Mercurial > repos > bimib > cobraxy
diff COBRAxy/rps_generator.py @ 381:0a3ca20848f3 draft
Uploaded
author | francesco_lapi |
---|---|
date | Fri, 05 Sep 2025 09:18:26 +0000 |
parents | 3dccdf56cb24 |
children |
line wrap: on
line diff
--- a/COBRAxy/rps_generator.py Fri Sep 05 08:27:04 2025 +0000 +++ b/COBRAxy/rps_generator.py Fri Sep 05 09:18:26 2025 +0000 @@ -121,7 +121,8 @@ """ name = clean_metabolite_name(name) for id, synonyms in syn_dict.items(): - if name in synonyms: return id + if name in synonyms: + return id return "" @@ -131,7 +132,8 @@ Check for missing metabolites in the abundances dictionary compared to the reactions dictionary and update abundances accordingly. Parameters: - reactions (dict): A dictionary representing reactions where keys are reaction names and values are dictionaries containing metabolite names as keys and stoichiometric coefficients as values. + reactions (dict): A dictionary representing reactions where keys are reaction names and values are dictionaries containing metabolite names as keys and + stoichiometric coefficients as values. dataset_by_rows (dict): A dictionary representing abundances where keys are metabolite names and values are their corresponding abundances for all cell lines. cell_lines_amt : amount of cell lines, needed to add a new list of abundances for missing metabolites. @@ -199,23 +201,27 @@ Returns: None """ + cell_lines = dataset[0][1:] abundances_dict = {} translationIsApplied = ARGS.reaction_choice == "default" for row in dataset[1:]: - id = get_metabolite_id(row[0], syn_dict) if translationIsApplied else row[0] - if id: abundances_dict[id] = list(map(utils.Float(), row[1:])) - + id = get_metabolite_id(row[0], syn_dict) #if translationIsApplied else row[0] + if id: + abundances_dict[id] = list(map(utils.Float(), row[1:])) + missing_list = check_missing_metab(reactions, abundances_dict, len((cell_lines))) - + rps_scores :Dict[Dict[str, float]] = {} for pos, cell_line_name in enumerate(cell_lines): abundances = { metab : abundances[pos] for metab, abundances in abundances_dict.items() } + rps_scores[cell_line_name] = calculate_rps(reactions, abundances, black_list, missing_list, substrateFreqTable) df = pd.DataFrame.from_dict(rps_scores) - + df = df.loc[list(reactions.keys()),:] + print(df.head(10)) df.index.name = 'Reactions' df.to_csv(ARGS.rps_output, sep='\t', na_rep='None', index=True) @@ -238,19 +244,36 @@ syn_dict = pk.load(sd) dataset = utils.readCsv(utils.FilePath.fromStrPath(ARGS.input), '\t', skipHeader = False) - + tmp_dict = None if ARGS.reaction_choice == 'default': reactions = pk.load(open(ARGS.tool_dir + '/local/pickle files/reactions.pickle', 'rb')) substrateFreqTable = pk.load(open(ARGS.tool_dir + '/local/pickle files/substrate_frequencies.pickle', 'rb')) elif ARGS.reaction_choice == 'custom': reactions = reactionUtils.parse_custom_reactions(ARGS.custom) + for r, s in reactions.items(): + tmp_list = list(s.keys()) + for k in tmp_list: + if k[-2] == '_': + s[k[:-2]] = s.pop(k) substrateFreqTable = {} for _, substrates in reactions.items(): for substrateName, _ in substrates.items(): if substrateName not in substrateFreqTable: substrateFreqTable[substrateName] = 0 substrateFreqTable[substrateName] += 1 + print(f"Reactions: {reactions}") + print(f"Substrate Frequencies: {substrateFreqTable}") + print(f"Synonyms: {syn_dict}") + tmp_dict = {} + for metabName, freq in substrateFreqTable.items(): + tmp_metabName = clean_metabolite_name(metabName) + for syn_key, syn_list in syn_dict.items(): + if tmp_metabName in syn_list or tmp_metabName == clean_metabolite_name(syn_key): + print(f"Mapping {tmp_metabName} to {syn_key}") + tmp_dict[syn_key] = syn_list + tmp_dict[syn_key].append(tmp_metabName) + rps_for_cell_lines(dataset, reactions, black_list, syn_dict, substrateFreqTable) print('Execution succeded')