comparison Marea/marea.py @ 0:23ac9cf12788 draft

Uploaded
author bimib
date Tue, 06 Nov 2018 03:16:21 -0500
parents
children 7c76e8e319c2
comparison
equal deleted inserted replaced
-1:000000000000 0:23ac9cf12788
1
2 from __future__ import division
3 import sys
4 import pandas as pd
5 import itertools as it
6 import scipy.stats as st
7 import collections
8 import lxml.etree as ET
9 import pickle as pk
10 import math
11 import os
12 import argparse
13 from svglib.svglib import svg2rlg
14 from reportlab.graphics import renderPDF
15
16 ########################## argparse ###########################################
17
18 def process_args(args):
19 parser = argparse.ArgumentParser(usage = '%(prog)s [options]',
20 description = 'process some value\'s'+
21 ' genes to create a comparison\'s map.')
22 parser.add_argument('-rs', '--rules_selector',
23 type = str,
24 default = 'HMRcore',
25 choices = ['HMRcore', 'Recon', 'Custom'],
26 help = 'chose which type of dataset you want use')
27 parser.add_argument('-cr', '--custom',
28 type = str,
29 help='your dataset if you want custom rules')
30 parser.add_argument('-na', '--names',
31 type = str,
32 nargs = '+',
33 help = 'input names')
34 parser.add_argument('-n', '--none',
35 type = str,
36 default = 'true',
37 choices = ['true', 'false'],
38 help = 'compute Nan values')
39 parser.add_argument('-pv' ,'--pValue',
40 type = float,
41 default = 0.05,
42 help = 'P-Value threshold (default: %(default)s)')
43 parser.add_argument('-fc', '--fChange',
44 type = float,
45 default = 1.5,
46 help = 'Fold-Change threshold (default: %(default)s)')
47 parser.add_argument('-td', '--tool_dir',
48 type = str,
49 required = True,
50 help = 'your tool directory')
51 parser.add_argument('-op', '--option',
52 type = str,
53 choices = ['datasets', 'dataset_class'],
54 help='dataset or dataset and class')
55 parser.add_argument('-ol', '--out_log',
56 help = "Output log")
57 parser.add_argument('-ids', '--input_datas',
58 type = str,
59 nargs = '+',
60 help = 'input datasets')
61 parser.add_argument('-id', '--input_data',
62 type = str,
63 help = 'input dataset')
64 parser.add_argument('-ic', '--input_class',
65 type = str,
66 help = 'sample group specification')
67 parser.add_argument('-cm', '--custom_map',
68 type = str,
69 help = 'custom map')
70 parser.add_argument('-yn', '--yes_no',
71 type = str,
72 choices = ['yes', 'no'],
73 help = 'if make or not custom map')
74 args = parser.parse_args()
75 return args
76
77 ########################### warning ###########################################
78
79 def warning(s):
80 args = process_args(sys.argv)
81 with open(args.out_log, 'a') as log:
82 log.write(s)
83
84 ############################ dataset input ####################################
85
86 def read_dataset(data, name):
87 try:
88 dataset = pd.read_csv(data, sep = '\t', header = 0)
89 except pd.errors.EmptyDataError:
90 sys.exit('Execution aborted: wrong format of ' + name + '\n')
91 if len(dataset.columns) < 2:
92 sys.exit('Execution aborted: wrong format of ' + name + '\n')
93 return dataset
94
95 ############################ dataset name #####################################
96
97 def name_dataset(name_data, count):
98 if str(name_data) == 'Dataset':
99 return str(name_data) + '_' + str(count)
100 else:
101 return str(name_data)
102
103 ############################ load id e rules ##################################
104
105 def load_id_rules(reactions):
106 ids, rules = [], []
107 for key, value in reactions.items():
108 ids.append(key)
109 rules.append(value)
110 return (ids, rules)
111
112 ############################ check_methods ####################################
113
114 def gene_type(l, name):
115 if check_hgnc(l):
116 return 'hugo_id'
117 elif check_ensembl(l):
118 return 'ensembl_gene_id'
119 elif check_symbol(l):
120 return 'symbol'
121 elif check_entrez(l):
122 return 'entrez_id'
123 else:
124 sys.exit('Execution aborted:\n' +
125 'gene ID type in ' + name + ' not supported. Supported ID'+
126 'types are: HUGO ID, Ensemble ID, HUGO symbol, Entrez ID\n')
127
128 def check_hgnc(l):
129 if len(l) > 5:
130 if (l.upper()).startswith('HGNC:'):
131 return l[5:].isdigit()
132 else:
133 return False
134 else:
135 return False
136
137 def check_ensembl(l):
138 if len(l) == 15:
139 if (l.upper()).startswith('ENS'):
140 return l[4:].isdigit()
141 else:
142 return False
143 else:
144 return False
145
146 def check_symbol(l):
147 if len(l) > 0:
148 if l[0].isalpha() and l[1:].isalnum():
149 return True
150 else:
151 return False
152 else:
153 return False
154
155 def check_entrez(l):
156 if len(l) > 0:
157 return l.isdigit()
158 else:
159 return False
160
161 def check_bool(b):
162 if b == 'true':
163 return True
164 elif b == 'false':
165 return False
166
167 ############################ resolve_methods ##################################
168
169 def replace_gene_value(l, d):
170 tmp = []
171 err = []
172 while l:
173 if isinstance(l[0], list):
174 tmp_rules, tmp_err = replace_gene_value(l[0], d)
175 tmp.append(tmp_rules)
176 err.extend(tmp_err)
177 else:
178 value = replace_gene(l[0], d)
179 tmp.append(value)
180 if value == None:
181 err.append(l[0])
182 l = l[1:]
183 return (tmp, err)
184
185 def replace_gene(l, d):
186 if l =='and' or l == 'or':
187 return l
188 else:
189 value = d.get(l, None)
190 if not(value == None or isinstance(value, (int, float))):
191 sys.exit('Execution aborted: ' + value + ' value not valid\n')
192 return value
193
194 def computes(val1, op, val2, cn):
195 if val1 != None and val2 != None:
196 if op == 'and':
197 return min(val1, val2)
198 else:
199 return val1 + val2
200 elif op == 'and':
201 if cn is True:
202 if val1 != None:
203 return val1
204 elif val2 != None:
205 return val2
206 else:
207 return None
208 else:
209 return None
210 else:
211 if val1 != None:
212 return val1
213 elif val2 != None:
214 return val2
215 else:
216 return None
217
218 def control(ris, l, cn):
219 if len(l) == 1:
220 if isinstance(l[0], (float, int)) or l[0] == None:
221 return l[0]
222 elif isinstance(l[0], list):
223 return control(None, l[0], cn)
224 else:
225 return False
226 elif len(l) > 2:
227 return control_list(ris, l, cn)
228 else:
229 return False
230
231 def control_list(ris, l, cn):
232 while l:
233 if len(l) == 1:
234 return False
235 elif (isinstance(l[0], (float, int)) or
236 l[0] == None) and l[1] in ['and', 'or']:
237 if isinstance(l[2], (float, int)) or l[2] == None:
238 ris = computes(l[0], l[1], l[2], cn)
239 elif isinstance(l[2], list):
240 tmp = control(None, l[2], cn)
241 if tmp is False:
242 return False
243 else:
244 ris = computes(l[0], l[1], tmp, cn)
245 else:
246 return False
247 l = l[3:]
248 elif l[0] in ['and', 'or']:
249 if isinstance(l[1], (float, int)) or l[1] == None:
250 ris = computes(ris, l[0], l[1], cn)
251 elif isinstance(l[1], list):
252 tmp = control(None,l[1], cn)
253 if tmp is False:
254 return False
255 else:
256 ris = computes(ris, l[0], tmp, cn)
257 else:
258 return False
259 l = l[2:]
260 elif isinstance(l[0], list) and l[1] in ['and', 'or']:
261 if isinstance(l[2], (float, int)) or l[2] == None:
262 tmp = control(None, l[0], cn)
263 if tmp is False:
264 return False
265 else:
266 ris = computes(tmp, l[1], l[2], cn)
267 elif isinstance(l[2], list):
268 tmp = control(None, l[0], cn)
269 tmp2 = control(None, l[2], cn)
270 if tmp is False or tmp2 is False:
271 return False
272 else:
273 ris = computes(tmp, l[1], tmp2, cn)
274 else:
275 return False
276 l = l[3:]
277 else:
278 return False
279 return ris
280
281 ############################ map_methods ######################################
282
283 def fold_change(avg1, avg2):
284 if avg1 == 0 and avg2 == 0:
285 return 0
286 elif avg1 == 0:
287 return '-INF'
288 elif avg2 == 0:
289 return 'INF'
290 else:
291 return math.log(avg1 / avg2, 2)
292
293 def fix_style(l, col, width, dash):
294 tmp = l.split(';')
295 flag_col = False
296 flag_width = False
297 flag_dash = False
298 for i in range(len(tmp)):
299 if tmp[i].startswith('stroke:'):
300 tmp[i] = 'stroke:' + col
301 flag_col = True
302 if tmp[i].startswith('stroke-width:'):
303 tmp[i] = 'stroke-width:' + width
304 flag_width = True
305 if tmp[i].startswith('stroke-dasharray:'):
306 tmp[i] = 'stroke-dasharray:' + dash
307 flag_dash = True
308 if not flag_col:
309 tmp.append('stroke:' + col)
310 if not flag_width:
311 tmp.append('stroke-width:' + width)
312 if not flag_dash:
313 tmp.append('stroke-dasharray:' + dash)
314 return ';'.join(tmp)
315
316 def fix_map(d, core_map, threshold_P_V, threshold_F_C, max_F_C):
317 maxT = 12
318 minT = 2
319 grey = '#BEBEBE'
320 blue = '#0000FF'
321 red = '#E41A1C'
322 for el in core_map.iter():
323 el_id = str(el.get('id'))
324 if el_id.startswith('R_'):
325 tmp = d.get(el_id[2:])
326 if tmp != None:
327 p_val = tmp[0]
328 f_c = tmp[1]
329 if p_val < threshold_P_V:
330 if not isinstance(f_c, str):
331 if abs(f_c) < math.log(threshold_F_C, 2):
332 col = grey
333 width = str(minT)
334 else:
335 if f_c < 0:
336 col = blue
337 elif f_c > 0:
338 col = red
339 width = str(max((abs(f_c) * maxT) / max_F_C, minT))
340 else:
341 if f_c == '-INF':
342 col = blue
343 elif f_c == 'INF':
344 col = red
345 width = str(maxT)
346 dash = 'none'
347 else:
348 dash = '5,5'
349 col = grey
350 width = str(minT)
351 el.set('style', fix_style(el.get('style'), col, width, dash))
352 return core_map
353
354 ############################ make recon #######################################
355
356 def check_and_doWord(l):
357 tmp = []
358 tmp_genes = []
359 count = 0
360 while l:
361 if count >= 0:
362 if l[0] == '(':
363 count += 1
364 tmp.append(l[0])
365 l.pop(0)
366 elif l[0] == ')':
367 count -= 1
368 tmp.append(l[0])
369 l.pop(0)
370 elif l[0] == ' ':
371 l.pop(0)
372 else:
373 word = []
374 while l:
375 if l[0] in [' ', '(', ')']:
376 break
377 else:
378 word.append(l[0])
379 l.pop(0)
380 word = ''.join(word)
381 tmp.append(word)
382 if not(word in ['or', 'and']):
383 tmp_genes.append(word)
384 else:
385 return False
386 if count == 0:
387 return (tmp, tmp_genes)
388 else:
389 return False
390
391 def brackets_to_list(l):
392 tmp = []
393 while l:
394 if l[0] == '(':
395 l.pop(0)
396 tmp.append(resolve_brackets(l))
397 else:
398 tmp.append(l[0])
399 l.pop(0)
400 return tmp
401
402 def resolve_brackets(l):
403 tmp = []
404 while l[0] != ')':
405 if l[0] == '(':
406 l.pop(0)
407 tmp.append(resolve_brackets(l))
408 else:
409 tmp.append(l[0])
410 l.pop(0)
411 l.pop(0)
412 return tmp
413
414 def priorityAND(l):
415 tmp = []
416 flag = True
417 while l:
418 if len(l) == 1:
419 if isinstance(l[0], list):
420 tmp.append(priorityAND(l[0]))
421 else:
422 tmp.append(l[0])
423 l = l[1:]
424 elif l[0] == 'or':
425 tmp.append(l[0])
426 flag = False
427 l = l[1:]
428 elif l[1] == 'or':
429 if isinstance(l[0], list):
430 tmp.append(priorityAND(l[0]))
431 else:
432 tmp.append(l[0])
433 tmp.append(l[1])
434 flag = False
435 l = l[2:]
436 elif l[1] == 'and':
437 tmpAnd = []
438 if isinstance(l[0], list):
439 tmpAnd.append(priorityAND(l[0]))
440 else:
441 tmpAnd.append(l[0])
442 tmpAnd.append(l[1])
443 if isinstance(l[2], list):
444 tmpAnd.append(priorityAND(l[2]))
445 else:
446 tmpAnd.append(l[2])
447 l = l[3:]
448 while l:
449 if l[0] == 'and':
450 tmpAnd.append(l[0])
451 if isinstance(l[1], list):
452 tmpAnd.append(priorityAND(l[1]))
453 else:
454 tmpAnd.append(l[1])
455 l = l[2:]
456 elif l[0] == 'or':
457 flag = False
458 break
459 if flag == True: #se ci sono solo AND nella lista
460 tmp.extend(tmpAnd)
461 elif flag == False:
462 tmp.append(tmpAnd)
463 return tmp
464
465 def checkRule(l):
466 if len(l) == 1:
467 if isinstance(l[0], list):
468 if checkRule(l[0]) is False:
469 return False
470 elif len(l) > 2:
471 if checkRule2(l) is False:
472 return False
473 else:
474 return False
475 return True
476
477 def checkRule2(l):
478 while l:
479 if len(l) == 1:
480 return False
481 elif isinstance(l[0], list) and l[1] in ['and', 'or']:
482 if checkRule(l[0]) is False:
483 return False
484 if isinstance(l[2], list):
485 if checkRule(l[2]) is False:
486 return False
487 l = l[3:]
488 elif l[1] in ['and', 'or']:
489 if isinstance(l[2], list):
490 if checkRule(l[2]) is False:
491 return False
492 l = l[3:]
493 elif l[0] in ['and', 'or']:
494 if isinstance(l[1], list):
495 if checkRule(l[1]) is False:
496 return False
497 l = l[2:]
498 else:
499 return False
500 return True
501
502 def do_rules(rules):
503 split_rules = []
504 err_rules = []
505 tmp_gene_in_rule = []
506 for i in range(len(rules)):
507 tmp = list(rules[i])
508 if tmp:
509 tmp, tmp_genes = check_and_doWord(tmp)
510 tmp_gene_in_rule.extend(tmp_genes)
511 if tmp is False:
512 split_rules.append([])
513 err_rules.append(rules[i])
514 else:
515 tmp = brackets_to_list(tmp)
516 if checkRule(tmp):
517 split_rules.append(priorityAND(tmp))
518 else:
519 split_rules.append([])
520 err_rules.append(rules[i])
521 else:
522 split_rules.append([])
523 if err_rules:
524 warning('Warning: wrong format rule in ' + str(err_rules) + '\n')
525 return (split_rules, list(set(tmp_gene_in_rule)))
526
527 def make_recon(data):
528 try:
529 import cobra as cb
530 import warnings
531 with warnings.catch_warnings():
532 warnings.simplefilter('ignore')
533 recon = cb.io.read_sbml_model(data)
534 react = recon.reactions
535 rules = [react[i].gene_reaction_rule for i in range(len(react))]
536 ids = [react[i].id for i in range(len(react))]
537 except cb.io.sbml3.CobraSBMLError:
538 try:
539 data = (pd.read_csv(data, sep = '\t', dtype = str)).fillna('')
540 if len(data.columns) < 2:
541 sys.exit('Execution aborted: wrong format of '+
542 'custom datarules\n')
543 if not len(data.columns) == 2:
544 warning('Warning: more than 2 columns in custom datarules.\n' +
545 'Extra columns have been disregarded\n')
546 ids = list(data.iloc[:, 0])
547 rules = list(data.iloc[:, 1])
548 except pd.errors.EmptyDataError:
549 sys.exit('Execution aborted: wrong format of custom datarules\n')
550 except pd.errors.ParserError:
551 sys.exit('Execution aborted: wrong format of custom datarules\n')
552 split_rules, tmp_genes = do_rules(rules)
553 gene_in_rule = {}
554 for i in tmp_genes:
555 gene_in_rule[i] = 'ok'
556 return (ids, split_rules, gene_in_rule)
557
558 ############################ gene #############################################
559
560 def data_gene(gene, type_gene, name, gene_custom):
561 args = process_args(sys.argv)
562 for i in range(len(gene)):
563 tmp = gene.iloc[i, 0]
564 if tmp.startswith(' ') or tmp.endswith(' '):
565 gene.iloc[i, 0] = (tmp.lstrip()).rstrip()
566 gene_dup = [item for item, count in
567 collections.Counter(gene[gene.columns[0]]).items() if count > 1]
568 pat_dup = [item for item, count in
569 collections.Counter(list(gene.columns)).items() if count > 1]
570 if gene_dup:
571 if gene_custom == None:
572 if args.rules_selector == 'HMRcore':
573 gene_in_rule = pk.load(open(args.tool_dir +
574 '/local/HMRcore_genes.p', 'rb'))
575 elif args.rules_selector == 'Recon':
576 gene_in_rule = pk.load(open(args.tool_dir +
577 '/local/Recon_genes.p', 'rb'))
578 gene_in_rule = gene_in_rule.get(type_gene)
579 else:
580 gene_in_rule = gene_custom
581 tmp = []
582 for i in gene_dup:
583 if gene_in_rule.get(i) == 'ok':
584 tmp.append(i)
585 if tmp:
586 sys.exit('Execution aborted because gene ID '
587 +str(tmp)+' in '+name+' is duplicated\n')
588 if pat_dup:
589 warning('Warning: duplicated label\n' + str(pat_dup) + 'in ' + name +
590 '\n')
591 return (gene.set_index(gene.columns[0])).to_dict()
592
593 ############################ resolve ##########################################
594
595 def resolve(genes, rules, ids, resolve_none, name):
596 resolve_rules = {}
597 not_found = []
598 flag = False
599 for key, value in genes.items():
600 tmp_resolve = []
601 for i in range(len(rules)):
602 tmp = rules[i]
603 if tmp:
604 tmp, err = replace_gene_value(tmp, value)
605 if err:
606 not_found.extend(err)
607 ris = control(None, tmp, resolve_none)
608 if ris is False or ris == None:
609 tmp_resolve.append(None)
610 else:
611 tmp_resolve.append(ris)
612 flag = True
613 else:
614 tmp_resolve.append(None)
615 resolve_rules[key] = tmp_resolve
616 if flag is False:
617 warning('Warning: no computable score (due to missing gene values)' +
618 'for class ' + name + ', the class has been disregarded\n')
619 return (None, None)
620 return (resolve_rules, list(set(not_found)))
621
622 ############################ split class ######################################
623
624 def split_class(classes, resolve_rules):
625 class_pat = {}
626 for i in range(len(classes)):
627 classe = classes.iloc[i, 1]
628 if not pd.isnull(classe):
629 l = []
630 for j in range(i, len(classes)):
631 if classes.iloc[j, 1] == classe:
632 pat_id = classes.iloc[j, 0]
633 tmp = resolve_rules.get(pat_id, None)
634 if tmp != None:
635 l.append(tmp)
636 classes.iloc[j, 1] = None
637 if l:
638 class_pat[classe] = list(map(list, zip(*l)))
639 else:
640 warning('Warning: no sample found in class ' + classe +
641 ', the class has been disregarded\n')
642 return class_pat
643
644 ############################ map ##############################################
645
646 def maps(core_map, class_pat, ids, threshold_P_V, threshold_F_C):
647 args = process_args(sys.argv)
648 if (not class_pat) or (len(class_pat.keys()) < 2):
649 sys.exit('Execution aborted: classes provided for comparisons are ' +
650 'less than two\n')
651 for i, j in it.combinations(class_pat.keys(), 2):
652 tmp = {}
653 count = 0
654 max_F_C = 0
655 for l1, l2 in zip(class_pat.get(i), class_pat.get(j)):
656 try:
657 stat_D, p_value = st.ks_2samp(l1, l2)
658 avg = fold_change(sum(l1) / len(l1), sum(l2) / len(l2))
659 if not isinstance(avg, str):
660 if max_F_C < abs(avg):
661 max_F_C = abs(avg)
662 tmp[ids[count]] = [float(p_value), avg]
663 count += 1
664 except (TypeError, ZeroDivisionError):
665 count += 1
666 tab = 'table_out/' + i + '_vs_' + j + '.tsv'
667 tmp_csv = pd.DataFrame.from_dict(tmp, orient = "index")
668 tmp_csv = tmp_csv.reset_index()
669 header = ['ids', 'P_Value', 'Average']
670 tmp_csv.to_csv(tab, sep = '\t', index = False, header = header)
671 if args.rules_selector == 'HMRcore' or (args.rules_selector == 'Custom'
672 and args.yes_no == 'yes'):
673 fix_map(tmp, core_map, threshold_P_V, threshold_F_C, max_F_C)
674 file_svg = 'map_svg/' + i + '_vs_' + j + '.svg'
675 with open(file_svg, 'wb') as new_map:
676 new_map.write(ET.tostring(core_map, encoding='UTF-8',
677 method='xml'))
678 file_pdf = 'map_pdf/' + i + '_vs_' + j + '.pdf'
679 renderPDF.drawToFile(svg2rlg(file_svg), file_pdf)
680 return None
681
682 ############################ MAIN #############################################
683
684 def main():
685 args = process_args(sys.argv)
686 os.makedirs('table_out')
687 if args.rules_selector == 'HMRcore':
688 os.makedirs('map_svg')
689 os.makedirs('map_pdf')
690 recon = pk.load(open(args.tool_dir + '/local/HMRcore_rules.p', 'rb'))
691 elif args.rules_selector == 'Recon':
692 recon = pk.load(open(args.tool_dir + '/local/Recon_rules.p', 'rb'))
693 elif args.rules_selector == 'Custom':
694 ids, rules, gene_in_rule = make_recon(args.custom)
695 resolve_none = check_bool(args.none)
696 class_pat = {}
697 if args.option == 'datasets':
698 num = 1
699 #if len(args.names) != len(set(args.names)):
700 # sys.exit('Execution aborted: datasets name duplicated')
701 for i, j in zip(args.input_datas, args.names):
702 name = name_dataset(j, num)
703 dataset = read_dataset(i, name)
704 dataset.iloc[:, 0] = (dataset.iloc[:, 0]).astype(str)
705 type_gene = gene_type(dataset.iloc[0, 0], name)
706 if args.rules_selector != 'Custom':
707 genes = data_gene(dataset, type_gene, name, None)
708 ids, rules = load_id_rules(recon.get(type_gene))
709 elif args.rules_selector == 'Custom':
710 genes = data_gene(dataset, type_gene, name, gene_in_rule)
711 resolve_rules, err = resolve(genes, rules, ids, resolve_none, name)
712 if err != None and err:
713 warning('Warning: gene\n' + str(err) + '\nnot found in class '
714 + name + ', the expression level for this gene ' +
715 'will be considered NaN\n')
716 if resolve_rules != None:
717 class_pat[name] = list(map(list, zip(*resolve_rules.values())))
718 num += 1
719 elif args.option == 'dataset_class':
720 name = 'RNAseq'
721 dataset = read_dataset(args.input_data, name)
722 dataset.iloc[:, 0] = (dataset.iloc[:, 0]).astype(str)
723 type_gene = gene_type(dataset.iloc[0, 0], name)
724 classes = read_dataset(args.input_class, 'class')
725 if not len(classes.columns) == 2:
726 warning('Warning: more than 2 columns in class file. Extra' +
727 'columns have been disregarded\n')
728 classes = classes.astype(str)
729 if args.rules_selector != 'Custom':
730 genes = data_gene(dataset, type_gene, name, None)
731 ids, rules = load_id_rules(recon.get(type_gene))
732 elif args.rules_selector == 'Custom':
733 genes = data_gene(dataset, type_gene, name, gene_in_rule)
734 resolve_rules, err = resolve(genes, rules, ids, resolve_none, name)
735 if err != None and err:
736 warning('Warning: gene\n'+str(err)+'\nnot found in class '
737 + name + ', the expression level for this gene ' +
738 'will be considered NaN\n')
739 if resolve_rules != None:
740 class_pat = split_class(classes, resolve_rules)
741 if args.rules_selector == 'Custom':
742 if args.yes_no == 'yes':
743 os.makedirs('map_svg')
744 os.makedirs('map_pdf')
745 try:
746 core_map = ET.parse(args.custom_map)
747 except (ET.XMLSyntaxError, ET.XMLSchemaParseError):
748 sys.exit('Execution aborted: custom map in wrong format')
749 elif args.yes_no == 'no':
750 core_map = ET.parse(args.tool_dir + '/local/HMRcoreMap.svg')
751 else:
752 core_map = ET.parse(args.tool_dir+'/local/HMRcoreMap.svg')
753 maps(core_map, class_pat, ids, args.pValue, args.fChange)
754 warning('Execution succeeded')
755 return None
756
757 ###############################################################################
758
759 if __name__ == "__main__":
760 main()