diff COBRAxy/src/ras_to_bounds.py @ 542:fcdbc81feb45 draft

Uploaded
author francesco_lapi
date Sun, 26 Oct 2025 19:27:41 +0000
parents 2fb97466e404
children
line wrap: on
line diff
--- a/COBRAxy/src/ras_to_bounds.py	Sat Oct 25 15:20:55 2025 +0000
+++ b/COBRAxy/src/ras_to_bounds.py	Sun Oct 26 19:27:41 2025 +0000
@@ -1,355 +1,360 @@
-"""
-Apply RAS-based scaling to reaction bounds and optionally save updated models.
-
-Workflow:
-- Read one or more RAS matrices (patients/samples x reactions)
-- Normalize and merge them, optionally adding class suffixes to sample IDs
-- Build a COBRA model from a tabular CSV
-- Run FVA to initialize bounds, then scale per-sample based on RAS values
-- Save bounds per sample and optionally export updated models in chosen formats
-"""
-import argparse
-import utils.general_utils as utils
-from typing import Optional, Dict, Set, List, Tuple, Union
-import os
-import numpy as np
-import pandas as pd
-import cobra
-from cobra import Model
-import sys
-from joblib import Parallel, delayed, cpu_count
-import utils.model_utils as modelUtils
-
-################################# process args ###############################
-def process_args(args :List[str] = None) -> argparse.Namespace:
-    """
-    Processes command-line arguments.
-
-    Args:
-        args (list): List of command-line arguments.
-
-    Returns:
-        Namespace: An object containing parsed arguments.
-    """
-    parser = argparse.ArgumentParser(usage = '%(prog)s [options]',
-                                     description = 'process some value\'s')
-    
-    
-    parser.add_argument("-mo", "--model_upload", type = str,
-        help = "path to input file with custom rules, if provided")
-
-    parser.add_argument('-ol', '--out_log', 
-                        help = "Output log")
-    
-    parser.add_argument('-td', '--tool_dir',
-                        type = str,
-                        required = True,
-                        help = 'your tool directory')
-    
-    parser.add_argument('-ir', '--input_ras',
-                        type=str,
-                        required = False,
-                        help = 'input ras')
-    
-    parser.add_argument('-rn', '--name',
-                type=str,
-                help = 'ras class names')
-
-    parser.add_argument('-cc', '--cell_class',
-                    type = str,
-                    help = 'output of cell class')
-    parser.add_argument(
-        '-idop', '--output_path', 
-        type = str,
-        default='ras_to_bounds/',
-        help = 'output path for maps')
-    
-    parser.add_argument('-sm', '--save_models',
-                    type=utils.Bool("save_models"),
-                    default=False,
-                    help = 'whether to save models with applied bounds')
-    
-    parser.add_argument('-smp', '--save_models_path',
-                        type = str,
-                        default='saved_models/',
-                        help = 'output path for saved models')
-    
-    parser.add_argument('-smf', '--save_models_format',
-                        type = str,
-                        default='csv',
-                        help = 'format for saved models (csv, xml, json, mat, yaml, tabular)')
-
-    
-    ARGS = parser.parse_args(args)
-    return ARGS
-
-########################### warning ###########################################
-def warning(s :str) -> None:
-    """
-    Log a warning message to an output log file and print it to the console.
-
-    Args:
-        s (str): The warning message to be logged and printed.
-    
-    Returns:
-      None
-    """
-    if ARGS.out_log:
-        with open(ARGS.out_log, 'a') as log:
-            log.write(s + "\n\n")
-    print(s)
-
-############################ dataset input ####################################
-def read_dataset(data :str, name :str) -> pd.DataFrame:
-    """
-    Read a dataset from a CSV file and return it as a pandas DataFrame.
-
-    Args:
-        data (str): Path to the CSV file containing the dataset.
-        name (str): Name of the dataset, used in error messages.
-
-    Returns:
-        pandas.DataFrame: DataFrame containing the dataset.
-
-    Raises:
-        pd.errors.EmptyDataError: If the CSV file is empty.
-        sys.exit: If the CSV file has the wrong format, the execution is aborted.
-    """
-    try:
-        dataset = pd.read_csv(data, sep = '\t', header = 0, engine='python')
-    except pd.errors.EmptyDataError:
-        sys.exit('Execution aborted: wrong format of ' + name + '\n')
-    if len(dataset.columns) < 2:
-        sys.exit('Execution aborted: wrong format of ' + name + '\n')
-    return dataset
-
-
-def apply_ras_bounds(bounds, ras_row):
-    """
-    Adjust the bounds of reactions in the model based on RAS values.
-
-    Args:
-        bounds (pd.DataFrame): Model bounds.
-        ras_row (pd.Series): A row from a RAS DataFrame containing scaling factors for reaction bounds.
-    Returns:
-        new_bounds (pd.DataFrame): integrated bounds.
-    """
-    new_bounds = bounds.copy()
-    for reaction in ras_row.index:
-        scaling_factor = ras_row[reaction]
-        if not np.isnan(scaling_factor):
-            lower_bound=bounds.loc[reaction, "lower_bound"]
-            upper_bound=bounds.loc[reaction, "upper_bound"]
-            valMax=float((upper_bound)*scaling_factor)
-            valMin=float((lower_bound)*scaling_factor)
-            if upper_bound!=0 and lower_bound==0:
-                new_bounds.loc[reaction, "upper_bound"] = valMax
-            if upper_bound==0 and lower_bound!=0:
-                new_bounds.loc[reaction, "lower_bound"] = valMin
-            if upper_bound!=0 and lower_bound!=0:
-                new_bounds.loc[reaction, "lower_bound"] = valMin
-                new_bounds.loc[reaction, "upper_bound"] = valMax
-    return new_bounds
-
-
-def save_model(model, filename, output_folder, file_format='csv'):
-    """
-    Save a COBRA model to file in the specified format.
-    
-    Args:
-        model (cobra.Model): The model to save.
-        filename (str): Base filename (without extension).
-        output_folder (str): Output directory.
-        file_format (str): File format ('xml', 'json', 'mat', 'yaml', 'tabular', 'csv').
-    
-    Returns:
-        None
-    """
-    if not os.path.exists(output_folder):
-        os.makedirs(output_folder)
-    
-    try:
-        if file_format == 'tabular' or file_format == 'csv':
-            # Special handling for tabular format using utils functions
-            filepath = os.path.join(output_folder, f"{filename}.csv")
-            
-            # Use unified function for tabular export
-            merged = modelUtils.export_model_to_tabular(
-                model=model,
-                output_path=filepath,
-                include_objective=True  
-            )
-            
-        else:
-            # Standard COBRA formats
-            filepath = os.path.join(output_folder, f"{filename}.{file_format}")
-            
-            if file_format == 'xml':
-                cobra.io.write_sbml_model(model, filepath)
-            elif file_format == 'json':
-                cobra.io.save_json_model(model, filepath)
-            elif file_format == 'mat':
-                cobra.io.save_matlab_model(model, filepath)
-            elif file_format == 'yaml':
-                cobra.io.save_yaml_model(model, filepath)
-            else:
-                raise ValueError(f"Unsupported format: {file_format}")
-        
-        print(f"Model saved: {filepath}")
-        
-    except Exception as e:
-        warning(f"Error saving model {filename}: {str(e)}")
-
-def apply_bounds_to_model(model, bounds):
-    """
-    Apply bounds from a DataFrame to a COBRA model.
-    
-    Args:
-        model (cobra.Model): The metabolic model to modify.
-        bounds (pd.DataFrame): DataFrame with reaction bounds.
-    
-    Returns:
-        cobra.Model: Modified model with new bounds.
-    """
-    model_copy = model.copy()
-    for reaction_id in bounds.index:
-        try:
-            reaction = model_copy.reactions.get_by_id(reaction_id)
-            reaction.lower_bound = bounds.loc[reaction_id, "lower_bound"]
-            reaction.upper_bound = bounds.loc[reaction_id, "upper_bound"]
-        except KeyError:
-            # Reaction not found in model, skip
-            continue
-    return model_copy
-
-def process_ras_cell(cellName, ras_row, model, rxns_ids, output_folder, save_models=False, save_models_path='saved_models/', save_models_format='csv'):
-    """
-    Process a single RAS cell, apply bounds, and save the bounds to a CSV file.
-
-    Args:
-        cellName (str): The name of the RAS cell (used for naming the output file).
-        ras_row (pd.Series): A row from a RAS DataFrame containing scaling factors for reaction bounds.
-        model (cobra.Model): The metabolic model to be modified.
-        rxns_ids (list of str): List of reaction IDs to which the scaling factors will be applied.
-        output_folder (str): Folder path where the output CSV file will be saved.
-        save_models (bool): Whether to save models with applied bounds.
-        save_models_path (str): Path where to save models.
-        save_models_format (str): Format for saved models.
-    
-    Returns:
-        None
-    """
-    bounds = pd.DataFrame([(rxn.lower_bound, rxn.upper_bound) for rxn in model.reactions], index=rxns_ids, columns=["lower_bound", "upper_bound"])
-    new_bounds = apply_ras_bounds(bounds, ras_row)
-    new_bounds.to_csv(output_folder + cellName + ".csv", sep='\t', index=True)
-    
-    # Save model if requested
-    if save_models:
-        modified_model = apply_bounds_to_model(model, new_bounds)
-        save_model(modified_model, cellName, save_models_path, save_models_format)
-    
-    return
-
-def generate_bounds_model(model: cobra.Model, ras=None, output_folder='output/', save_models=False, save_models_path='saved_models/', save_models_format='csv') -> pd.DataFrame:
-    """
-    Generate reaction bounds for a metabolic model based on medium conditions and optional RAS adjustments.
-    
-    Args:
-        model (cobra.Model): The metabolic model for which bounds will be generated.
-        ras (pd.DataFrame, optional): RAS pandas dataframe. Defaults to None.
-        output_folder (str, optional): Folder path where output CSV files will be saved. Defaults to 'output/'.
-        save_models (bool): Whether to save models with applied bounds.
-        save_models_path (str): Path where to save models.
-        save_models_format (str): Format for saved models.
-
-    Returns:
-        pd.DataFrame: DataFrame containing the bounds of reactions in the model.
-    """
-    rxns_ids = [rxn.id for rxn in model.reactions]            
-            
-    # Perform Flux Variability Analysis (FVA) on this medium
-    df_FVA = cobra.flux_analysis.flux_variability_analysis(model, fraction_of_optimum=0, processes=1).round(8)
-    
-    # Set FVA bounds
-    for reaction in rxns_ids:
-        model.reactions.get_by_id(reaction).lower_bound = float(df_FVA.loc[reaction, "minimum"])
-        model.reactions.get_by_id(reaction).upper_bound = float(df_FVA.loc[reaction, "maximum"])
-
-    if ras is not None:
-        Parallel(n_jobs=cpu_count())(delayed(process_ras_cell)(
-            cellName, ras_row, model, rxns_ids, output_folder, 
-            save_models, save_models_path, save_models_format
-        ) for cellName, ras_row in ras.iterrows())
-    else:
-        raise ValueError("RAS DataFrame is None. Cannot generate bounds without RAS data.")
-    return
-
-############################# main ###########################################
-def main(args:List[str] = None) -> None:
-    """
-    Initialize and execute RAS-to-bounds pipeline based on the frontend input arguments.
-
-    Returns:
-        None
-    """
-    if not os.path.exists('ras_to_bounds'):
-        os.makedirs('ras_to_bounds')
-
-    global ARGS
-    ARGS = process_args(args)
-
-
-    ras_file_list = ARGS.input_ras.split(",")
-    ras_file_names = ARGS.name.split(",")
-    if len(ras_file_names) != len(set(ras_file_names)):
-        error_message = "Duplicated file names in the uploaded RAS matrices."
-        warning(error_message)
-        raise ValueError(error_message)
-        
-    ras_class_names = []
-    for file in ras_file_names:
-        ras_class_names.append(file.rsplit(".", 1)[0])
-    ras_list = []
-    class_assignments = pd.DataFrame(columns=["Patient_ID", "Class"])
-    for ras_matrix, ras_class_name in zip(ras_file_list, ras_class_names):
-        ras = read_dataset(ras_matrix, "ras dataset")
-        ras.replace("None", None, inplace=True)
-        ras.set_index("Reactions", drop=True, inplace=True)
-        ras = ras.T
-        ras = ras.astype(float)
-        if(len(ras_file_list)>1):
-            # Append class name to patient id (DataFrame index)
-            ras.index = [f"{idx}_{ras_class_name}" for idx in ras.index]
-        else:
-            ras.index = [f"{idx}" for idx in ras.index]
-        ras_list.append(ras)
-        for patient_id in ras.index:
-            class_assignments.loc[class_assignments.shape[0]] = [patient_id, ras_class_name]
-    
-        
-    # Concatenate all RAS DataFrames into a single DataFrame
-        ras_combined = pd.concat(ras_list, axis=0)
-    # Normalize RAS values column-wise by max RAS
-        ras_combined = ras_combined.div(ras_combined.max(axis=0))
-        ras_combined.dropna(axis=1, how='all', inplace=True)
-
-    model = modelUtils.build_cobra_model_from_csv(ARGS.model_upload)
-
-    validation = modelUtils.validate_model(model)
-
-    print("\n=== MODEL VALIDATION ===")
-    for key, value in validation.items():
-        print(f"{key}: {value}")
-
-
-    generate_bounds_model(model, ras=ras_combined, output_folder=ARGS.output_path,
-                    save_models=ARGS.save_models, save_models_path=ARGS.save_models_path,
-                    save_models_format=ARGS.save_models_format)
-    class_assignments.to_csv(ARGS.cell_class, sep='\t', index=False)
-
-
-    return
-        
-##############################################################################
-if __name__ == "__main__":
+"""
+Apply RAS-based scaling to reaction bounds and optionally save updated models.
+
+Workflow:
+- Read one or more RAS matrices (patients/samples x reactions)
+- Normalize and merge them, optionally adding class suffixes to sample IDs
+- Build a COBRA model from a tabular CSV
+- Run FVA to initialize bounds, then scale per-sample based on RAS values
+- Save bounds per sample and optionally export updated models in chosen formats
+"""
+import argparse
+from typing import Optional, Dict, Set, List, Tuple, Union
+import os
+import numpy as np
+import pandas as pd
+import cobra
+from cobra import Model
+import sys
+from joblib import Parallel, delayed, cpu_count
+
+try:
+    from .utils import general_utils as utils
+    from .utils import model_utils as modelUtils
+except:
+    import utils.general_utils as utils
+    import utils.model_utils as modelUtils
+
+################################# process args ###############################
+def process_args(args :List[str] = None) -> argparse.Namespace:
+    """
+    Processes command-line arguments.
+
+    Args:
+        args (list): List of command-line arguments.
+
+    Returns:
+        Namespace: An object containing parsed arguments.
+    """
+    parser = argparse.ArgumentParser(usage = '%(prog)s [options]',
+                                     description = 'process some value\'s')
+    
+    
+    parser.add_argument("-mo", "--model_upload", type = str,
+        help = "path to input file with custom rules, if provided")
+
+    parser.add_argument('-ol', '--out_log', 
+                        help = "Output log")
+    
+    parser.add_argument('-td', '--tool_dir',
+                        type = str,
+                        default = os.path.dirname(os.path.abspath(__file__)),
+                        help = 'your tool directory (default: auto-detected package location)')
+    
+    parser.add_argument('-ir', '--input_ras',
+                        type=str,
+                        required = False,
+                        help = 'input ras')
+    
+    parser.add_argument('-rn', '--name',
+                type=str,
+                help = 'ras class names')
+
+    parser.add_argument('-cc', '--cell_class',
+                    type = str,
+                    help = 'output of cell class')
+    parser.add_argument(
+        '-idop', '--output_path', 
+        type = str,
+        default='ras_to_bounds/',
+        help = 'output path for maps')
+    
+    parser.add_argument('-sm', '--save_models',
+                    type=utils.Bool("save_models"),
+                    default=False,
+                    help = 'whether to save models with applied bounds')
+    
+    parser.add_argument('-smp', '--save_models_path',
+                        type = str,
+                        default='saved_models/',
+                        help = 'output path for saved models')
+    
+    parser.add_argument('-smf', '--save_models_format',
+                        type = str,
+                        default='csv',
+                        help = 'format for saved models (csv, xml, json, mat, yaml, tabular)')
+
+    
+    ARGS = parser.parse_args(args)
+    return ARGS
+
+########################### warning ###########################################
+def warning(s :str) -> None:
+    """
+    Log a warning message to an output log file and print it to the console.
+
+    Args:
+        s (str): The warning message to be logged and printed.
+    
+    Returns:
+      None
+    """
+    if ARGS.out_log:
+        with open(ARGS.out_log, 'a') as log:
+            log.write(s + "\n\n")
+    print(s)
+
+############################ dataset input ####################################
+def read_dataset(data :str, name :str) -> pd.DataFrame:
+    """
+    Read a dataset from a CSV file and return it as a pandas DataFrame.
+
+    Args:
+        data (str): Path to the CSV file containing the dataset.
+        name (str): Name of the dataset, used in error messages.
+
+    Returns:
+        pandas.DataFrame: DataFrame containing the dataset.
+
+    Raises:
+        pd.errors.EmptyDataError: If the CSV file is empty.
+        sys.exit: If the CSV file has the wrong format, the execution is aborted.
+    """
+    try:
+        dataset = pd.read_csv(data, sep = '\t', header = 0, engine='python')
+    except pd.errors.EmptyDataError:
+        sys.exit('Execution aborted: wrong format of ' + name + '\n')
+    if len(dataset.columns) < 2:
+        sys.exit('Execution aborted: wrong format of ' + name + '\n')
+    return dataset
+
+
+def apply_ras_bounds(bounds, ras_row):
+    """
+    Adjust the bounds of reactions in the model based on RAS values.
+
+    Args:
+        bounds (pd.DataFrame): Model bounds.
+        ras_row (pd.Series): A row from a RAS DataFrame containing scaling factors for reaction bounds.
+    Returns:
+        new_bounds (pd.DataFrame): integrated bounds.
+    """
+    new_bounds = bounds.copy()
+    for reaction in ras_row.index:
+        scaling_factor = ras_row[reaction]
+        if not np.isnan(scaling_factor):
+            lower_bound=bounds.loc[reaction, "lower_bound"]
+            upper_bound=bounds.loc[reaction, "upper_bound"]
+            valMax=float((upper_bound)*scaling_factor)
+            valMin=float((lower_bound)*scaling_factor)
+            if upper_bound!=0 and lower_bound==0:
+                new_bounds.loc[reaction, "upper_bound"] = valMax
+            if upper_bound==0 and lower_bound!=0:
+                new_bounds.loc[reaction, "lower_bound"] = valMin
+            if upper_bound!=0 and lower_bound!=0:
+                new_bounds.loc[reaction, "lower_bound"] = valMin
+                new_bounds.loc[reaction, "upper_bound"] = valMax
+    return new_bounds
+
+
+def save_model(model, filename, output_folder, file_format='csv'):
+    """
+    Save a COBRA model to file in the specified format.
+    
+    Args:
+        model (cobra.Model): The model to save.
+        filename (str): Base filename (without extension).
+        output_folder (str): Output directory.
+        file_format (str): File format ('xml', 'json', 'mat', 'yaml', 'tabular', 'csv').
+    
+    Returns:
+        None
+    """
+    if not os.path.exists(output_folder):
+        os.makedirs(output_folder)
+    
+    try:
+        if file_format == 'tabular' or file_format == 'csv':
+            # Special handling for tabular format using utils functions
+            filepath = os.path.join(output_folder, f"{filename}.csv")
+            
+            # Use unified function for tabular export
+            merged = modelUtils.export_model_to_tabular(
+                model=model,
+                output_path=filepath,
+                include_objective=True  
+            )
+            
+        else:
+            # Standard COBRA formats
+            filepath = os.path.join(output_folder, f"{filename}.{file_format}")
+            
+            if file_format == 'xml':
+                cobra.io.write_sbml_model(model, filepath)
+            elif file_format == 'json':
+                cobra.io.save_json_model(model, filepath)
+            elif file_format == 'mat':
+                cobra.io.save_matlab_model(model, filepath)
+            elif file_format == 'yaml':
+                cobra.io.save_yaml_model(model, filepath)
+            else:
+                raise ValueError(f"Unsupported format: {file_format}")
+        
+        print(f"Model saved: {filepath}")
+        
+    except Exception as e:
+        warning(f"Error saving model {filename}: {str(e)}")
+
+def apply_bounds_to_model(model, bounds):
+    """
+    Apply bounds from a DataFrame to a COBRA model.
+    
+    Args:
+        model (cobra.Model): The metabolic model to modify.
+        bounds (pd.DataFrame): DataFrame with reaction bounds.
+    
+    Returns:
+        cobra.Model: Modified model with new bounds.
+    """
+    model_copy = model.copy()
+    for reaction_id in bounds.index:
+        try:
+            reaction = model_copy.reactions.get_by_id(reaction_id)
+            reaction.lower_bound = bounds.loc[reaction_id, "lower_bound"]
+            reaction.upper_bound = bounds.loc[reaction_id, "upper_bound"]
+        except KeyError:
+            # Reaction not found in model, skip
+            continue
+    return model_copy
+
+def process_ras_cell(cellName, ras_row, model, rxns_ids, output_folder, save_models=False, save_models_path='saved_models/', save_models_format='csv'):
+    """
+    Process a single RAS cell, apply bounds, and save the bounds to a CSV file.
+
+    Args:
+        cellName (str): The name of the RAS cell (used for naming the output file).
+        ras_row (pd.Series): A row from a RAS DataFrame containing scaling factors for reaction bounds.
+        model (cobra.Model): The metabolic model to be modified.
+        rxns_ids (list of str): List of reaction IDs to which the scaling factors will be applied.
+        output_folder (str): Folder path where the output CSV file will be saved.
+        save_models (bool): Whether to save models with applied bounds.
+        save_models_path (str): Path where to save models.
+        save_models_format (str): Format for saved models.
+    
+    Returns:
+        None
+    """
+    bounds = pd.DataFrame([(rxn.lower_bound, rxn.upper_bound) for rxn in model.reactions], index=rxns_ids, columns=["lower_bound", "upper_bound"])
+    new_bounds = apply_ras_bounds(bounds, ras_row)
+    new_bounds.to_csv(output_folder + cellName + ".csv", sep='\t', index=True)
+    
+    # Save model if requested
+    if save_models:
+        modified_model = apply_bounds_to_model(model, new_bounds)
+        save_model(modified_model, cellName, save_models_path, save_models_format)
+    
+    return
+
+def generate_bounds_model(model: cobra.Model, ras=None, output_folder='output/', save_models=False, save_models_path='saved_models/', save_models_format='csv') -> pd.DataFrame:
+    """
+    Generate reaction bounds for a metabolic model based on medium conditions and optional RAS adjustments.
+    
+    Args:
+        model (cobra.Model): The metabolic model for which bounds will be generated.
+        ras (pd.DataFrame, optional): RAS pandas dataframe. Defaults to None.
+        output_folder (str, optional): Folder path where output CSV files will be saved. Defaults to 'output/'.
+        save_models (bool): Whether to save models with applied bounds.
+        save_models_path (str): Path where to save models.
+        save_models_format (str): Format for saved models.
+
+    Returns:
+        pd.DataFrame: DataFrame containing the bounds of reactions in the model.
+    """
+    rxns_ids = [rxn.id for rxn in model.reactions]            
+            
+    # Perform Flux Variability Analysis (FVA) on this medium
+    df_FVA = cobra.flux_analysis.flux_variability_analysis(model, fraction_of_optimum=0, processes=1).round(8)
+    
+    # Set FVA bounds
+    for reaction in rxns_ids:
+        model.reactions.get_by_id(reaction).lower_bound = float(df_FVA.loc[reaction, "minimum"])
+        model.reactions.get_by_id(reaction).upper_bound = float(df_FVA.loc[reaction, "maximum"])
+
+    if ras is not None:
+        Parallel(n_jobs=cpu_count())(delayed(process_ras_cell)(
+            cellName, ras_row, model, rxns_ids, output_folder, 
+            save_models, save_models_path, save_models_format
+        ) for cellName, ras_row in ras.iterrows())
+    else:
+        raise ValueError("RAS DataFrame is None. Cannot generate bounds without RAS data.")
+    return
+
+############################# main ###########################################
+def main(args:List[str] = None) -> None:
+    """
+    Initialize and execute RAS-to-bounds pipeline based on the frontend input arguments.
+
+    Returns:
+        None
+    """
+    if not os.path.exists('ras_to_bounds'):
+        os.makedirs('ras_to_bounds')
+
+    global ARGS
+    ARGS = process_args(args)
+
+
+    ras_file_list = ARGS.input_ras.split(",")
+    ras_file_names = ARGS.name.split(",")
+    if len(ras_file_names) != len(set(ras_file_names)):
+        error_message = "Duplicated file names in the uploaded RAS matrices."
+        warning(error_message)
+        raise ValueError(error_message)
+        
+    ras_class_names = []
+    for file in ras_file_names:
+        ras_class_names.append(file.rsplit(".", 1)[0])
+    ras_list = []
+    class_assignments = pd.DataFrame(columns=["Patient_ID", "Class"])
+    for ras_matrix, ras_class_name in zip(ras_file_list, ras_class_names):
+        ras = read_dataset(ras_matrix, "ras dataset")
+        ras.replace("None", None, inplace=True)
+        ras.set_index("Reactions", drop=True, inplace=True)
+        ras = ras.T
+        ras = ras.astype(float)
+        if(len(ras_file_list)>1):
+            # Append class name to patient id (DataFrame index)
+            ras.index = [f"{idx}_{ras_class_name}" for idx in ras.index]
+        else:
+            ras.index = [f"{idx}" for idx in ras.index]
+        ras_list.append(ras)
+        for patient_id in ras.index:
+            class_assignments.loc[class_assignments.shape[0]] = [patient_id, ras_class_name]
+    
+        
+    # Concatenate all RAS DataFrames into a single DataFrame
+        ras_combined = pd.concat(ras_list, axis=0)
+    # Normalize RAS values column-wise by max RAS
+        ras_combined = ras_combined.div(ras_combined.max(axis=0))
+        ras_combined.dropna(axis=1, how='all', inplace=True)
+
+    model = modelUtils.build_cobra_model_from_csv(ARGS.model_upload)
+
+    validation = modelUtils.validate_model(model)
+
+    print("\n=== MODEL VALIDATION ===")
+    for key, value in validation.items():
+        print(f"{key}: {value}")
+
+
+    generate_bounds_model(model, ras=ras_combined, output_folder=ARGS.output_path,
+                    save_models=ARGS.save_models, save_models_path=ARGS.save_models_path,
+                    save_models_format=ARGS.save_models_format)
+    class_assignments.to_csv(ARGS.cell_class, sep='\t', index=False)
+
+
+    return
+        
+##############################################################################
+if __name__ == "__main__":
     main()
\ No newline at end of file