Mercurial > repos > bimib > marea
comparison Marea/marea.py @ 47:3af9d394367c draft
Uploaded
| author | bimib |
|---|---|
| date | Wed, 19 Feb 2020 10:44:52 -0500 |
| parents | 7b1971251c63 |
| children | e4235b5231e4 |
comparison
equal
deleted
inserted
replaced
| 46:5d5d01ef1d68 | 47:3af9d394367c |
|---|---|
| 24 choices = ['HMRcore', 'Recon', 'Custom'], | 24 choices = ['HMRcore', 'Recon', 'Custom'], |
| 25 help = 'chose which type of dataset you want use') | 25 help = 'chose which type of dataset you want use') |
| 26 parser.add_argument('-cr', '--custom', | 26 parser.add_argument('-cr', '--custom', |
| 27 type = str, | 27 type = str, |
| 28 help='your dataset if you want custom rules') | 28 help='your dataset if you want custom rules') |
| 29 parser.add_argument('-na', '--names', | |
| 30 type = str, | |
| 31 nargs = '+', | |
| 32 help = 'input names') | |
| 33 parser.add_argument('-n', '--none', | 29 parser.add_argument('-n', '--none', |
| 34 type = str, | 30 type = str, |
| 35 default = 'true', | 31 default = 'true', |
| 36 choices = ['true', 'false'], | 32 choices = ['true', 'false'], |
| 37 help = 'compute Nan values') | 33 help = 'compute Nan values') |
| 38 parser.add_argument('-pv' ,'--pValue', | 34 parser.add_argument('-pv' ,'--pValue', |
| 39 type = float, | 35 type = float, |
| 40 default = 0.05, | 36 default = 0.1, |
| 41 help = 'P-Value threshold (default: %(default)s)') | 37 help = 'P-Value threshold (default: %(default)s)') |
| 42 parser.add_argument('-fc', '--fChange', | 38 parser.add_argument('-fc', '--fChange', |
| 43 type = float, | 39 type = float, |
| 44 default = 1.5, | 40 default = 1.5, |
| 45 help = 'Fold-Change threshold (default: %(default)s)') | 41 help = 'Fold-Change threshold (default: %(default)s)') |
| 47 type = str, | 43 type = str, |
| 48 required = True, | 44 required = True, |
| 49 help = 'your tool directory') | 45 help = 'your tool directory') |
| 50 parser.add_argument('-op', '--option', | 46 parser.add_argument('-op', '--option', |
| 51 type = str, | 47 type = str, |
| 52 choices = ['datasets', 'dataset_class', 'datasets_rasonly'], | 48 choices = ['datasets', 'dataset_class'], |
| 53 help='dataset or dataset and class') | 49 help='dataset or dataset and class') |
| 54 parser.add_argument('-ol', '--out_log', | 50 parser.add_argument('-ol', '--out_log', |
| 55 help = "Output log") | 51 help = "Output log") |
| 56 parser.add_argument('-ids', '--input_datas', | |
| 57 type = str, | |
| 58 nargs = '+', | |
| 59 help = 'input datasets') | |
| 60 parser.add_argument('-id', '--input_data', | 52 parser.add_argument('-id', '--input_data', |
| 61 type = str, | 53 type = str, |
| 62 help = 'input dataset') | 54 help = 'input dataset') |
| 63 parser.add_argument('-ic', '--input_class', | 55 parser.add_argument('-ic', '--input_class', |
| 64 type = str, | 56 type = str, |
| 78 parser.add_argument('-gp', '--generate_pdf', | 70 parser.add_argument('-gp', '--generate_pdf', |
| 79 type = str, | 71 type = str, |
| 80 default = 'true', | 72 default = 'true', |
| 81 choices = ['true', 'false'], | 73 choices = ['true', 'false'], |
| 82 help = 'generate pdf map') | 74 help = 'generate pdf map') |
| 83 parser.add_argument('-gr', '--generate_ras', | 75 parser.add_argument('-on', '--control', |
| 76 type = str) | |
| 77 parser.add_argument('-co', '--comparison', | |
| 78 type = str, | |
| 79 default = '1vs1', | |
| 80 choices = ['manyvsmany', 'onevsrest', 'onevsmany']) | |
| 81 parser.add_argument('-ids', '--input_datas', | |
| 84 type = str, | 82 type = str, |
| 85 default = 'true', | 83 nargs = '+', |
| 86 choices = ['true', 'false'], | 84 help = 'input datasets') |
| 87 help = 'generate reaction activity score') | 85 parser.add_argument('-na', '--names', |
| 88 parser.add_argument('-sr', '--single_ras_file', | 86 type = str, |
| 89 type = str, | 87 nargs = '+', |
| 90 help = 'file that will contain ras') | 88 help = 'input names') |
| 91 | 89 |
| 92 args = parser.parse_args() | 90 args = parser.parse_args() |
| 93 return args | 91 return args |
| 94 | 92 |
| 95 ########################### warning ########################################### | 93 ########################### warning ########################################### |
| 96 | 94 |
| 613 | 611 |
| 614 ############################ resolve ########################################## | 612 ############################ resolve ########################################## |
| 615 | 613 |
| 616 def resolve(genes, rules, ids, resolve_none, name): | 614 def resolve(genes, rules, ids, resolve_none, name): |
| 617 resolve_rules = {} | 615 resolve_rules = {} |
| 618 names_array = [] | |
| 619 not_found = [] | 616 not_found = [] |
| 620 flag = False | 617 flag = False |
| 621 for key, value in genes.items(): | 618 for key, value in genes.items(): |
| 622 tmp_resolve = [] | 619 tmp_resolve = [] |
| 623 for i in range(len(rules)): | 620 for i in range(len(rules)): |
| 661 else: | 658 else: |
| 662 warning('Warning: no sample found in class ' + classe + | 659 warning('Warning: no sample found in class ' + classe + |
| 663 ', the class has been disregarded\n') | 660 ', the class has been disregarded\n') |
| 664 return class_pat | 661 return class_pat |
| 665 | 662 |
| 666 ############################ create_ras ####################################### | |
| 667 | |
| 668 def create_ras (resolve_rules, dataset_name, single_ras, rules, ids): | |
| 669 | |
| 670 if resolve_rules == None: | |
| 671 warning("Couldn't generate RAS for current dataset: " + dataset_name) | |
| 672 | |
| 673 for geni in resolve_rules.values(): | |
| 674 for i, valori in enumerate(geni): | |
| 675 if valori == None: | |
| 676 geni[i] = 'None' | |
| 677 | |
| 678 output_ras = pd.DataFrame.from_dict(resolve_rules) | |
| 679 | |
| 680 output_ras.insert(0, 'Reactions', ids) | |
| 681 output_to_csv = pd.DataFrame.to_csv(output_ras, sep = '\t', index = False) | |
| 682 | |
| 683 if (single_ras): | |
| 684 args = process_args(sys.argv) | |
| 685 text_file = open(args.single_ras_file, "w") | |
| 686 else: | |
| 687 text_file = open("ras/Reaction_Activity_Score_Of_" + dataset_name + ".tsv", "w") | |
| 688 | |
| 689 text_file.write(output_to_csv) | |
| 690 text_file.close() | |
| 691 | |
| 692 ############################ map ############################################## | 663 ############################ map ############################################## |
| 693 | 664 |
| 694 def maps(core_map, class_pat, ids, threshold_P_V, threshold_F_C, create_svg, create_pdf): | 665 def maps(core_map, class_pat, ids, threshold_P_V, threshold_F_C, create_svg, create_pdf, comparison, control): |
| 695 args = process_args(sys.argv) | 666 args = process_args(sys.argv) |
| 696 if (not class_pat) or (len(class_pat.keys()) < 2): | 667 if (not class_pat) or (len(class_pat.keys()) < 2): |
| 697 sys.exit('Execution aborted: classes provided for comparisons are ' + | 668 sys.exit('Execution aborted: classes provided for comparisons are ' + |
| 698 'less than two\n') | 669 'less than two\n') |
| 699 for i, j in it.combinations(class_pat.keys(), 2): | 670 |
| 700 tmp = {} | 671 if comparison == "manyvsmany": |
| 701 count = 0 | 672 for i, j in it.combinations(class_pat.keys(), 2): |
| 702 max_F_C = 0 | 673 |
| 703 for l1, l2 in zip(class_pat.get(i), class_pat.get(j)): | 674 tmp = {} |
| 704 try: | 675 count = 0 |
| 705 stat_D, p_value = st.ks_2samp(l1, l2) | 676 max_F_C = 0 |
| 706 avg = fold_change(sum(l1) / len(l1), sum(l2) / len(l2)) | 677 for l1, l2 in zip(class_pat.get(i), class_pat.get(j)): |
| 707 if not isinstance(avg, str): | 678 try: |
| 708 if max_F_C < abs(avg): | 679 stat_D, p_value = st.ks_2samp(l1, l2) |
| 709 max_F_C = abs(avg) | 680 #sum(l1) da errore secondo me perchè ha null |
| 710 tmp[ids[count]] = [float(p_value), avg] | 681 avg = fold_change(sum(l1) / len(l1), sum(l2) / len(l2)) |
| 711 count += 1 | 682 if not isinstance(avg, str): |
| 712 except (TypeError, ZeroDivisionError): | 683 if max_F_C < abs(avg): |
| 713 count += 1 | 684 max_F_C = abs(avg) |
| 714 tab = 'result/' + i + '_vs_' + j + ' (Tabular Result).tsv' | 685 tmp[ids[count]] = [float(p_value), avg] |
| 715 tmp_csv = pd.DataFrame.from_dict(tmp, orient = "index") | 686 count += 1 |
| 716 tmp_csv = tmp_csv.reset_index() | 687 except (TypeError, ZeroDivisionError): |
| 717 header = ['ids', 'P_Value', 'Log2(fold change)'] | 688 count += 1 |
| 718 tmp_csv.to_csv(tab, sep = '\t', index = False, header = header) | 689 tab = 'result/' + i + '_vs_' + j + ' (Tabular Result).tsv' |
| 690 tmp_csv = pd.DataFrame.from_dict(tmp, orient = "index") | |
| 691 tmp_csv = tmp_csv.reset_index() | |
| 692 header = ['ids', 'P_Value', 'Log2(fold change)'] | |
| 693 tmp_csv.to_csv(tab, sep = '\t', index = False, header = header) | |
| 694 | |
| 695 if create_svg or create_pdf: | |
| 696 if args.rules_selector == 'HMRcore' or (args.rules_selector == 'Custom' | |
| 697 and args.yes_no == 'yes'): | |
| 698 fix_map(tmp, core_map, threshold_P_V, threshold_F_C, max_F_C) | |
| 699 file_svg = 'result/' + i + '_vs_' + j + ' (SVG Map).svg' | |
| 700 with open(file_svg, 'wb') as new_map: | |
| 701 new_map.write(ET.tostring(core_map)) | |
| 702 | |
| 703 | |
| 704 if create_pdf: | |
| 705 file_pdf = 'result/' + i + '_vs_' + j + ' (PDF Map).pdf' | |
| 706 renderPDF.drawToFile(svg2rlg(file_svg), file_pdf) | |
| 707 | |
| 708 if not create_svg: | |
| 709 #Ho utilizzato il file svg per generare il pdf, | |
| 710 #ma l'utente non ne ha richiesto il ritorno, quindi | |
| 711 #lo elimino | |
| 712 | |
| 713 os.remove('result/' + i + '_vs_' + j + ' (SVG Map).svg') | |
| 714 elif comparison == "onevsrest": | |
| 715 for single_cluster in class_pat.keys(): | |
| 716 t = [] | |
| 717 for k in class_pat.keys(): | |
| 718 if k != single_cluster: | |
| 719 t.append(class_pat.get(k)) | |
| 720 rest = [] | |
| 721 for i in t: | |
| 722 rest = rest + i | |
| 723 | |
| 724 tmp = {} | |
| 725 count = 0 | |
| 726 max_F_C = 0 | |
| 727 | |
| 728 for l1, l2 in zip(rest, class_pat.get(single_cluster)): | |
| 729 try: | |
| 730 stat_D, p_value = st.ks_2samp(l1, l2) | |
| 731 avg = fold_change(sum(l1) / len(l1), sum(l2) / len(l2)) | |
| 732 if not isinstance(avg, str): | |
| 733 if max_F_C < abs(avg): | |
| 734 max_F_C = abs(avg) | |
| 735 tmp[ids[count]] = [float(p_value), avg] | |
| 736 count += 1 | |
| 737 except (TypeError, ZeroDivisionError): | |
| 738 count += 1 | |
| 739 tab = 'result/' + single_cluster + '_vs_rest (Tabular Result).tsv' | |
| 740 tmp_csv = pd.DataFrame.from_dict(tmp, orient = "index") | |
| 741 tmp_csv = tmp_csv.reset_index() | |
| 742 header = ['ids', 'P_Value', 'Log2(fold change)'] | |
| 743 tmp_csv.to_csv(tab, sep = '\t', index = False, header = header) | |
| 744 | |
| 745 if create_svg or create_pdf: | |
| 746 if args.rules_selector == 'HMRcore' or (args.rules_selector == 'Custom' | |
| 747 and args.yes_no == 'yes'): | |
| 748 fix_map(tmp, core_map, threshold_P_V, threshold_F_C, max_F_C) | |
| 749 file_svg = 'result/' + single_cluster + '_vs_ rest (SVG Map).svg' | |
| 750 with open(file_svg, 'wb') as new_map: | |
| 751 new_map.write(ET.tostring(core_map)) | |
| 752 | |
| 753 | |
| 754 if create_pdf: | |
| 755 file_pdf = 'result/' + single_cluster + '_vs_ rest (PDF Map).pdf' | |
| 756 renderPDF.drawToFile(svg2rlg(file_svg), file_pdf) | |
| 757 | |
| 758 if not create_svg: | |
| 759 os.remove('result/' + single_cluster + '_vs_ rest (SVG Map).svg') | |
| 760 | |
| 761 elif comparison == "onevsmany": | |
| 762 for i, j in it.combinations(class_pat.keys(), 2): | |
| 763 | |
| 764 if i != control and j != control: | |
| 765 print(str(control) + " " + str(i) + " " + str(j)) | |
| 766 #Se è un confronto fra elementi diversi dal controllo, skippo | |
| 767 continue | |
| 768 | |
| 769 print('vado') | |
| 770 tmp = {} | |
| 771 count = 0 | |
| 772 max_F_C = 0 | |
| 773 for l1, l2 in zip(class_pat.get(i), class_pat.get(j)): | |
| 774 try: | |
| 775 stat_D, p_value = st.ks_2samp(l1, l2) | |
| 776 #sum(l1) da errore secondo me perchè ha null | |
| 777 avg = fold_change(sum(l1) / len(l1), sum(l2) / len(l2)) | |
| 778 if not isinstance(avg, str): | |
| 779 if max_F_C < abs(avg): | |
| 780 max_F_C = abs(avg) | |
| 781 tmp[ids[count]] = [float(p_value), avg] | |
| 782 count += 1 | |
| 783 except (TypeError, ZeroDivisionError): | |
| 784 count += 1 | |
| 785 tab = 'result/' + i + '_vs_' + j + ' (Tabular Result).tsv' | |
| 786 tmp_csv = pd.DataFrame.from_dict(tmp, orient = "index") | |
| 787 tmp_csv = tmp_csv.reset_index() | |
| 788 header = ['ids', 'P_Value', 'Log2(fold change)'] | |
| 789 tmp_csv.to_csv(tab, sep = '\t', index = False, header = header) | |
| 790 | |
| 791 if create_svg or create_pdf: | |
| 792 if args.rules_selector == 'HMRcore' or (args.rules_selector == 'Custom' | |
| 793 and args.yes_no == 'yes'): | |
| 794 fix_map(tmp, core_map, threshold_P_V, threshold_F_C, max_F_C) | |
| 795 file_svg = 'result/' + i + '_vs_' + j + ' (SVG Map).svg' | |
| 796 with open(file_svg, 'wb') as new_map: | |
| 797 new_map.write(ET.tostring(core_map)) | |
| 798 | |
| 799 | |
| 800 if create_pdf: | |
| 801 file_pdf = 'result/' + i + '_vs_' + j + ' (PDF Map).pdf' | |
| 802 renderPDF.drawToFile(svg2rlg(file_svg), file_pdf) | |
| 803 | |
| 804 if not create_svg: | |
| 805 #Ho utilizzato il file svg per generare il pdf, | |
| 806 #ma l'utente non ne ha richiesto il ritorno, quindi | |
| 807 #lo elimino | |
| 808 | |
| 809 os.remove('result/' + i + '_vs_' + j + ' (SVG Map).svg') | |
| 719 | 810 |
| 720 if create_svg or create_pdf: | 811 |
| 721 if args.rules_selector == 'HMRcore' or (args.rules_selector == 'Custom' | 812 |
| 722 and args.yes_no == 'yes'): | 813 |
| 723 fix_map(tmp, core_map, threshold_P_V, threshold_F_C, max_F_C) | |
| 724 file_svg = 'result/' + i + '_vs_' + j + ' (SVG Map).svg' | |
| 725 with open(file_svg, 'wb') as new_map: | |
| 726 new_map.write(ET.tostring(core_map)) | |
| 727 | |
| 728 | |
| 729 if create_pdf: | |
| 730 file_pdf = 'result/' + i + '_vs_' + j + ' (PDF Map).pdf' | |
| 731 renderPDF.drawToFile(svg2rlg(file_svg), file_pdf) | |
| 732 | |
| 733 if not create_svg: | |
| 734 #Ho utilizzato il file svg per generare il pdf, | |
| 735 #ma l'utente non ne ha richiesto il ritorno, quindi | |
| 736 #lo elimino | |
| 737 os.remove('result/' + i + '_vs_' + j + ' (SVG Map).svg') | |
| 738 | |
| 739 return None | 814 return None |
| 740 | 815 |
| 741 ############################ MAIN ############################################# | 816 ############################ MAIN ############################################# |
| 742 | 817 |
| 743 def main(): | 818 def main(): |
| 744 args = process_args(sys.argv) | 819 args = process_args(sys.argv) |
| 745 | 820 |
| 746 create_svg = check_bool(args.generate_svg) | 821 create_svg = check_bool(args.generate_svg) |
| 747 create_pdf = check_bool(args.generate_pdf) | 822 create_pdf = check_bool(args.generate_pdf) |
| 748 generate_ras = check_bool(args.generate_ras) | 823 |
| 749 | 824 if os.path.isdir('result') == False: |
| 750 os.makedirs('result') | 825 os.makedirs('result') |
| 751 | |
| 752 if generate_ras: | |
| 753 os.makedirs('ras') | |
| 754 | 826 |
| 755 if args.rules_selector == 'HMRcore': | 827 if args.rules_selector == 'HMRcore': |
| 756 recon = pk.load(open(args.tool_dir + '/local/HMRcore_rules.p', 'rb')) | 828 recon = pk.load(open(args.tool_dir + '/local/HMRcore_rules.p', 'rb')) |
| 757 elif args.rules_selector == 'Recon': | 829 elif args.rules_selector == 'Recon': |
| 758 recon = pk.load(open(args.tool_dir + '/local/Recon_rules.p', 'rb')) | 830 recon = pk.load(open(args.tool_dir + '/local/Recon_rules.p', 'rb')) |
| 759 elif args.rules_selector == 'Custom': | 831 elif args.rules_selector == 'Custom': |
| 760 ids, rules, gene_in_rule = make_recon(args.custom) | 832 ids, rules, gene_in_rule = make_recon(args.custom) |
| 761 | 833 |
| 762 resolve_none = check_bool(args.none) | |
| 763 | |
| 764 class_pat = {} | 834 class_pat = {} |
| 765 | 835 |
| 766 if args.option == 'datasets_rasonly': | 836 if args.option == 'datasets': |
| 767 name = "RAS Dataset" | |
| 768 dataset = read_dataset(args.input_datas[0],"dataset") | |
| 769 | |
| 770 dataset.iloc[:, 0] = (dataset.iloc[:, 0]).astype(str) | |
| 771 | |
| 772 type_gene = gene_type(dataset.iloc[0, 0], name) | |
| 773 | |
| 774 if args.rules_selector != 'Custom': | |
| 775 genes = data_gene(dataset, type_gene, name, None) | |
| 776 ids, rules = load_id_rules(recon.get(type_gene)) | |
| 777 elif args.rules_selector == 'Custom': | |
| 778 genes = data_gene(dataset, type_gene, name, gene_in_rule) | |
| 779 | |
| 780 resolve_rules, err = resolve(genes, rules, ids, resolve_none, name) | |
| 781 | |
| 782 create_ras(resolve_rules, name, True, rules, ids) | |
| 783 | |
| 784 if err != None and err: | |
| 785 warning('Warning: gene\n' + str(err) + '\nnot found in class ' | |
| 786 + name + ', the expression level for this gene ' + | |
| 787 'will be considered NaN\n') | |
| 788 | |
| 789 print('execution succeded') | |
| 790 return None | |
| 791 | |
| 792 | |
| 793 elif args.option == 'datasets': | |
| 794 num = 1 | 837 num = 1 |
| 795 for i, j in zip(args.input_datas, args.names): | 838 for i, j in zip(args.input_datas, args.names): |
| 796 | |
| 797 name = name_dataset(j, num) | 839 name = name_dataset(j, num) |
| 798 dataset = read_dataset(i, name) | 840 resolve_rules = read_dataset(i, name) |
| 799 | 841 |
| 800 dataset.iloc[:, 0] = (dataset.iloc[:, 0]).astype(str) | 842 resolve_rules.iloc[:, 0] = (resolve_rules.iloc[:, 0]).astype(str) |
| 801 | 843 |
| 802 type_gene = gene_type(dataset.iloc[0, 0], name) | 844 ids = pd.Series.tolist(resolve_rules.iloc[:, 0]) |
| 803 | 845 |
| 804 if args.rules_selector != 'Custom': | 846 resolve_rules = resolve_rules.drop(resolve_rules.columns[[0]], axis=1) |
| 805 genes = data_gene(dataset, type_gene, name, None) | 847 resolve_rules = resolve_rules.replace({'None': None}) |
| 806 ids, rules = load_id_rules(recon.get(type_gene)) | 848 resolve_rules = resolve_rules.to_dict('list') |
| 807 elif args.rules_selector == 'Custom': | 849 |
| 808 genes = data_gene(dataset, type_gene, name, gene_in_rule) | 850 #Converto i valori da str a float |
| 809 | 851 to_float = lambda x: float(x) if (x != None) else None |
| 810 | 852 |
| 811 resolve_rules, err = resolve(genes, rules, ids, resolve_none, name) | 853 resolve_rules_float = {} |
| 812 | 854 |
| 813 if generate_ras: | 855 for k in resolve_rules: |
| 814 create_ras(resolve_rules, name, False, rules, ids) | 856 resolve_rules_float[k] = list(map(to_float, resolve_rules[k])); resolve_rules_float |
| 815 | 857 |
| 816 if err != None and err: | |
| 817 warning('Warning: gene\n' + str(err) + '\nnot found in class ' | |
| 818 + name + ', the expression level for this gene ' + | |
| 819 'will be considered NaN\n') | |
| 820 if resolve_rules != None: | 858 if resolve_rules != None: |
| 821 class_pat[name] = list(map(list, zip(*resolve_rules.values()))) | 859 class_pat[name] = list(map(list, zip(*resolve_rules_float.values()))) |
| 860 | |
| 822 num += 1 | 861 num += 1 |
| 823 elif args.option == 'dataset_class': | 862 |
| 824 name = 'RNAseq' | 863 if args.option == 'dataset_class': |
| 825 dataset = read_dataset(args.input_data, name) | 864 name = 'RAS' |
| 826 dataset.iloc[:, 0] = (dataset.iloc[:, 0]).astype(str) | 865 resolve_rules = read_dataset(args.input_data, name) |
| 827 type_gene = gene_type(dataset.iloc[0, 0], name) | 866 resolve_rules.iloc[:, 0] = (resolve_rules.iloc[:, 0]).astype(str) |
| 867 | |
| 868 ids = pd.Series.tolist(resolve_rules.iloc[:, 0]) | |
| 869 | |
| 870 resolve_rules = resolve_rules.drop(resolve_rules.columns[[0]], axis=1) | |
| 871 resolve_rules = resolve_rules.replace({'None': None}) | |
| 872 resolve_rules = resolve_rules.to_dict('list') | |
| 873 | |
| 874 #Converto i valori da str a float | |
| 875 to_float = lambda x: float(x) if (x != None) else None | |
| 876 | |
| 877 resolve_rules_float = {} | |
| 878 | |
| 879 for k in resolve_rules: | |
| 880 resolve_rules_float[k] = list(map(to_float, resolve_rules[k])); resolve_rules_float | |
| 881 | |
| 828 classes = read_dataset(args.input_class, 'class') | 882 classes = read_dataset(args.input_class, 'class') |
| 829 if not len(classes.columns) == 2: | |
| 830 warning('Warning: more than 2 columns in class file. Extra' + | |
| 831 'columns have been disregarded\n') | |
| 832 classes = classes.astype(str) | 883 classes = classes.astype(str) |
| 833 if args.rules_selector != 'Custom': | 884 |
| 834 genes = data_gene(dataset, type_gene, name, None) | 885 if resolve_rules_float != None: |
| 835 ids, rules = load_id_rules(recon.get(type_gene)) | 886 class_pat = split_class(classes, resolve_rules_float) |
| 836 elif args.rules_selector == 'Custom': | |
| 837 genes = data_gene(dataset, type_gene, name, gene_in_rule) | |
| 838 resolve_rules, err = resolve(genes, rules, ids, resolve_none, name) | |
| 839 if err != None and err: | |
| 840 warning('Warning: gene\n'+str(err)+'\nnot found in class ' | |
| 841 + name + ', the expression level for this gene ' + | |
| 842 'will be considered NaN\n') | |
| 843 if resolve_rules != None: | |
| 844 class_pat = split_class(classes, resolve_rules) | |
| 845 if generate_ras: | |
| 846 create_ras(resolve_rules, name, False, rules, ids) | |
| 847 | |
| 848 | 887 |
| 849 if args.rules_selector == 'Custom': | 888 if args.rules_selector == 'Custom': |
| 850 if args.yes_no == 'yes': | 889 if args.yes_no == 'yes': |
| 851 try: | 890 try: |
| 852 core_map = ET.parse(args.custom_map) | 891 core_map = ET.parse(args.custom_map) |
| 855 elif args.yes_no == 'no': | 894 elif args.yes_no == 'no': |
| 856 core_map = ET.parse(args.tool_dir + '/local/HMRcoreMap.svg') | 895 core_map = ET.parse(args.tool_dir + '/local/HMRcoreMap.svg') |
| 857 else: | 896 else: |
| 858 core_map = ET.parse(args.tool_dir+'/local/HMRcoreMap.svg') | 897 core_map = ET.parse(args.tool_dir+'/local/HMRcoreMap.svg') |
| 859 | 898 |
| 860 maps(core_map, class_pat, ids, args.pValue, args.fChange, create_svg, create_pdf) | 899 maps(core_map, class_pat, ids, args.pValue, args.fChange, create_svg, create_pdf, args.comparison, args.control) |
| 861 | 900 |
| 862 print('Execution succeded') | 901 print('Execution succeded') |
| 863 | 902 |
| 864 return None | 903 return None |
| 904 | |
| 865 | 905 |
| 866 ############################################################################### | 906 ############################################################################### |
| 867 | 907 |
| 868 if __name__ == "__main__": | 908 if __name__ == "__main__": |
| 869 main() | 909 main() |
