Mercurial > repos > bimib > cobraxy
comparison COBRAxy/utils/model_utils.py @ 418:919b5b71a61c draft
Uploaded
| author | francesco_lapi |
|---|---|
| date | Tue, 09 Sep 2025 07:36:30 +0000 |
| parents | |
| children | ed2c1f9e20ba |
comparison
equal
deleted
inserted
replaced
| 417:e8dd8dca9618 | 418:919b5b71a61c |
|---|---|
| 1 import os | |
| 2 import csv | |
| 3 import cobra | |
| 4 import pickle | |
| 5 import argparse | |
| 6 import pandas as pd | |
| 7 from typing import Optional, Tuple, Union, List, Dict | |
| 8 import utils.general_utils as utils | |
| 9 import utils.rule_parsing as rulesUtils | |
| 10 | |
| 11 ################################- DATA GENERATION -################################ | |
| 12 ReactionId = str | |
| 13 def generate_rules(model: cobra.Model, *, asParsed = True) -> Union[Dict[ReactionId, rulesUtils.OpList], Dict[ReactionId, str]]: | |
| 14 """ | |
| 15 Generates a dictionary mapping reaction ids to rules from the model. | |
| 16 | |
| 17 Args: | |
| 18 model : the model to derive data from. | |
| 19 asParsed : if True parses the rules to an optimized runtime format, otherwise leaves them as strings. | |
| 20 | |
| 21 Returns: | |
| 22 Dict[ReactionId, rulesUtils.OpList] : the generated dictionary of parsed rules. | |
| 23 Dict[ReactionId, str] : the generated dictionary of raw rules. | |
| 24 """ | |
| 25 # Is the below approach convoluted? yes | |
| 26 # Ok but is it inefficient? probably | |
| 27 # Ok but at least I don't have to repeat the check at every rule (I'm clinically insane) | |
| 28 _ruleGetter = lambda reaction : reaction.gene_reaction_rule | |
| 29 ruleExtractor = (lambda reaction : | |
| 30 rulesUtils.parseRuleToNestedList(_ruleGetter(reaction))) if asParsed else _ruleGetter | |
| 31 | |
| 32 return { | |
| 33 reaction.id : ruleExtractor(reaction) | |
| 34 for reaction in model.reactions | |
| 35 if reaction.gene_reaction_rule } | |
| 36 | |
| 37 def generate_reactions(model :cobra.Model, *, asParsed = True) -> Dict[ReactionId, str]: | |
| 38 """ | |
| 39 Generates a dictionary mapping reaction ids to reaction formulas from the model. | |
| 40 | |
| 41 Args: | |
| 42 model : the model to derive data from. | |
| 43 asParsed : if True parses the reactions to an optimized runtime format, otherwise leaves them as they are. | |
| 44 | |
| 45 Returns: | |
| 46 Dict[ReactionId, str] : the generated dictionary. | |
| 47 """ | |
| 48 | |
| 49 unparsedReactions = { | |
| 50 reaction.id : reaction.reaction | |
| 51 for reaction in model.reactions | |
| 52 if reaction.reaction | |
| 53 } | |
| 54 | |
| 55 if not asParsed: return unparsedReactions | |
| 56 | |
| 57 return reactionUtils.create_reaction_dict(unparsedReactions) | |
| 58 | |
| 59 def get_medium(model:cobra.Model) -> pd.DataFrame: | |
| 60 trueMedium=[] | |
| 61 for r in model.reactions: | |
| 62 positiveCoeff=0 | |
| 63 for m in r.metabolites: | |
| 64 if r.get_coefficient(m.id)>0: | |
| 65 positiveCoeff=1; | |
| 66 if (positiveCoeff==0 and r.lower_bound<0): | |
| 67 trueMedium.append(r.id) | |
| 68 | |
| 69 df_medium = pd.DataFrame() | |
| 70 df_medium["reaction"] = trueMedium | |
| 71 return df_medium | |
| 72 | |
| 73 def generate_bounds(model:cobra.Model) -> pd.DataFrame: | |
| 74 | |
| 75 rxns = [] | |
| 76 for reaction in model.reactions: | |
| 77 rxns.append(reaction.id) | |
| 78 | |
| 79 bounds = pd.DataFrame(columns = ["lower_bound", "upper_bound"], index=rxns) | |
| 80 | |
| 81 for reaction in model.reactions: | |
| 82 bounds.loc[reaction.id] = [reaction.lower_bound, reaction.upper_bound] | |
| 83 return bounds | |
| 84 | |
| 85 | |
| 86 | |
| 87 def generate_compartments(model: cobra.Model) -> pd.DataFrame: | |
| 88 """ | |
| 89 Generates a DataFrame containing compartment information for each reaction. | |
| 90 Creates columns for each compartment position (Compartment_1, Compartment_2, etc.) | |
| 91 | |
| 92 Args: | |
| 93 model: the COBRA model to extract compartment data from. | |
| 94 | |
| 95 Returns: | |
| 96 pd.DataFrame: DataFrame with ReactionID and compartment columns | |
| 97 """ | |
| 98 pathway_data = [] | |
| 99 | |
| 100 # First pass: determine the maximum number of pathways any reaction has | |
| 101 max_pathways = 0 | |
| 102 reaction_pathways = {} | |
| 103 | |
| 104 for reaction in model.reactions: | |
| 105 # Get unique pathways from all metabolites in the reaction | |
| 106 if type(reaction.annotation['pathways']) == list: | |
| 107 reaction_pathways[reaction.id] = reaction.annotation['pathways'] | |
| 108 max_pathways = max(max_pathways, len(reaction.annotation['pathways'])) | |
| 109 else: | |
| 110 reaction_pathways[reaction.id] = [reaction.annotation['pathways']] | |
| 111 | |
| 112 # Create column names for pathways | |
| 113 pathway_columns = [f"Pathway_{i+1}" for i in range(max_pathways)] | |
| 114 | |
| 115 # Second pass: create the data | |
| 116 for reaction_id, pathways in reaction_pathways.items(): | |
| 117 row = {"ReactionID": reaction_id} | |
| 118 | |
| 119 # Fill pathway columns | |
| 120 for i in range(max_pathways): | |
| 121 col_name = pathway_columns[i] | |
| 122 if i < len(pathways): | |
| 123 row[col_name] = pathways[i] | |
| 124 else: | |
| 125 row[col_name] = None # or "" if you prefer empty strings | |
| 126 | |
| 127 pathway_data.append(row) | |
| 128 | |
| 129 return pd.DataFrame(pathway_data) |
