comparison COBRAxy/flux_simulation_beta.py @ 410:d660c5b03c14 draft

Uploaded
author francesco_lapi
date Mon, 08 Sep 2025 17:33:52 +0000
parents
children 6b015d3184ab
comparison
equal deleted inserted replaced
409:71850bdf9e1e 410:d660c5b03c14
1 import argparse
2 import utils.general_utils as utils
3 from typing import Optional, List
4 import os
5 import numpy as np
6 import pandas as pd
7 import cobra
8 import utils.CBS_backend as CBS_backend
9 from joblib import Parallel, delayed, cpu_count
10 from cobra.sampling import OptGPSampler
11 import sys
12
13
14 ################################# process args ###############################
15 def process_args(args :List[str] = None) -> argparse.Namespace:
16 """
17 Processes command-line arguments.
18
19 Args:
20 args (list): List of command-line arguments.
21
22 Returns:
23 Namespace: An object containing parsed arguments.
24 """
25 parser = argparse.ArgumentParser(usage = '%(prog)s [options]',
26 description = 'process some value\'s')
27
28 parser.add_argument("-mo", "--model_upload", type = str,
29 help = "path to input file with custom rules, if provided")
30
31 parser.add_argument('-ol', '--out_log',
32 help = "Output log")
33
34 parser.add_argument('-td', '--tool_dir',
35 type = str,
36 required = True,
37 help = 'your tool directory')
38
39 parser.add_argument('-in', '--input',
40 required = True,
41 type=str,
42 help = 'inputs bounds')
43
44 parser.add_argument('-ni', '--names',
45 required = True,
46 type=str,
47 help = 'cell names')
48
49 parser.add_argument('-a', '--algorithm',
50 type = str,
51 choices = ['OPTGP', 'CBS'],
52 required = True,
53 help = 'choose sampling algorithm')
54
55 parser.add_argument('-th', '--thinning',
56 type = int,
57 default= 100,
58 required=False,
59 help = 'choose thinning')
60
61 parser.add_argument('-ns', '--n_samples',
62 type = int,
63 required = True,
64 help = 'choose how many samples')
65
66 parser.add_argument('-sd', '--seed',
67 type = int,
68 required = True,
69 help = 'seed')
70
71 parser.add_argument('-nb', '--n_batches',
72 type = int,
73 required = True,
74 help = 'choose how many batches')
75
76 parser.add_argument('-ot', '--output_type',
77 type = str,
78 required = True,
79 help = 'output type')
80
81 parser.add_argument('-ota', '--output_type_analysis',
82 type = str,
83 required = False,
84 help = 'output type analysis')
85
86 parser.add_argument('-idop', '--output_path',
87 type = str,
88 default='flux_simulation',
89 help = 'output path for maps')
90
91 ARGS = parser.parse_args(args)
92 return ARGS
93
94 ########################### warning ###########################################
95 def warning(s :str) -> None:
96 """
97 Log a warning message to an output log file and print it to the console.
98
99 Args:
100 s (str): The warning message to be logged and printed.
101
102 Returns:
103 None
104 """
105 with open(ARGS.out_log, 'a') as log:
106 log.write(s + "\n\n")
107 print(s)
108
109
110 def write_to_file(dataset: pd.DataFrame, name: str, keep_index:bool=False)->None:
111 dataset.index.name = 'Reactions'
112 dataset.to_csv(ARGS.output_path + "/" + name + ".csv", sep = '\t', index = keep_index)
113
114 ############################ dataset input ####################################
115 def read_dataset(data :str, name :str) -> pd.DataFrame:
116 """
117 Read a dataset from a CSV file and return it as a pandas DataFrame.
118
119 Args:
120 data (str): Path to the CSV file containing the dataset.
121 name (str): Name of the dataset, used in error messages.
122
123 Returns:
124 pandas.DataFrame: DataFrame containing the dataset.
125
126 Raises:
127 pd.errors.EmptyDataError: If the CSV file is empty.
128 sys.exit: If the CSV file has the wrong format, the execution is aborted.
129 """
130 try:
131 dataset = pd.read_csv(data, sep = '\t', header = 0, index_col=0, engine='python')
132 except pd.errors.EmptyDataError:
133 sys.exit('Execution aborted: wrong format of ' + name + '\n')
134 if len(dataset.columns) < 2:
135 sys.exit('Execution aborted: wrong format of ' + name + '\n')
136 return dataset
137
138
139
140 def OPTGP_sampler(model:cobra.Model, model_name:str, n_samples:int=1000, thinning:int=100, n_batches:int=1, seed:int=0)-> None:
141 """
142 Samples from the OPTGP (Optimal Global Perturbation) algorithm and saves the results to CSV files.
143
144 Args:
145 model (cobra.Model): The COBRA model to sample from.
146 model_name (str): The name of the model, used in naming output files.
147 n_samples (int, optional): Number of samples per batch. Default is 1000.
148 thinning (int, optional): Thinning parameter for the sampler. Default is 100.
149 n_batches (int, optional): Number of batches to run. Default is 1.
150 seed (int, optional): Random seed for reproducibility. Default is 0.
151
152 Returns:
153 None
154 """
155
156 for i in range(0, n_batches):
157 optgp = OptGPSampler(model, thinning, seed)
158 samples = optgp.sample(n_samples)
159 samples.to_csv(ARGS.output_path + "/" + model_name + '_'+ str(i)+'_OPTGP.csv', index=False)
160 seed+=1
161 samplesTotal = pd.DataFrame()
162 for i in range(0, n_batches):
163 samples_batch = pd.read_csv(ARGS.output_path + "/" + model_name + '_'+ str(i)+'_OPTGP.csv')
164 samplesTotal = pd.concat([samplesTotal, samples_batch], ignore_index = True)
165
166 write_to_file(samplesTotal.T, model_name, True)
167
168 for i in range(0, n_batches):
169 os.remove(ARGS.output_path + "/" + model_name + '_'+ str(i)+'_OPTGP.csv')
170 pass
171
172
173 def CBS_sampler(model:cobra.Model, model_name:str, n_samples:int=1000, n_batches:int=1, seed:int=0)-> None:
174 """
175 Samples using the CBS (Constraint-based Sampling) algorithm and saves the results to CSV files.
176
177 Args:
178 model (cobra.Model): The COBRA model to sample from.
179 model_name (str): The name of the model, used in naming output files.
180 n_samples (int, optional): Number of samples per batch. Default is 1000.
181 n_batches (int, optional): Number of batches to run. Default is 1.
182 seed (int, optional): Random seed for reproducibility. Default is 0.
183
184 Returns:
185 None
186 """
187
188 df_FVA = cobra.flux_analysis.flux_variability_analysis(model,fraction_of_optimum=0).round(6)
189
190 df_coefficients = CBS_backend.randomObjectiveFunction(model, n_samples*n_batches, df_FVA, seed=seed)
191
192 for i in range(0, n_batches):
193 samples = pd.DataFrame(columns =[reaction.id for reaction in model.reactions], index = range(n_samples))
194 try:
195 CBS_backend.randomObjectiveFunctionSampling(model, n_samples, df_coefficients.iloc[:,i*n_samples:(i+1)*n_samples], samples)
196 except Exception as e:
197 utils.logWarning(
198 "Warning: GLPK solver has failed for " + model_name + ". Trying with COBRA interface. Error:" + str(e),
199 ARGS.out_log)
200 CBS_backend.randomObjectiveFunctionSampling_cobrapy(model, n_samples, df_coefficients.iloc[:,i*n_samples:(i+1)*n_samples],
201 samples)
202 utils.logWarning(ARGS.output_path + "/" + model_name + '_'+ str(i)+'_CBS.csv', ARGS.out_log)
203 samples.to_csv(ARGS.output_path + "/" + model_name + '_'+ str(i)+'_CBS.csv', index=False)
204
205 samplesTotal = pd.DataFrame()
206 for i in range(0, n_batches):
207 samples_batch = pd.read_csv(ARGS.output_path + "/" + model_name + '_'+ str(i)+'_CBS.csv')
208 samplesTotal = pd.concat([samplesTotal, samples_batch], ignore_index = True)
209
210 write_to_file(samplesTotal.T, model_name, True)
211
212 for i in range(0, n_batches):
213 os.remove(ARGS.output_path + "/" + model_name + '_'+ str(i)+'_CBS.csv')
214 pass
215
216
217 def model_sampler(model_input_original:cobra.Model, bounds_path:str, cell_name:str)-> List[pd.DataFrame]:
218 """
219 Prepares the model with bounds from the dataset and performs sampling and analysis based on the selected algorithm.
220
221 Args:
222 model_input_original (cobra.Model): The original COBRA model.
223 bounds_path (str): Path to the CSV file containing the bounds dataset.
224 cell_name (str): Name of the cell, used to generate filenames for output.
225
226 Returns:
227 List[pd.DataFrame]: A list of DataFrames containing statistics and analysis results.
228 """
229
230 model_input = model_input_original.copy()
231 bounds_df = read_dataset(bounds_path, "bounds dataset")
232 for rxn_index, row in bounds_df.iterrows():
233 model_input.reactions.get_by_id(rxn_index).lower_bound = row.lower_bound
234 model_input.reactions.get_by_id(rxn_index).upper_bound = row.upper_bound
235
236
237 if ARGS.algorithm == 'OPTGP':
238 OPTGP_sampler(model_input, cell_name, ARGS.n_samples, ARGS.thinning, ARGS.n_batches, ARGS.seed)
239
240 elif ARGS.algorithm == 'CBS':
241 CBS_sampler(model_input, cell_name, ARGS.n_samples, ARGS.n_batches, ARGS.seed)
242
243 df_mean, df_median, df_quantiles = fluxes_statistics(cell_name, ARGS.output_types)
244
245 if("fluxes" not in ARGS.output_types):
246 os.remove(ARGS.output_path + "/" + cell_name + '.csv')
247
248 returnList = []
249 returnList.append(df_mean)
250 returnList.append(df_median)
251 returnList.append(df_quantiles)
252
253 df_pFBA, df_FVA, df_sensitivity = fluxes_analysis(model_input, cell_name, ARGS.output_type_analysis)
254
255 if("pFBA" in ARGS.output_type_analysis):
256 returnList.append(df_pFBA)
257 if("FVA" in ARGS.output_type_analysis):
258 returnList.append(df_FVA)
259 if("sensitivity" in ARGS.output_type_analysis):
260 returnList.append(df_sensitivity)
261
262 return returnList
263
264 def fluxes_statistics(model_name: str, output_types:List)-> List[pd.DataFrame]:
265 """
266 Computes statistics (mean, median, quantiles) for the fluxes.
267
268 Args:
269 model_name (str): Name of the model, used in filename for input.
270 output_types (List[str]): Types of statistics to compute (mean, median, quantiles).
271
272 Returns:
273 List[pd.DataFrame]: List of DataFrames containing mean, median, and quantiles statistics.
274 """
275
276 df_mean = pd.DataFrame()
277 df_median= pd.DataFrame()
278 df_quantiles= pd.DataFrame()
279
280 df_samples = pd.read_csv(ARGS.output_path + "/" + model_name + '.csv', sep = '\t', index_col = 0).T
281 df_samples = df_samples.round(8)
282
283 for output_type in output_types:
284 if(output_type == "mean"):
285 df_mean = df_samples.mean()
286 df_mean = df_mean.to_frame().T
287 df_mean = df_mean.reset_index(drop=True)
288 df_mean.index = [model_name]
289 elif(output_type == "median"):
290 df_median = df_samples.median()
291 df_median = df_median.to_frame().T
292 df_median = df_median.reset_index(drop=True)
293 df_median.index = [model_name]
294 elif(output_type == "quantiles"):
295 newRow = []
296 cols = []
297 for rxn in df_samples.columns:
298 quantiles = df_samples[rxn].quantile([0.25, 0.50, 0.75])
299 newRow.append(quantiles[0.25])
300 cols.append(rxn + "_q1")
301 newRow.append(quantiles[0.5])
302 cols.append(rxn + "_q2")
303 newRow.append(quantiles[0.75])
304 cols.append(rxn + "_q3")
305 df_quantiles = pd.DataFrame(columns=cols)
306 df_quantiles.loc[0] = newRow
307 df_quantiles = df_quantiles.reset_index(drop=True)
308 df_quantiles.index = [model_name]
309
310 return df_mean, df_median, df_quantiles
311
312 def fluxes_analysis(model:cobra.Model, model_name:str, output_types:List)-> List[pd.DataFrame]:
313 """
314 Performs flux analysis including pFBA, FVA, and sensitivity analysis.
315
316 Args:
317 model (cobra.Model): The COBRA model to analyze.
318 model_name (str): Name of the model, used in filenames for output.
319 output_types (List[str]): Types of analysis to perform (pFBA, FVA, sensitivity).
320
321 Returns:
322 List[pd.DataFrame]: List of DataFrames containing pFBA, FVA, and sensitivity analysis results.
323 """
324
325 df_pFBA = pd.DataFrame()
326 df_FVA= pd.DataFrame()
327 df_sensitivity= pd.DataFrame()
328
329 for output_type in output_types:
330 if(output_type == "pFBA"):
331 model.objective = "Biomass"
332 solution = cobra.flux_analysis.pfba(model)
333 fluxes = solution.fluxes
334 df_pFBA.loc[0,[rxn._id for rxn in model.reactions]] = fluxes.tolist()
335 df_pFBA = df_pFBA.reset_index(drop=True)
336 df_pFBA.index = [model_name]
337 df_pFBA = df_pFBA.astype(float).round(6)
338 elif(output_type == "FVA"):
339 fva = cobra.flux_analysis.flux_variability_analysis(model, fraction_of_optimum=0, processes=1).round(8)
340 columns = []
341 for rxn in fva.index.to_list():
342 columns.append(rxn + "_min")
343 columns.append(rxn + "_max")
344 df_FVA= pd.DataFrame(columns = columns)
345 for index_rxn, row in fva.iterrows():
346 df_FVA.loc[0, index_rxn+ "_min"] = fva.loc[index_rxn, "minimum"]
347 df_FVA.loc[0, index_rxn+ "_max"] = fva.loc[index_rxn, "maximum"]
348 df_FVA = df_FVA.reset_index(drop=True)
349 df_FVA.index = [model_name]
350 df_FVA = df_FVA.astype(float).round(6)
351 elif(output_type == "sensitivity"):
352 model.objective = "Biomass"
353 solution_original = model.optimize().objective_value
354 reactions = model.reactions
355 single = cobra.flux_analysis.single_reaction_deletion(model)
356 newRow = []
357 df_sensitivity = pd.DataFrame(columns = [rxn.id for rxn in reactions], index = [model_name])
358 for rxn in reactions:
359 newRow.append(single.knockout[rxn.id].growth.values[0]/solution_original)
360 df_sensitivity.loc[model_name] = newRow
361 df_sensitivity = df_sensitivity.astype(float).round(6)
362 return df_pFBA, df_FVA, df_sensitivity
363
364 ############################# main ###########################################
365 def main(args :List[str] = None) -> None:
366 """
367 Initializes everything and sets the program in motion based on the fronted input arguments.
368
369 Returns:
370 None
371 """
372
373 num_processors = cpu_count()
374
375 global ARGS
376 ARGS = process_args(args)
377
378 if not os.path.exists(ARGS.output_path):
379 os.makedirs(ARGS.output_path)
380
381 #model_type :utils.Model = ARGS.model_selector
382 #if model_type is utils.Model.Custom:
383 # model = model_type.getCOBRAmodel(customPath = utils.FilePath.fromStrPath(ARGS.model), customExtension = utils.FilePath.fromStrPath(ARGS.model_name).ext)
384 #else:
385 # model = model_type.getCOBRAmodel(toolDir=ARGS.tool_dir)
386
387 model = utils.build_cobra_model_from_csv(ARGS.model_upload)
388
389 validation = utils.validate_model(model)
390
391 print("\n=== VALIDAZIONE MODELLO ===")
392 for key, value in validation.items():
393 print(f"{key}: {value}")
394
395 #Set solver verbosity to 1 to see warning and error messages only.
396 model.solver.configuration.verbosity = 1
397
398 ARGS.bounds = ARGS.input.split(",")
399 ARGS.bounds_name = ARGS.names.split(",")
400 ARGS.output_types = ARGS.output_type.split(",")
401 ARGS.output_type_analysis = ARGS.output_type_analysis.split(",")
402
403
404 results = Parallel(n_jobs=num_processors)(delayed(model_sampler)(model, bounds_path, cell_name) for bounds_path, cell_name in zip(ARGS.bounds, ARGS.bounds_name))
405
406 all_mean = pd.concat([result[0] for result in results], ignore_index=False)
407 all_median = pd.concat([result[1] for result in results], ignore_index=False)
408 all_quantiles = pd.concat([result[2] for result in results], ignore_index=False)
409
410 if("mean" in ARGS.output_types):
411 all_mean = all_mean.fillna(0.0)
412 all_mean = all_mean.sort_index()
413 write_to_file(all_mean.T, "mean", True)
414
415 if("median" in ARGS.output_types):
416 all_median = all_median.fillna(0.0)
417 all_median = all_median.sort_index()
418 write_to_file(all_median.T, "median", True)
419
420 if("quantiles" in ARGS.output_types):
421 all_quantiles = all_quantiles.fillna(0.0)
422 all_quantiles = all_quantiles.sort_index()
423 write_to_file(all_quantiles.T, "quantiles", True)
424
425 index_result = 3
426 if("pFBA" in ARGS.output_type_analysis):
427 all_pFBA = pd.concat([result[index_result] for result in results], ignore_index=False)
428 all_pFBA = all_pFBA.sort_index()
429 write_to_file(all_pFBA.T, "pFBA", True)
430 index_result+=1
431 if("FVA" in ARGS.output_type_analysis):
432 all_FVA= pd.concat([result[index_result] for result in results], ignore_index=False)
433 all_FVA = all_FVA.sort_index()
434 write_to_file(all_FVA.T, "FVA", True)
435 index_result+=1
436 if("sensitivity" in ARGS.output_type_analysis):
437 all_sensitivity = pd.concat([result[index_result] for result in results], ignore_index=False)
438 all_sensitivity = all_sensitivity.sort_index()
439 write_to_file(all_sensitivity.T, "sensitivity", True)
440
441 pass
442
443 ##############################################################################
444 if __name__ == "__main__":
445 main()