Mercurial > repos > bimib > cobraxy
diff COBRAxy/src/flux_simulation.py @ 539:2fb97466e404 draft
Uploaded
| author | francesco_lapi |
|---|---|
| date | Sat, 25 Oct 2025 14:55:13 +0000 |
| parents | |
| children | fcdbc81feb45 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/COBRAxy/src/flux_simulation.py Sat Oct 25 14:55:13 2025 +0000 @@ -0,0 +1,636 @@ +""" +Flux sampling and analysis utilities for COBRA models. + +This script supports two modes: +- Mode 1 (model_and_bounds=True): load a base model and apply bounds from + separate files before sampling. +- Mode 2 (model_and_bounds=False): load complete models and sample directly. + +Sampling algorithms supported: OPTGP and CBS. Outputs include flux samples +and optional analyses (pFBA, FVA, sensitivity), saved as tabular files. +""" + +import argparse +import utils.general_utils as utils +from typing import List +import os +import pandas as pd +import numpy as np +import cobra +import utils.CBS_backend as CBS_backend +from joblib import Parallel, delayed, cpu_count +from cobra.sampling import OptGPSampler +import sys +import utils.model_utils as model_utils + + +################################# process args ############################### +def process_args(args: List[str] = None) -> argparse.Namespace: + """ + Processes command-line arguments. + + Args: + args (list): List of command-line arguments. + + Returns: + Namespace: An object containing parsed arguments. + """ + parser = argparse.ArgumentParser(usage='%(prog)s [options]', + description='process some value\'s') + + parser.add_argument("-mo", "--model_upload", type=str, + help="path to input file with custom rules, if provided") + + parser.add_argument("-mab", "--model_and_bounds", type=str, + choices=['True', 'False'], + required=True, + help="upload mode: True for model+bounds, False for complete models") + + parser.add_argument("-ens", "--sampling_enabled", type=str, + choices=['true', 'false'], + required=True, + help="enable sampling: 'true' for sampling, 'false' for no sampling") + + parser.add_argument('-ol', '--out_log', + help="Output log") + + parser.add_argument('-td', '--tool_dir', + type=str, + required=True, + help='your tool directory') + + parser.add_argument('-in', '--input', + required=True, + type=str, + help='input bounds files or complete model files') + + parser.add_argument('-ni', '--name', + required=True, + type=str, + help='cell names') + + parser.add_argument('-a', '--algorithm', + type=str, + choices=['OPTGP', 'CBS'], + required=True, + help='choose sampling algorithm') + + parser.add_argument('-th', '--thinning', + type=int, + default=100, + required=True, + help='choose thinning') + + parser.add_argument('-ns', '--n_samples', + type=int, + required=True, + help='choose how many samples (set to 0 for optimization only)') + + parser.add_argument('-sd', '--seed', + type=int, + required=True, + help='seed for random number generation') + + parser.add_argument('-nb', '--n_batches', + type=int, + required=True, + help='choose how many batches') + + parser.add_argument('-opt', '--perc_opt', + type=float, + default=0.9, + required=False, + help='choose the fraction of optimality for FVA (0-1)') + + parser.add_argument('-ot', '--output_type', + type=str, + required=True, + help='output type for sampling results') + + parser.add_argument('-ota', '--output_type_analysis', + type=str, + required=False, + help='output type analysis (optimization methods)') + + parser.add_argument('-idop', '--output_path', + type=str, + default='flux_simulation/', + help = 'output path for fluxes') + + parser.add_argument('-otm', '--out_mean', + type = str, + required=False, + help = 'output of mean of fluxes') + + parser.add_argument('-otmd', '--out_median', + type = str, + required=False, + help = 'output of median of fluxes') + + parser.add_argument('-otq', '--out_quantiles', + type = str, + required=False, + help = 'output of quantiles of fluxes') + + parser.add_argument('-otfva', '--out_fva', + type = str, + required=False, + help = 'output of FVA results') + parser.add_argument('-otp', '--out_pfba', + type = str, + required=False, + help = 'output of pFBA results') + parser.add_argument('-ots', '--out_sensitivity', + type = str, + required=False, + help = 'output of sensitivity results') + ARGS = parser.parse_args(args) + return ARGS +########################### warning ########################################### +def warning(s :str) -> None: + """ + Log a warning message to an output log file and print it to the console. + + Args: + s (str): The warning message to be logged and printed. + + Returns: + None + """ + with open(ARGS.out_log, 'a') as log: + log.write(s + "\n\n") + print(s) + + +def write_to_file(dataset: pd.DataFrame, path: str, keep_index:bool=False, name:str=None)->None: + """ + Write a DataFrame to a TSV file under path with a given base name. + + Args: + dataset: The DataFrame to write. + name: Base file name (without extension). If None, 'path' is treated as the full file path. + path: Directory path where the file will be saved. + keep_index: Whether to keep the DataFrame index in the file. + + Returns: + None + """ + dataset.index.name = 'Reactions' + if name: + dataset.to_csv(os.path.join(path, name + ".csv"), sep = '\t', index = keep_index) + else: + dataset.to_csv(path, sep = '\t', index = keep_index) + +############################ dataset input #################################### +def read_dataset(data :str, name :str) -> pd.DataFrame: + """ + Read a dataset from a CSV file and return it as a pandas DataFrame. + + Args: + data (str): Path to the CSV file containing the dataset. + name (str): Name of the dataset, used in error messages. + + Returns: + pandas.DataFrame: DataFrame containing the dataset. + + Raises: + pd.errors.EmptyDataError: If the CSV file is empty. + sys.exit: If the CSV file has the wrong format, the execution is aborted. + """ + try: + dataset = pd.read_csv(data, sep = '\t', header = 0, index_col=0, engine='python') + except pd.errors.EmptyDataError: + sys.exit('Execution aborted: wrong format of ' + name + '\n') + if len(dataset.columns) < 2: + sys.exit('Execution aborted: wrong format of ' + name + '\n') + return dataset + + + +def OPTGP_sampler(model: cobra.Model, model_name: str, n_samples: int = 1000, thinning: int = 100, n_batches: int = 1, seed: int = 0) -> None: + """ + Samples from the OPTGP (Optimal Global Perturbation) algorithm and saves the results to CSV files. + + Args: + model (cobra.Model): The COBRA model to sample from. + model_name (str): The name of the model, used in naming output files. + n_samples (int, optional): Number of samples per batch. Default is 1000. + thinning (int, optional): Thinning parameter for the sampler. Default is 100. + n_batches (int, optional): Number of batches to run. Default is 1. + seed (int, optional): Random seed for reproducibility. Default is 0. + + Returns: + None + """ + import numpy as np + + # Get reaction IDs for consistent column ordering + reaction_ids = [rxn.id for rxn in model.reactions] + + # Sample and save each batch as numpy file + for i in range(n_batches): + optgp = OptGPSampler(model, thinning, seed) + samples = optgp.sample(n_samples) + + # Save as numpy array (more memory efficient) + batch_filename = f"{ARGS.output_path}/{model_name}_{i}_OPTGP.npy" + np.save(batch_filename, samples.to_numpy()) + + seed += 1 + + # Merge all batches into a single DataFrame + all_samples = [] + + for i in range(n_batches): + batch_filename = f"{ARGS.output_path}/{model_name}_{i}_OPTGP.npy" + batch_data = np.load(batch_filename, allow_pickle=True) + all_samples.append(batch_data) + + # Concatenate all batches + samplesTotal_array = np.vstack(all_samples) + + # Convert back to DataFrame with proper column names + samplesTotal = pd.DataFrame(samplesTotal_array, columns=reaction_ids) + + # Save the final merged result as CSV + write_to_file(samplesTotal.T, ARGS.output_path, True, name=model_name) + + # Clean up temporary numpy files + for i in range(n_batches): + batch_filename = f"{ARGS.output_path}/{model_name}_{i}_OPTGP.npy" + if os.path.exists(batch_filename): + os.remove(batch_filename) + + +def CBS_sampler(model: cobra.Model, model_name: str, n_samples: int = 1000, n_batches: int = 1, seed: int = 0) -> None: + """ + Samples using the CBS (Constraint-based Sampling) algorithm and saves the results to CSV files. + + Args: + model (cobra.Model): The COBRA model to sample from. + model_name (str): The name of the model, used in naming output files. + n_samples (int, optional): Number of samples per batch. Default is 1000. + n_batches (int, optional): Number of batches to run. Default is 1. + seed (int, optional): Random seed for reproducibility. Default is 0. + + Returns: + None + """ + import numpy as np + + # Get reaction IDs for consistent column ordering + reaction_ids = [reaction.id for reaction in model.reactions] + + # Perform FVA analysis once for all batches + df_FVA = cobra.flux_analysis.flux_variability_analysis(model, fraction_of_optimum=0).round(6) + + # Generate random objective functions for all samples across all batches + df_coefficients = CBS_backend.randomObjectiveFunction(model, n_samples * n_batches, df_FVA, seed=seed) + + # Sample and save each batch as numpy file + for i in range(n_batches): + samples = pd.DataFrame(columns=reaction_ids, index=range(n_samples)) + + try: + CBS_backend.randomObjectiveFunctionSampling( + model, + n_samples, + df_coefficients.iloc[:, i * n_samples:(i + 1) * n_samples], + samples + ) + except Exception as e: + utils.logWarning( + f"Warning: GLPK solver has failed for {model_name}. Trying with COBRA interface. Error: {str(e)}", + ARGS.out_log + ) + CBS_backend.randomObjectiveFunctionSampling_cobrapy( + model, + n_samples, + df_coefficients.iloc[:, i * n_samples:(i + 1) * n_samples], + samples + ) + + # Save as numpy array (more memory efficient) + batch_filename = f"{ARGS.output_path}/{model_name}_{i}_CBS.npy" + utils.logWarning(batch_filename, ARGS.out_log) + np.save(batch_filename, samples.to_numpy()) + + # Merge all batches into a single DataFrame + all_samples = [] + + for i in range(n_batches): + batch_filename = f"{ARGS.output_path}/{model_name}_{i}_CBS.npy" + batch_data = np.load(batch_filename, allow_pickle=True) + all_samples.append(batch_data) + + # Concatenate all batches + samplesTotal_array = np.vstack(all_samples) + + # Convert back to DataFrame with proper column namesq + samplesTotal = pd.DataFrame(samplesTotal_array, columns=reaction_ids) + + # Save the final merged result as CSV + write_to_file(samplesTotal.T, ARGS.output_path, True, name=model_name) + + # Clean up temporary numpy files + for i in range(n_batches): + batch_filename = f"{ARGS.output_path}/{model_name}_{i}_CBS.npy" + if os.path.exists(batch_filename): + os.remove(batch_filename) + + + +def model_sampler_with_bounds(model_input_original: cobra.Model, bounds_path: str, cell_name: str) -> List[pd.DataFrame]: + """ + MODE 1: Prepares the model with bounds from separate bounds file and performs sampling. + + Args: + model_input_original (cobra.Model): The original COBRA model. + bounds_path (str): Path to the CSV file containing the bounds dataset. + cell_name (str): Name of the cell, used to generate filenames for output. + + Returns: + List[pd.DataFrame]: A list of DataFrames containing statistics and analysis results. + """ + + model_input = model_input_original.copy() + bounds_df = read_dataset(bounds_path, "bounds dataset") + + # Apply bounds to model + for rxn_index, row in bounds_df.iterrows(): + try: + model_input.reactions.get_by_id(rxn_index).lower_bound = row.lower_bound + model_input.reactions.get_by_id(rxn_index).upper_bound = row.upper_bound + except KeyError: + warning(f"Warning: Reaction {rxn_index} not found in model. Skipping.") + + return perform_sampling_and_analysis(model_input, cell_name) + + +def perform_sampling_and_analysis(model_input: cobra.Model, cell_name: str) -> List[pd.DataFrame]: + """ + Common function to perform sampling and analysis on a prepared model. + + Args: + model_input (cobra.Model): The prepared COBRA model with bounds applied. + cell_name (str): Name of the cell, used to generate filenames for output. + + Returns: + List[pd.DataFrame]: A list of DataFrames containing statistics and analysis results. + """ + + returnList = [] + + if ARGS.sampling_enabled == "true": + + if ARGS.algorithm == 'OPTGP': + OPTGP_sampler(model_input, cell_name, ARGS.n_samples, ARGS.thinning, ARGS.n_batches, ARGS.seed) + elif ARGS.algorithm == 'CBS': + CBS_sampler(model_input, cell_name, ARGS.n_samples, ARGS.n_batches, ARGS.seed) + + df_mean, df_median, df_quantiles = fluxes_statistics(cell_name, ARGS.output_types) + + if("fluxes" not in ARGS.output_types): + os.remove(ARGS.output_path + "/" + cell_name + '.csv') + + returnList = [df_mean, df_median, df_quantiles] + + df_pFBA, df_FVA, df_sensitivity = fluxes_analysis(model_input, cell_name, ARGS.output_type_analysis) + + if("pFBA" in ARGS.output_type_analysis): + returnList.append(df_pFBA) + if("FVA" in ARGS.output_type_analysis): + returnList.append(df_FVA) + if("sensitivity" in ARGS.output_type_analysis): + returnList.append(df_sensitivity) + + return returnList + +def fluxes_statistics(model_name: str, output_types:List)-> List[pd.DataFrame]: + """ + Computes statistics (mean, median, quantiles) for the fluxes. + + Args: + model_name (str): Name of the model, used in filename for input. + output_types (List[str]): Types of statistics to compute (mean, median, quantiles). + + Returns: + List[pd.DataFrame]: List of DataFrames containing mean, median, and quantiles statistics. + """ + + df_mean = pd.DataFrame() + df_median= pd.DataFrame() + df_quantiles= pd.DataFrame() + + df_samples = pd.read_csv(ARGS.output_path + "/" + model_name + '.csv', sep = '\t', index_col = 0).T + df_samples = df_samples.round(8) + + for output_type in output_types: + if(output_type == "mean"): + df_mean = df_samples.mean() + df_mean = df_mean.to_frame().T + df_mean = df_mean.reset_index(drop=True) + df_mean.index = [model_name] + elif(output_type == "median"): + df_median = df_samples.median() + df_median = df_median.to_frame().T + df_median = df_median.reset_index(drop=True) + df_median.index = [model_name] + elif(output_type == "quantiles"): + newRow = [] + cols = [] + for rxn in df_samples.columns: + quantiles = df_samples[rxn].quantile([0.25, 0.50, 0.75]) + newRow.append(quantiles[0.25]) + cols.append(rxn + "_q1") + newRow.append(quantiles[0.5]) + cols.append(rxn + "_q2") + newRow.append(quantiles[0.75]) + cols.append(rxn + "_q3") + df_quantiles = pd.DataFrame(columns=cols) + df_quantiles.loc[0] = newRow + df_quantiles = df_quantiles.reset_index(drop=True) + df_quantiles.index = [model_name] + + return df_mean, df_median, df_quantiles + +def fluxes_analysis(model:cobra.Model, model_name:str, output_types:List)-> List[pd.DataFrame]: + """ + Performs flux analysis including pFBA, FVA, and sensitivity analysis. The objective function + is assumed to be already set in the model. + + Args: + model (cobra.Model): The COBRA model to analyze. + model_name (str): Name of the model, used in filenames for output. + output_types (List[str]): Types of analysis to perform (pFBA, FVA, sensitivity). + + Returns: + List[pd.DataFrame]: List of DataFrames containing pFBA, FVA, and sensitivity analysis results. + """ + + df_pFBA = pd.DataFrame() + df_FVA= pd.DataFrame() + df_sensitivity= pd.DataFrame() + + for output_type in output_types: + if(output_type == "pFBA"): + solution = cobra.flux_analysis.pfba(model) + fluxes = solution.fluxes + df_pFBA.loc[0,[rxn.id for rxn in model.reactions]] = fluxes.tolist() + df_pFBA = df_pFBA.reset_index(drop=True) + df_pFBA.index = [model_name] + df_pFBA = df_pFBA.astype(float).round(6) + elif(output_type == "FVA"): + fva = cobra.flux_analysis.flux_variability_analysis(model, fraction_of_optimum=ARGS.perc_opt, processes=1).round(8) + columns = [] + for rxn in fva.index.to_list(): + columns.append(rxn + "_min") + columns.append(rxn + "_max") + df_FVA= pd.DataFrame(columns = columns) + for index_rxn, row in fva.iterrows(): + df_FVA.loc[0, index_rxn+ "_min"] = fva.loc[index_rxn, "minimum"] + df_FVA.loc[0, index_rxn+ "_max"] = fva.loc[index_rxn, "maximum"] + df_FVA = df_FVA.reset_index(drop=True) + df_FVA.index = [model_name] + df_FVA = df_FVA.astype(float).round(6) + elif(output_type == "sensitivity"): + solution_original = model.optimize().objective_value + reactions = model.reactions + single = cobra.flux_analysis.single_reaction_deletion(model) + newRow = [] + df_sensitivity = pd.DataFrame(columns = [rxn.id for rxn in reactions], index = [model_name]) + for rxn in reactions: + newRow.append(single.knockout[rxn.id].growth.values[0]/solution_original) + df_sensitivity.loc[model_name] = newRow + df_sensitivity = df_sensitivity.astype(float).round(6) + return df_pFBA, df_FVA, df_sensitivity + +############################# main ########################################### +def main(args: List[str] = None) -> None: + """ + Initialize and run sampling/analysis based on the frontend input arguments. + + Returns: + None + """ + + num_processors = max(1, cpu_count() - 1) + + global ARGS + ARGS = process_args(args) + + if not os.path.exists('flux_simulation'): + os.makedirs('flux_simulation') + + # --- Normalize inputs (the tool may pass comma-separated --input and either --name or --names) --- + ARGS.input_files = ARGS.input.split(",") if ARGS.input else [] + ARGS.file_names = ARGS.name.split(",") + # output types (required) -> list + ARGS.output_types = ARGS.output_type.split(",") if ARGS.output_type else [] + # optional analysis output types -> list or empty + ARGS.output_type_analysis = ARGS.output_type_analysis.split(",") if ARGS.output_type_analysis else [] + + # Determine if sampling should be performed + if ARGS.sampling_enabled == "true": + perform_sampling = True + else: + perform_sampling = False + + print("=== INPUT FILES ===") + print(f"{ARGS.input_files}") + print(f"{ARGS.file_names}") + print(f"{ARGS.output_type}") + print(f"{ARGS.output_types}") + print(f"{ARGS.output_type_analysis}") + print(f"Sampling enabled: {perform_sampling} (n_samples: {ARGS.n_samples})") + + if ARGS.model_and_bounds == "True": + # MODE 1: Model + bounds (separate files) + print("=== MODE 1: Model + Bounds (separate files) ===") + + # Load base model + if not ARGS.model_upload: + sys.exit("Error: model_upload is required for Mode 1") + + base_model = model_utils.build_cobra_model_from_csv(ARGS.model_upload) + + validation = model_utils.validate_model(base_model) + + print("\n=== MODEL VALIDATION ===") + for key, value in validation.items(): + print(f"{key}: {value}") + + # Set solver verbosity to 1 to see warning and error messages only. + base_model.solver.configuration.verbosity = 1 + + # Process each bounds file with the base model + results = Parallel(n_jobs=num_processors)( + delayed(model_sampler_with_bounds)(base_model, bounds_file, cell_name) + for bounds_file, cell_name in zip(ARGS.input_files, ARGS.file_names) + ) + + else: + # MODE 2: Multiple complete models + print("=== MODE 2: Multiple complete models ===") + + # Process each complete model file + results = Parallel(n_jobs=num_processors)( + delayed(perform_sampling_and_analysis)(model_utils.build_cobra_model_from_csv(model_file), cell_name) + for model_file, cell_name in zip(ARGS.input_files, ARGS.file_names) + ) + + # Handle sampling outputs (only if sampling was performed) + if perform_sampling: + print("=== PROCESSING SAMPLING RESULTS ===") + + all_mean = pd.concat([result[0] for result in results], ignore_index=False) + all_median = pd.concat([result[1] for result in results], ignore_index=False) + all_quantiles = pd.concat([result[2] for result in results], ignore_index=False) + + if "mean" in ARGS.output_types: + all_mean = all_mean.fillna(0.0) + all_mean = all_mean.sort_index() + write_to_file(all_mean.T, ARGS.out_mean, True) + + if "median" in ARGS.output_types: + all_median = all_median.fillna(0.0) + all_median = all_median.sort_index() + write_to_file(all_median.T, ARGS.out_median, True) + + if "quantiles" in ARGS.output_types: + all_quantiles = all_quantiles.fillna(0.0) + all_quantiles = all_quantiles.sort_index() + write_to_file(all_quantiles.T, ARGS.out_quantiles, True) + else: + print("=== SAMPLING SKIPPED (n_samples = 0 or sampling disabled) ===") + + # Handle optimization analysis outputs (always available) + print("=== PROCESSING OPTIMIZATION RESULTS ===") + + # Determine the starting index for optimization results + # If sampling was performed, optimization results start at index 3 + # If no sampling, optimization results start at index 0 + index_result = 3 if perform_sampling else 0 + + if "pFBA" in ARGS.output_type_analysis: + all_pFBA = pd.concat([result[index_result] for result in results], ignore_index=False) + all_pFBA = all_pFBA.sort_index() + write_to_file(all_pFBA.T, ARGS.out_pfba, True) + index_result += 1 + + if "FVA" in ARGS.output_type_analysis: + all_FVA = pd.concat([result[index_result] for result in results], ignore_index=False) + all_FVA = all_FVA.sort_index() + write_to_file(all_FVA.T, ARGS.out_fva, True) + index_result += 1 + + if "sensitivity" in ARGS.output_type_analysis: + all_sensitivity = pd.concat([result[index_result] for result in results], ignore_index=False) + all_sensitivity = all_sensitivity.sort_index() + write_to_file(all_sensitivity.T, ARGS.out_sensitivity, True) + + return + +############################################################################## +if __name__ == "__main__": + main() \ No newline at end of file
