Mercurial > repos > bimib > cobraxy
view COBRAxy/custom_data_generator.py @ 381:0a3ca20848f3 draft
Uploaded
author | francesco_lapi |
---|---|
date | Fri, 05 Sep 2025 09:18:26 +0000 |
parents | f4b83b3a3486 |
children | 8a1213d1393d |
line wrap: on
line source
import os import csv import cobra import pickle import argparse import pandas as pd import utils.general_utils as utils import utils.rule_parsing as rulesUtils from typing import Optional, Tuple, Union, List, Dict import utils.reaction_parsing as reactionUtils import openpyxl ARGS : argparse.Namespace def process_args(args: List[str] = None) -> argparse.Namespace: """ Parse command-line arguments for CustomDataGenerator. """ parser = argparse.ArgumentParser( usage="%(prog)s [options]", description="Generate custom data from a given model" ) parser.add_argument("--out_log", type=str, required=True, help="Output log file") parser.add_argument("--model", type=str, help="Built-in model identifier (e.g., ENGRO2, Recon, HMRcore)") parser.add_argument("--input", type=str, help="Custom model file (JSON or XML)") parser.add_argument("--name", type=str, required=True, help="Model name (default or custom)") parser.add_argument("--medium_selector", type=str, required=True, help="Medium selection option (default/custom)") parser.add_argument("--medium", type=str, help="Custom medium file if medium_selector=Custom") parser.add_argument("--output_format", type=str, choices=["tabular", "xlsx"], required=True, help="Output format: CSV (tabular) or Excel (xlsx)") parser.add_argument("--out_tabular", type=str, help="Output file for the merged dataset (CSV or XLSX)") parser.add_argument("--out_xlsx", type=str, help="Output file for the merged dataset (CSV or XLSX)") parser.add_argument("--tool_dir", type=str, default=os.path.dirname(__file__), help="Tool directory (passed from Galaxy as $__tool_directory__)") return parser.parse_args(args) ################################- INPUT DATA LOADING -################################ def load_custom_model(file_path :utils.FilePath, ext :Optional[utils.FileFormat] = None) -> cobra.Model: """ Loads a custom model from a file, either in JSON or XML format. Args: file_path : The path to the file containing the custom model. ext : explicit file extension. Necessary for standard use in galaxy because of its weird behaviour. Raises: DataErr : if the file is in an invalid format or cannot be opened for whatever reason. Returns: cobra.Model : the model, if successfully opened. """ ext = ext if ext else file_path.ext try: if ext is utils.FileFormat.XML: return cobra.io.read_sbml_model(file_path.show()) if ext is utils.FileFormat.JSON: return cobra.io.load_json_model(file_path.show()) except Exception as e: raise utils.DataErr(file_path, e.__str__()) raise utils.DataErr(file_path, f"Formato \"{file_path.ext}\" non riconosciuto, sono supportati solo file JSON e XML") ################################- DATA GENERATION -################################ ReactionId = str def generate_rules(model: cobra.Model, *, asParsed = True) -> Union[Dict[ReactionId, rulesUtils.OpList], Dict[ReactionId, str]]: """ Generates a dictionary mapping reaction ids to rules from the model. Args: model : the model to derive data from. asParsed : if True parses the rules to an optimized runtime format, otherwise leaves them as strings. Returns: Dict[ReactionId, rulesUtils.OpList] : the generated dictionary of parsed rules. Dict[ReactionId, str] : the generated dictionary of raw rules. """ # Is the below approach convoluted? yes # Ok but is it inefficient? probably # Ok but at least I don't have to repeat the check at every rule (I'm clinically insane) _ruleGetter = lambda reaction : reaction.gene_reaction_rule ruleExtractor = (lambda reaction : rulesUtils.parseRuleToNestedList(_ruleGetter(reaction))) if asParsed else _ruleGetter return { reaction.id : ruleExtractor(reaction) for reaction in model.reactions if reaction.gene_reaction_rule } def generate_reactions(model :cobra.Model, *, asParsed = True) -> Dict[ReactionId, str]: """ Generates a dictionary mapping reaction ids to reaction formulas from the model. Args: model : the model to derive data from. asParsed : if True parses the reactions to an optimized runtime format, otherwise leaves them as they are. Returns: Dict[ReactionId, str] : the generated dictionary. """ unparsedReactions = { reaction.id : reaction.reaction for reaction in model.reactions if reaction.reaction } if not asParsed: return unparsedReactions return reactionUtils.create_reaction_dict(unparsedReactions) def get_medium(model:cobra.Model) -> pd.DataFrame: trueMedium=[] for r in model.reactions: positiveCoeff=0 for m in r.metabolites: if r.get_coefficient(m.id)>0: positiveCoeff=1; if (positiveCoeff==0 and r.lower_bound<0): trueMedium.append(r.id) df_medium = pd.DataFrame() df_medium["reaction"] = trueMedium return df_medium def generate_bounds(model:cobra.Model) -> pd.DataFrame: rxns = [] for reaction in model.reactions: rxns.append(reaction.id) bounds = pd.DataFrame(columns = ["lower_bound", "upper_bound"], index=rxns) for reaction in model.reactions: bounds.loc[reaction.id] = [reaction.lower_bound, reaction.upper_bound] return bounds ###############################- FILE SAVING -################################ def save_as_csv_filePath(data :dict, file_path :utils.FilePath, fieldNames :Tuple[str, str]) -> None: """ Saves any dictionary-shaped data in a .csv file created at the given file_path as FilePath. Args: data : the data to be written to the file. file_path : the path to the .csv file. fieldNames : the names of the fields (columns) in the .csv file. Returns: None """ with open(file_path.show(), 'w', newline='') as csvfile: writer = csv.DictWriter(csvfile, fieldnames = fieldNames, dialect="excel-tab") writer.writeheader() for key, value in data.items(): writer.writerow({ fieldNames[0] : key, fieldNames[1] : value }) def save_as_csv(data :dict, file_path :str, fieldNames :Tuple[str, str]) -> None: """ Saves any dictionary-shaped data in a .csv file created at the given file_path as string. Args: data : the data to be written to the file. file_path : the path to the .csv file. fieldNames : the names of the fields (columns) in the .csv file. Returns: None """ with open(file_path, 'w', newline='') as csvfile: writer = csv.DictWriter(csvfile, fieldnames = fieldNames, dialect="excel-tab") writer.writeheader() for key, value in data.items(): writer.writerow({ fieldNames[0] : key, fieldNames[1] : value }) def save_as_tabular_df(df: pd.DataFrame, path: str) -> None: try: os.makedirs(os.path.dirname(path) or ".", exist_ok=True) df.to_csv(path, sep="\t", index=False) except Exception as e: raise utils.DataErr(path, f"failed writing tabular output: {e}") def save_as_xlsx_df(df: pd.DataFrame, path: str) -> None: try: if not path.lower().endswith(".xlsx"): path += ".xlsx" os.makedirs(os.path.dirname(path) or ".", exist_ok=True) df.to_excel(path, index=False) except Exception as e: raise utils.DataErr(path, f"failed writing xlsx output: {e}") ###############################- ENTRY POINT -################################ def main(args:List[str] = None) -> None: """ Initializes everything and sets the program in motion based on the fronted input arguments. Returns: None """ # get args from frontend (related xml) global ARGS ARGS = process_args(args) if ARGS.input: # load custom model model = load_custom_model( utils.FilePath.fromStrPath(ARGS.input), utils.FilePath.fromStrPath(ARGS.name).ext) else: # load built-in model try: model_enum = utils.Model[ARGS.model] # e.g., Model['ENGRO2'] except KeyError: raise utils.ArgsErr("model", "one of Recon/ENGRO2/HMRcore/Custom_model", ARGS.model) # Load built-in model (Model.getCOBRAmodel uses tool_dir to locate local models) try: model = model_enum.getCOBRAmodel(toolDir=ARGS.tool_dir) except Exception as e: # Wrap/normalize load errors as DataErr for consistency raise utils.DataErr(ARGS.model, f"failed loading built-in model: {e}") # Determine final model name: explicit --name overrides, otherwise use the model id model_name = ARGS.name if ARGS.name else ARGS.model # generate data rules = generate_rules(model, asParsed = False) reactions = generate_reactions(model, asParsed = False) bounds = generate_bounds(model) medium = get_medium(model) df_rules = pd.DataFrame(list(rules.items()), columns = ["ReactionID", "Rule"]) df_reactions = pd.DataFrame(list(reactions.items()), columns = ["ReactionID", "Reaction"]) df_bounds = bounds.reset_index().rename(columns = {"index": "ReactionID"}) df_medium = medium.rename(columns = {"reaction": "ReactionID"}) df_medium["InMedium"] = True # flag per indicare la presenza nel medium merged = df_reactions.merge(df_rules, on = "ReactionID", how = "outer") merged = merged.merge(df_bounds, on = "ReactionID", how = "outer") merged = merged.merge(df_medium, on = "ReactionID", how = "left") merged["InMedium"] = merged["InMedium"].fillna(False) merged = merged.sort_values(by = "InMedium", ascending = False) #out_file = os.path.join(ARGS.output_path, f"{os.path.basename(ARGS.name).split('.')[0]}_custom_data") #merged.to_csv(out_file, sep = '\t', index = False) #### # write only the requested output if ARGS.output_format == "xlsx": if not ARGS.out_xlsx: raise utils.ArgsErr("out_xlsx", "output path (--out_xlsx) is required when output_format == xlsx", ARGS.out_xlsx) save_as_xlsx_df(merged, ARGS.out_xlsx) expected = ARGS.out_xlsx else: if not ARGS.out_tabular: raise utils.ArgsErr("out_tabular", "output path (--out_tabular) is required when output_format == tabular", ARGS.out_tabular) save_as_tabular_df(merged, ARGS.out_tabular) expected = ARGS.out_tabular # verify output exists and non-empty if not expected or not os.path.exists(expected) or os.path.getsize(expected) == 0: raise utils.DataErr(expected, "Output non creato o vuoto") print("CustomDataGenerator: completed successfully") if __name__ == '__main__': main()