Mercurial > repos > bimib > cobraxy
diff COBRAxy/utils/model_utils.py @ 508:ca98c149ec61 draft
Uploaded
author | francesco_lapi |
---|---|
date | Wed, 01 Oct 2025 14:21:26 +0000 |
parents | ffc234ec80db |
children |
line wrap: on
line diff
--- a/COBRAxy/utils/model_utils.py Wed Oct 01 13:51:50 2025 +0000 +++ b/COBRAxy/utils/model_utils.py Wed Oct 01 14:21:26 2025 +0000 @@ -1155,6 +1155,78 @@ logger.info(f"Model genes updated: removed {removed}, added {added}") +def export_model_to_tabular(model: cobraModel, + output_path: str, + translation_issues: Dict = None, + include_objective: bool = True, + save_function = None) -> pd.DataFrame: + """ + Export a COBRA model to tabular format with optional components. + + Args: + model: COBRA model to export + output_path: Path where to save the tabular file + translation_issues: Optional dict of {reaction_id: issues} from gene translation + include_objective: Whether to include objective coefficient column + save_function: Optional custom save function, if None uses pd.DataFrame.to_csv + + Returns: + pd.DataFrame: The merged tabular data + """ + # Generate model data + rules = generate_rules(model, asParsed=False) + + reactions = generate_reactions(model, asParsed=False) + bounds = generate_bounds(model) + medium = get_medium(model) + compartments = generate_compartments(model) + + # Create base DataFrames + df_rules = pd.DataFrame(list(rules.items()), columns=["ReactionID", "GPR"]) + df_reactions = pd.DataFrame(list(reactions.items()), columns=["ReactionID", "Formula"]) + df_bounds = bounds.reset_index().rename(columns={"index": "ReactionID"}) + df_medium = medium.rename(columns={"reaction": "ReactionID"}) + df_medium["InMedium"] = True + + # Start merging + merged = df_reactions.merge(df_rules, on="ReactionID", how="outer") + merged = merged.merge(df_bounds, on="ReactionID", how="outer") + + # Add objective coefficients if requested + if include_objective: + objective_function = extract_objective_coefficients(model) + merged = merged.merge(objective_function, on="ReactionID", how="outer") + + # Add compartments/pathways if they exist + if compartments is not None: + merged = merged.merge(compartments, on="ReactionID", how="outer") + + # Add medium information + merged = merged.merge(df_medium, on="ReactionID", how="left") + + # Add translation issues if provided + if translation_issues: + df_translation_issues = pd.DataFrame([ + {"ReactionID": rxn_id, "TranslationIssues": issues} + for rxn_id, issues in translation_issues.items() + ]) + if not df_translation_issues.empty: + merged = merged.merge(df_translation_issues, on="ReactionID", how="left") + merged["TranslationIssues"] = merged["TranslationIssues"].fillna("") + + # Final processing + merged["InMedium"] = merged["InMedium"].fillna(False) + merged = merged.sort_values(by="InMedium", ascending=False) + + # Save the file + if save_function: + save_function(merged, output_path) + else: + merged.to_csv(output_path, sep="\t", index=False) + + return merged + + def _log_translation_statistics(stats: Dict[str, int], unmapped_genes: List[str], multi_mapping_genes: List[Tuple[str, List[str]]],