comparison COBRAxy/ras_to_bounds_beta.py @ 418:919b5b71a61c draft

Uploaded
author francesco_lapi
date Tue, 09 Sep 2025 07:36:30 +0000
parents e8dd8dca9618
children 0877682fff48
comparison
equal deleted inserted replaced
417:e8dd8dca9618 418:919b5b71a61c
10 import sys 10 import sys
11 import csv 11 import csv
12 from joblib import Parallel, delayed, cpu_count 12 from joblib import Parallel, delayed, cpu_count
13 import utils.rule_parsing as rulesUtils 13 import utils.rule_parsing as rulesUtils
14 import utils.reaction_parsing as reactionUtils 14 import utils.reaction_parsing as reactionUtils
15 import utils.model_utils as modelUtils
15 16
16 # , medium 17 # , medium
17 18
18 ################################# process args ############################### 19 ################################# process args ###############################
19 def process_args(args :List[str] = None) -> argparse.Namespace: 20 def process_args(args :List[str] = None) -> argparse.Namespace:
149 if upper_bound!=0 and lower_bound!=0: 150 if upper_bound!=0 and lower_bound!=0:
150 new_bounds.loc[reaction, "lower_bound"] = valMin 151 new_bounds.loc[reaction, "lower_bound"] = valMin
151 new_bounds.loc[reaction, "upper_bound"] = valMax 152 new_bounds.loc[reaction, "upper_bound"] = valMax
152 return new_bounds 153 return new_bounds
153 154
154 ################################- DATA GENERATION -################################
155 ReactionId = str
156 def generate_rules(model: cobra.Model, *, asParsed = True) -> Union[Dict[ReactionId, rulesUtils.OpList], Dict[ReactionId, str]]:
157 """
158 Generates a dictionary mapping reaction ids to rules from the model.
159
160 Args:
161 model : the model to derive data from.
162 asParsed : if True parses the rules to an optimized runtime format, otherwise leaves them as strings.
163
164 Returns:
165 Dict[ReactionId, rulesUtils.OpList] : the generated dictionary of parsed rules.
166 Dict[ReactionId, str] : the generated dictionary of raw rules.
167 """
168 # Is the below approach convoluted? yes
169 # Ok but is it inefficient? probably
170 # Ok but at least I don't have to repeat the check at every rule (I'm clinically insane)
171 _ruleGetter = lambda reaction : reaction.gene_reaction_rule
172 ruleExtractor = (lambda reaction :
173 rulesUtils.parseRuleToNestedList(_ruleGetter(reaction))) if asParsed else _ruleGetter
174
175 return {
176 reaction.id : ruleExtractor(reaction)
177 for reaction in model.reactions
178 if reaction.gene_reaction_rule }
179
180 def generate_reactions(model :cobra.Model, *, asParsed = True) -> Dict[ReactionId, str]:
181 """
182 Generates a dictionary mapping reaction ids to reaction formulas from the model.
183
184 Args:
185 model : the model to derive data from.
186 asParsed : if True parses the reactions to an optimized runtime format, otherwise leaves them as they are.
187
188 Returns:
189 Dict[ReactionId, str] : the generated dictionary.
190 """
191
192 unparsedReactions = {
193 reaction.id : reaction.reaction
194 for reaction in model.reactions
195 if reaction.reaction
196 }
197
198 if not asParsed: return unparsedReactions
199
200 return reactionUtils.create_reaction_dict(unparsedReactions)
201
202 def get_medium(model:cobra.Model) -> pd.DataFrame:
203 trueMedium=[]
204 for r in model.reactions:
205 positiveCoeff=0
206 for m in r.metabolites:
207 if r.get_coefficient(m.id)>0:
208 positiveCoeff=1;
209 if (positiveCoeff==0 and r.lower_bound<0):
210 trueMedium.append(r.id)
211
212 df_medium = pd.DataFrame()
213 df_medium["reaction"] = trueMedium
214 return df_medium
215
216 def generate_bounds(model:cobra.Model) -> pd.DataFrame:
217
218 rxns = []
219 for reaction in model.reactions:
220 rxns.append(reaction.id)
221
222 bounds = pd.DataFrame(columns = ["lower_bound", "upper_bound"], index=rxns)
223
224 for reaction in model.reactions:
225 bounds.loc[reaction.id] = [reaction.lower_bound, reaction.upper_bound]
226 return bounds
227
228
229
230 def generate_compartments(model: cobra.Model) -> pd.DataFrame:
231 """
232 Generates a DataFrame containing compartment information for each reaction.
233 Creates columns for each compartment position (Compartment_1, Compartment_2, etc.)
234
235 Args:
236 model: the COBRA model to extract compartment data from.
237
238 Returns:
239 pd.DataFrame: DataFrame with ReactionID and compartment columns
240 """
241 pathway_data = []
242
243 # First pass: determine the maximum number of pathways any reaction has
244 max_pathways = 0
245 reaction_pathways = {}
246
247 for reaction in model.reactions:
248 # Get unique pathways from all metabolites in the reaction
249 if type(reaction.annotation['pathways']) == list:
250 reaction_pathways[reaction.id] = reaction.annotation['pathways']
251 max_pathways = max(max_pathways, len(reaction.annotation['pathways']))
252 else:
253 reaction_pathways[reaction.id] = [reaction.annotation['pathways']]
254
255 # Create column names for pathways
256 pathway_columns = [f"Pathway_{i+1}" for i in range(max_pathways)]
257
258 # Second pass: create the data
259 for reaction_id, pathways in reaction_pathways.items():
260 row = {"ReactionID": reaction_id}
261
262 # Fill pathway columns
263 for i in range(max_pathways):
264 col_name = pathway_columns[i]
265 if i < len(pathways):
266 row[col_name] = pathways[i]
267 else:
268 row[col_name] = None # or "" if you prefer empty strings
269
270 pathway_data.append(row)
271
272 return pd.DataFrame(pathway_data)
273 155
274 def save_model(model, filename, output_folder, file_format='csv'): 156 def save_model(model, filename, output_folder, file_format='csv'):
275 """ 157 """
276 Save a COBRA model to file in the specified format. 158 Save a COBRA model to file in the specified format.
277 159
290 try: 172 try:
291 if file_format == 'tabular' or file_format == 'csv': 173 if file_format == 'tabular' or file_format == 'csv':
292 # Special handling for tabular format using utils functions 174 # Special handling for tabular format using utils functions
293 filepath = os.path.join(output_folder, f"{filename}.csv") 175 filepath = os.path.join(output_folder, f"{filename}.csv")
294 176
295 rules = generate_rules(model, asParsed = False) 177 rules = modelUtils.generate_rules(model, asParsed = False)
296 reactions = generate_reactions(model, asParsed = False) 178 reactions = modelUtils.generate_reactions(model, asParsed = False)
297 bounds = generate_bounds(model) 179 bounds = modelUtils.generate_bounds(model)
298 medium = get_medium(model) 180 medium = modelUtils.get_medium(model)
299 181
300 try: 182 try:
301 compartments = utils.generate_compartments(model) 183 compartments = modelUtils.generate_compartments(model)
302 except: 184 except:
303 compartments = None 185 compartments = None
304 186
305 df_rules = pd.DataFrame(list(rules.items()), columns = ["ReactionID", "Rule"]) 187 df_rules = pd.DataFrame(list(rules.items()), columns = ["ReactionID", "Rule"])
306 df_reactions = pd.DataFrame(list(reactions.items()), columns = ["ReactionID", "Reaction"]) 188 df_reactions = pd.DataFrame(list(reactions.items()), columns = ["ReactionID", "Reaction"])