columns)} |
| 889 }) | 819 }) |
| 890 | 820 |
| 891 print(new_rows) | 821 #print(new_rows) |
| 892 | 822 |
| 893 # Ritorna il dataset originale con le nuove righe | 823 # Ritorna il dataset originale con le nuove righe |
| 894 dataset.reset_index(inplace=True) | 824 dataset.reset_index(inplace=True) |
| 895 dataset = pd.concat([dataset, new_rows], ignore_index=True) | 825 dataset = pd.concat([dataset, new_rows], ignore_index=True) |
| 896 | 826 |
| 910 str: The color in hexadecimal format (e.g., '#ff0000' for red). | 840 str: The color in hexadecimal format (e.g., '#ff0000' for red). |
| 911 """ | 841 """ |
| 912 # Convert RGB values (0-1 range) to hexadecimal format | 842 # Convert RGB values (0-1 range) to hexadecimal format |
| 913 rgb = (np.array(rgb) * 255).astype(int) | 843 rgb = (np.array(rgb) * 255).astype(int) |
| 914 return '#{:02x}{:02x}{:02x}'.format(rgb[0], rgb[1], rgb[2]) | 844 return '#{:02x}{:02x}{:02x}'.format(rgb[0], rgb[1], rgb[2]) |
| 915 | |
| 916 | |
| 917 | 845 |
| 918 def save_colormap_image(min_value: float, max_value: float, path: utils.FilePath, colorMap:str="viridis"): | 846 def save_colormap_image(min_value: float, max_value: float, path: utils.FilePath, colorMap:str="viridis"): |
| 919 """ | 847 """ |
| 920 Create and save an image of the colormap showing the gradient and its range. | 848 Create and save an image of the colormap showing the gradient and its range. |
| 921 | 849 |
| 1058 pdfPath = utils.FilePath(f"PDF Map {map_type} - {key}", ext=utils.FileFormat.PDF, prefix=ARGS.output_path) | 986 pdfPath = utils.FilePath(f"PDF Map {map_type} - {key}", ext=utils.FileFormat.PDF, prefix=ARGS.output_path) |
| 1059 convert_to_pdf(svgFilePath, pngPath, pdfPath) | 987 convert_to_pdf(svgFilePath, pngPath, pdfPath) |
| 1060 if not ARGS.generate_svg: | 988 if not ARGS.generate_svg: |
| 1061 os.remove(svgFilePath.show()) | 989 os.remove(svgFilePath.show()) |
| 1062 | 990 |
| 1063 | |
| 1064 ############################ MAIN ############################################# | 991 ############################ MAIN ############################################# |
| 1065 def main(args:List[str] = None) -> None: | 992 def main(args:List[str] = None) -> None: |
| 1066 """ | 993 """ |
| 1067 Initializes everything and sets the program in motion based on the fronted input arguments. | 994 Initializes everything and sets the program in motion based on the fronted input arguments. |
| 1068 | 995 |
