Mercurial > repos > bimib > marea
diff Marea/marea_cluster.py @ 16:c71ac0bb12de draft
Uploaded
author | bimib |
---|---|
date | Tue, 01 Oct 2019 06:05:13 -0400 |
parents | 1a0c8c2780f2 |
children | a8825e66c3a0 |
line wrap: on
line diff
--- a/Marea/marea_cluster.py Tue Oct 01 06:03:12 2019 -0400 +++ b/Marea/marea_cluster.py Tue Oct 01 06:05:13 2019 -0400 @@ -1,67 +1,84 @@ -from __future__ import division -import os +# -*- coding: utf-8 -*- +""" +Created on Mon Jun 3 19:51:00 2019 + +@author: Narger +""" + import sys -import pandas as pd -import collections -import pickle as pk import argparse -from sklearn.cluster import KMeans -import matplotlib -# Force matplotlib to not use any Xwindows backend. -matplotlib.use('Agg') +import os +from sklearn.datasets import make_blobs +from sklearn.cluster import KMeans, DBSCAN, AgglomerativeClustering +from sklearn.metrics import silhouette_samples, silhouette_score, davies_bouldin_score, cluster import matplotlib.pyplot as plt +import scipy.cluster.hierarchy as shc +import matplotlib.cm as cm +import numpy as np +import pandas as pd -########################## argparse ########################################### +################################# process args ############################### def process_args(args): parser = argparse.ArgumentParser(usage = '%(prog)s [options]', description = 'process some value\'s' + ' genes to create class.') - parser.add_argument('-rs', '--rules_selector', + + parser.add_argument('-ol', '--out_log', + help = "Output log") + + parser.add_argument('-in', '--input', type = str, - default = 'HMRcore', - choices = ['HMRcore', 'Recon', 'Custom'], - help = 'chose which type of dataset you want use') - parser.add_argument('-cr', '--custom', + help = 'input dataset') + + parser.add_argument('-cy', '--cluster_type', type = str, - help='your dataset if you want custom rules') - parser.add_argument('-ch', '--cond_hier', - type = str, - default = 'no', - choices = ['no', 'yes'], - help = 'chose if you wanna hierical dendrogram') - parser.add_argument('-lk', '--k_min', + choices = ['kmeans', 'meanshift', 'dbscan', 'hierarchy'], + default = 'kmeans', + help = 'choose clustering algorythm') + + parser.add_argument('-k1', '--k_min', + type = int, + default = 2, + help = 'choose minimun cluster number to be generated') + + parser.add_argument('-k2', '--k_max', type = int, - help = 'min number of cluster') - parser.add_argument('-uk', '--k_max', - type = int, - help = 'max number of cluster') - parser.add_argument('-li', '--linkage', - type = str, - choices = ['single', 'complete', 'average'], - help='linkage hierarchical cluster') - parser.add_argument('-d', '--data', + default = 7, + help = 'choose maximum cluster number to be generated') + + parser.add_argument('-el', '--elbow', + type = str, + default = 'false', + choices = ['true', 'false'], + help = 'choose if you want to generate an elbow plot for kmeans') + + parser.add_argument('-si', '--silhouette', type = str, - required = True, - help = 'input dataset') - parser.add_argument('-n', '--none', + default = 'false', + choices = ['true', 'false'], + help = 'choose if you want silhouette plots') + + parser.add_argument('-db', '--davies', type = str, - default = 'true', - choices = ['true', 'false'], - help = 'compute Nan values') + default = 'false', + choices = ['true', 'false'], + help = 'choose if you want davies bouldin scores') + parser.add_argument('-td', '--tool_dir', type = str, required = True, help = 'your tool directory') - parser.add_argument('-na', '--name', - type = str, - help = 'name of dataset') - parser.add_argument('-de', '--dendro', - help = "Dendrogram out") - parser.add_argument('-ol', '--out_log', - help = "Output log") - parser.add_argument('-el', '--elbow', - help = "Out elbow") + + parser.add_argument('-ms', '--min_samples', + type = int, + help = 'min samples for dbscan (optional)') + + parser.add_argument('-ep', '--eps', + type = int, + help = 'eps for dbscan (optional)') + + args = parser.parse_args() return args @@ -70,548 +87,331 @@ def warning(s): args = process_args(sys.argv) with open(args.out_log, 'a') as log: - log.write(s) - -############################ dataset input #################################### + log.write(s + "\n\n") + print(s) -def read_dataset(data, name): +########################## read dataset ###################################### + +def read_dataset(dataset): try: - dataset = pd.read_csv(data, sep = '\t', header = 0) + dataset = pd.read_csv(dataset, sep = '\t', header = 0) except pd.errors.EmptyDataError: - sys.exit('Execution aborted: wrong format of '+name+'\n') + sys.exit('Execution aborted: wrong format of dataset\n') if len(dataset.columns) < 2: - sys.exit('Execution aborted: wrong format of '+name+'\n') + sys.exit('Execution aborted: wrong format of dataset\n') + return dataset + +############################ rewrite_input ################################### + +def rewrite_input(dataset): + #Riscrivo il dataset come dizionario di liste, + #non come dizionario di dizionari + + for key, val in dataset.items(): + l = [] + for i in val: + if i == 'None': + l.append(None) + else: + l.append(float(i)) + + dataset[key] = l + return dataset -############################ dataset name ##################################### - -def name_dataset(name_data, count): - if str(name_data) == 'Dataset': - return str(name_data) + '_' + str(count) - else: - return str(name_data) +############################## write to csv ################################## -############################ load id e rules ################################## - -def load_id_rules(reactions): - ids, rules = [], [] - for key, value in reactions.items(): - ids.append(key) - rules.append(value) - return (ids, rules) - -############################ check_methods #################################### - -def gene_type(l, name): - if check_hgnc(l): - return 'hugo_id' - elif check_ensembl(l): - return 'ensembl_gene_id' - elif check_symbol(l): - return 'symbol' - elif check_entrez(l): - return 'entrez_id' - else: - sys.exit('Execution aborted:\n' + - 'gene ID type in ' + name + ' not supported. Supported ID' + - 'types are: HUGO ID, Ensemble ID, HUGO symbol, Entrez ID\n') - -def check_hgnc(l): - if len(l) > 5: - if (l.upper()).startswith('HGNC:'): - return l[5:].isdigit() - else: - return False - else: - return False - -def check_ensembl(l): - if len(l) == 15: - if (l.upper()).startswith('ENS'): - return l[4:].isdigit() - else: - return False - else: - return False - -def check_symbol(l): - if len(l) > 0: - if l[0].isalpha() and l[1:].isalnum(): - return True - else: - return False - else: - return False +def write_to_csv (dataset, labels, name): + list_labels = labels + list_values = dataset -def check_entrez(l): - if len(l) > 0: - return l.isdigit() - else: - return False - -def check_bool(b): - if b == 'true': - return True - elif b == 'false': - return False + list_values = list_values.tolist() + d = {'Label' : list_labels, 'Value' : list_values} -############################ make recon ####################################### - -def check_and_doWord(l): - tmp = [] - tmp_genes = [] - count = 0 - while l: - if count >= 0: - if l[0] == '(': - count += 1 - tmp.append(l[0]) - l.pop(0) - elif l[0] == ')': - count -= 1 - tmp.append(l[0]) - l.pop(0) - elif l[0] == ' ': - l.pop(0) - else: - word = [] - while l: - if l[0] in [' ', '(', ')']: - break - else: - word.append(l[0]) - l.pop(0) - word = ''.join(word) - tmp.append(word) - if not(word in ['or', 'and']): - tmp_genes.append(word) - else: - return False - if count == 0: - return (tmp, tmp_genes) - else: - return False - -def brackets_to_list(l): - tmp = [] - while l: - if l[0] == '(': - l.pop(0) - tmp.append(resolve_brackets(l)) - else: - tmp.append(l[0]) - l.pop(0) - return tmp + df = pd.DataFrame(d, columns=['Value','Label']) -def resolve_brackets(l): - tmp = [] - while l[0] != ')': - if l[0] == '(': - l.pop(0) - tmp.append(resolve_brackets(l)) - else: - tmp.append(l[0]) - l.pop(0) - l.pop(0) - return tmp + dest = name + '.tsv' + df.to_csv(dest, sep = '\t', index = False, + header = ['Value', 'Label']) + +########################### trova il massimo in lista ######################## +def max_index (lista): + best = -1 + best_index = 0 + for i in range(len(lista)): + if lista[i] > best: + best = lista [i] + best_index = i + + return best_index + +################################ kmeans ##################################### + +def kmeans (k_min, k_max, dataset, elbow, silhouette, davies): + if not os.path.exists('clustering/kmeans_output'): + os.makedirs('clustering/kmeans_output') + + + if elbow == 'true': + elbow = True + else: + elbow = False + + if silhouette == 'true': + silhouette = True + else: + silhouette = False + + if davies == 'true': + davies = True + else: + davies = False + -def priorityAND(l): - tmp = [] - flag = True - while l: - if len(l) == 1: - if isinstance(l[0], list): - tmp.append(priorityAND(l[0])) - else: - tmp.append(l[0]) - l = l[1:] - elif l[0] == 'or': - tmp.append(l[0]) - flag = False - l = l[1:] - elif l[1] == 'or': - if isinstance(l[0], list): - tmp.append(priorityAND(l[0])) - else: - tmp.append(l[0]) - tmp.append(l[1]) - flag = False - l = l[2:] - elif l[1] == 'and': - tmpAnd = [] - if isinstance(l[0], list): - tmpAnd.append(priorityAND(l[0])) - else: - tmpAnd.append(l[0]) - tmpAnd.append(l[1]) - if isinstance(l[2], list): - tmpAnd.append(priorityAND(l[2])) - else: - tmpAnd.append(l[2]) - l = l[3:] - while l: - if l[0] == 'and': - tmpAnd.append(l[0]) - if isinstance(l[1], list): - tmpAnd.append(priorityAND(l[1])) - else: - tmpAnd.append(l[1]) - l = l[2:] - elif l[0] == 'or': - flag = False - break - if flag == True: #se ci sono solo AND nella lista - tmp.extend(tmpAnd) - elif flag == False: - tmp.append(tmpAnd) - return tmp + range_n_clusters = [i for i in range(k_min, k_max+1)] + distortions = [] + scores = [] + all_labels = [] + + for n_clusters in range_n_clusters: + clusterer = KMeans(n_clusters=n_clusters, random_state=10) + cluster_labels = clusterer.fit_predict(dataset) + + all_labels.append(cluster_labels) + silhouette_avg = silhouette_score(dataset, cluster_labels) + scores.append(silhouette_avg) + distortions.append(clusterer.fit(dataset).inertia_) + + best = max_index(scores) + k_min + + for i in range(len(all_labels)): + prefix = '' + if (i + k_min == best): + prefix = '_BEST' + + write_to_csv(dataset, all_labels[i], 'clustering/kmeans_output/kmeans_with_' + str(i + k_min) + prefix + '_clusters.tsv') + + if davies: + with np.errstate(divide='ignore', invalid='ignore'): + davies_bouldin = davies_bouldin_score(dataset, all_labels[i]) + warning("\nFor n_clusters = " + str(i + k_min) + + " The average davies bouldin score is: " + str(davies_bouldin)) + + + if silhouette: + silihouette_draw(dataset, all_labels[i], i + k_min, 'clustering/kmeans_output/silhouette_with_' + str(i + k_min) + prefix + '_clusters.png') + + + if elbow: + elbow_plot(distortions, k_min,k_max) -def checkRule(l): - if len(l) == 1: - if isinstance(l[0], list): - if checkRule(l[0]) is False: - return False - elif len(l) > 2: - if checkRule2(l) is False: - return False - else: - return False - return True - -def checkRule2(l): - while l: - if len(l) == 1: - return False - elif isinstance(l[0], list) and l[1] in ['and', 'or']: - if checkRule(l[0]) is False: - return False - if isinstance(l[2], list): - if checkRule(l[2]) is False: - return False - l = l[3:] - elif l[1] in ['and', 'or']: - if isinstance(l[2], list): - if checkRule(l[2]) is False: - return False - l = l[3:] - elif l[0] in ['and', 'or']: - if isinstance(l[1], list): - if checkRule(l[1]) is False: - return False - l = l[2:] - else: - return False - return True - -def do_rules(rules): - split_rules = [] - err_rules = [] - tmp_gene_in_rule = [] - for i in range(len(rules)): - tmp = list(rules[i]) - if tmp: - tmp, tmp_genes = check_and_doWord(tmp) - tmp_gene_in_rule.extend(tmp_genes) - if tmp is False: - split_rules.append([]) - err_rules.append(rules[i]) - else: - tmp = brackets_to_list(tmp) - if checkRule(tmp): - split_rules.append(priorityAND(tmp)) - else: - split_rules.append([]) - err_rules.append(rules[i]) - else: - split_rules.append([]) - if err_rules: - warning('Warning: wrong format rule in ' + str(err_rules) + '\n') - return (split_rules, list(set(tmp_gene_in_rule))) + + + -def make_recon(data): - try: - import cobra as cb - import warnings - with warnings.catch_warnings(): - warnings.simplefilter('ignore') - recon = cb.io.read_sbml_model(data) - react = recon.reactions - rules = [react[i].gene_reaction_rule for i in range(len(react))] - ids = [react[i].id for i in range(len(react))] - except cb.io.sbml3.CobraSBMLError: - try: - data = (pd.read_csv(data, sep = '\t', dtype = str)).fillna('') - if len(data.columns) < 2: - sys.exit('Execution aborted: wrong format of ' + - 'custom GPR rules\n') - if not len(data.columns) == 2: - warning('WARNING: more than 2 columns in custom GPR rules.\n' + - 'Extra columns have been disregarded\n') - ids = list(data.iloc[:, 0]) - rules = list(data.iloc[:, 1]) - except pd.errors.EmptyDataError: - sys.exit('Execution aborted: wrong format of custom GPR rules\n') - except pd.errors.ParserError: - sys.exit('Execution aborted: wrong format of custom GPR rules\n') - split_rules, tmp_genes = do_rules(rules) - gene_in_rule = {} - for i in tmp_genes: - gene_in_rule[i] = 'ok' - return (ids, split_rules, gene_in_rule) - -############################ resolve_methods ################################## - -def replace_gene_value(l, d): - tmp = [] - err = [] - while l: - if isinstance(l[0], list): - tmp_rules, tmp_err = replace_gene_value(l[0], d) - tmp.append(tmp_rules) - err.extend(tmp_err) - else: - value = replace_gene(l[0],d) - tmp.append(value) - if value == None: - err.append(l[0]) - l = l[1:] - return (tmp, err) - -def replace_gene(l, d): - if l =='and' or l == 'or': - return l +############################## elbow_plot #################################### + +def elbow_plot (distortions, k_min, k_max): + plt.figure(0) + plt.plot(range(k_min, k_max+1), distortions, marker = 'o') + plt.xlabel('Number of cluster') + plt.ylabel('Distortion') + s = 'clustering/kmeans_output/elbow_plot.png' + fig = plt.gcf() + fig.set_size_inches(18.5, 10.5, forward = True) + fig.savefig(s, dpi=100) + + +############################## silhouette plot ############################### +def silihouette_draw(dataset, labels, n_clusters, path): + silhouette_avg = silhouette_score(dataset, labels) + warning("For n_clusters = " + str(n_clusters) + + " The average silhouette_score is: " + str(silhouette_avg)) + + plt.close('all') + # Create a subplot with 1 row and 2 columns + fig, (ax1) = plt.subplots(1, 1) + + fig.set_size_inches(18, 7) + + # The 1st subplot is the silhouette plot + # The silhouette coefficient can range from -1, 1 but in this example all + # lie within [-0.1, 1] + ax1.set_xlim([-1, 1]) + # The (n_clusters+1)*10 is for inserting blank space between silhouette + # plots of individual clusters, to demarcate them clearly. + ax1.set_ylim([0, len(dataset) + (n_clusters + 1) * 10]) + + # Compute the silhouette scores for each sample + sample_silhouette_values = silhouette_samples(dataset, labels) + + y_lower = 10 + for i in range(n_clusters): + # Aggregate the silhouette scores for samples belonging to + # cluster i, and sort them + ith_cluster_silhouette_values = \ + sample_silhouette_values[labels == i] + + ith_cluster_silhouette_values.sort() + + size_cluster_i = ith_cluster_silhouette_values.shape[0] + y_upper = y_lower + size_cluster_i + + color = cm.nipy_spectral(float(i) / n_clusters) + ax1.fill_betweenx(np.arange(y_lower, y_upper), + 0, ith_cluster_silhouette_values, + facecolor=color, edgecolor=color, alpha=0.7) + + # Label the silhouette plots with their cluster numbers at the middle + ax1.text(-0.05, y_lower + 0.5 * size_cluster_i, str(i)) + + # Compute the new y_lower for next plot + y_lower = y_upper + 10 # 10 for the 0 samples + + ax1.set_title("The silhouette plot for the various clusters.") + ax1.set_xlabel("The silhouette coefficient values") + ax1.set_ylabel("Cluster label") + + # The vertical line for average silhouette score of all the values + ax1.axvline(x=silhouette_avg, color="red", linestyle="--") + + ax1.set_yticks([]) # Clear the yaxis labels / ticks + ax1.set_xticks([-0.1, 0, 0.2, 0.4, 0.6, 0.8, 1]) + + + plt.suptitle(("Silhouette analysis for clustering on sample data " + "with n_clusters = " + str(n_clusters) + "\nAverage silhouette_score = " + str(silhouette_avg)), fontsize=12, fontweight='bold') + + + plt.savefig(path, bbox_inches='tight') + +######################## dbscan ############################################## + +def dbscan(dataset, eps, min_samples): + if not os.path.exists('clustering/dbscan_output'): + os.makedirs('clustering/dbscan_output') + + if eps is not None: + clusterer = DBSCAN(eps = eps, min_samples = min_samples) else: - value = d.get(l, None) - if not(value == None or isinstance(value, (int, float))): - sys.exit('Execution aborted: ' + value + ' value not valid\n') - return value - -def compute(val1, op, val2, cn): - if val1 != None and val2 != None: - if op == 'and': - return min(val1, val2) - else: - return val1 + val2 - elif op == 'and': - if cn is True: - if val1 != None: - return val1 - elif val2 != None: - return val2 - else: - return None - else: - return None - else: - if val1 != None: - return val1 - elif val2 != None: - return val2 - else: - return None - -def control(ris, l, cn): - if len(l) == 1: - if isinstance(l[0], (float, int)) or l[0] == None: - return l[0] - elif isinstance(l[0], list): - return control(None, l[0], cn) - else: - return False - elif len(l) > 2: - return control_list(ris, l, cn) - else: - return False + clusterer = DBSCAN() + + clustering = clusterer.fit(dataset) + + core_samples_mask = np.zeros_like(clustering.labels_, dtype=bool) + core_samples_mask[clustering.core_sample_indices_] = True + labels = clustering.labels_ -def control_list(ris, l, cn): - while l: - if len(l) == 1: - return False - elif (isinstance(l[0], (float, int)) or - l[0] == None) and l[1] in ['and', 'or']: - if isinstance(l[2], (float, int)) or l[2] == None: - ris = compute(l[0], l[1], l[2], cn) - elif isinstance(l[2], list): - tmp = control(None, l[2], cn) - if tmp is False: - return False - else: - ris = compute(l[0], l[1], tmp, cn) - else: - return False - l = l[3:] - elif l[0] in ['and', 'or']: - if isinstance(l[1], (float, int)) or l[1] == None: - ris = compute(ris, l[0], l[1], cn) - elif isinstance(l[1], list): - tmp = control(None,l[1], cn) - if tmp is False: - return False - else: - ris = compute(ris, l[0], tmp, cn) - else: - return False - l = l[2:] - elif isinstance(l[0], list) and l[1] in ['and', 'or']: - if isinstance(l[2], (float, int)) or l[2] == None: - tmp = control(None, l[0], cn) - if tmp is False: - return False - else: - ris = compute(tmp, l[1], l[2], cn) - elif isinstance(l[2], list): - tmp = control(None, l[0], cn) - tmp2 = control(None, l[2], cn) - if tmp is False or tmp2 is False: - return False - else: - ris = compute(tmp, l[1], tmp2, cn) - else: - return False - l = l[3:] - else: - return False - return ris + # Number of clusters in labels, ignoring noise if present. + n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0) + + silhouette_avg = silhouette_score(dataset, labels) + warning("For n_clusters =" + str(n_clusters_) + + "The average silhouette_score is :" + str(silhouette_avg)) + + ##TODO: PLOT SU DBSCAN (no centers) e HIERARCHICAL -############################ gene ############################################# + # Black removed and is used for noise instead. + unique_labels = set(labels) + colors = [plt.cm.Spectral(each) + for each in np.linspace(0, 1, len(unique_labels))] + for k, col in zip(unique_labels, colors): + if k == -1: + # Black used for noise. + col = [0, 0, 0, 1] + + class_member_mask = (labels == k) + + xy = dataset[class_member_mask & core_samples_mask] + plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=tuple(col), + markeredgecolor='k', markersize=14) + + xy = dataset[class_member_mask & ~core_samples_mask] + plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=tuple(col), + markeredgecolor='k', markersize=6) -def data_gene(gene, type_gene, name, gene_custom): - args = process_args(sys.argv) - for i in range(len(gene)): - tmp = gene.iloc[i, 0] - if tmp.startswith(' ') or tmp.endswith(' '): - gene.iloc[i, 0] = (tmp.lstrip()).rstrip() - gene_dup = [item for item, count in - collections.Counter(gene[gene.columns[0]]).items() if count > 1] - pat_dup = [item for item, count in - collections.Counter(list(gene.columns)).items() if count > 1] - if gene_dup: - if gene_custom == None: - if args.rules_selector == 'HMRcore': - gene_in_rule = pk.load(open(args.tool_dir + - '/local/HMRcore_genes.p', 'rb')) - elif args.rules_selector == 'Recon': - gene_in_rule = pk.load(open(args.tool_dir + - '/local/Recon_genes.p', 'rb')) - gene_in_rule = gene_in_rule.get(type_gene) - else: - gene_in_rule = gene_custom - tmp = [] - for i in gene_dup: - if gene_in_rule.get(i) == 'ok': - tmp.append(i) - if tmp: - sys.exit('Execution aborted because gene ID ' - + str(tmp) + ' in ' + name + ' is duplicated\n') - if pat_dup: - sys.exit('Execution aborted: duplicated label\n' - + str(pat_dup) + 'in ' + name + '\n') - return (gene.set_index(gene.columns[0])).to_dict() + plt.title('Estimated number of clusters: %d' % n_clusters_) + s = 'clustering/dbscan_output/dbscan_plot.png' + fig = plt.gcf() + fig.set_size_inches(18.5, 10.5, forward = True) + fig.savefig(s, dpi=100) + + + write_to_csv(dataset, labels, 'clustering/dbscan_output/dbscan_results.tsv') + +########################## hierachical ####################################### + +def hierachical_agglomerative(dataset, k_min, k_max): -############################ resolve ########################################## + if not os.path.exists('clustering/agglomerative_output'): + os.makedirs('clustering/agglomerative_output') + + plt.figure(figsize=(10, 7)) + plt.title("Customer Dendograms") + shc.dendrogram(shc.linkage(dataset, method='ward')) + fig = plt.gcf() + fig.savefig('clustering/agglomerative_output/dendogram.png', dpi=200) + + range_n_clusters = [i for i in range(k_min, k_max+1)] -def resolve(genes, rules, ids, resolve_none, name): - resolve_rules = {} - not_found = [] - flag = False - for key, value in genes.items(): - tmp_resolve = [] - for i in range(len(rules)): - tmp = rules[i] - if tmp: - tmp, err = replace_gene_value(tmp, value) - if err: - not_found.extend(err) - ris = control(None, tmp, resolve_none) - if ris is False or ris == None: - tmp_resolve.append(None) - else: - tmp_resolve.append(ris) - flag = True - else: - tmp_resolve.append(None) - resolve_rules[key] = tmp_resolve - if flag is False: - sys.exit('Execution aborted: no computable score' + - ' (due to missing gene values) for class ' - + name + ', the class has been disregarded\n') - return (resolve_rules, list(set(not_found))) - -################################# clustering ################################## + for n_clusters in range_n_clusters: + + cluster = AgglomerativeClustering(n_clusters=n_clusters, affinity='euclidean', linkage='ward') + cluster.fit_predict(dataset) + cluster_labels = cluster.labels_ + + silhouette_avg = silhouette_score(dataset, cluster_labels) + warning("For n_clusters =", n_clusters, + "The average silhouette_score is :", silhouette_avg) + + plt.clf() + plt.figure(figsize=(10, 7)) + plt.title("Agglomerative Hierarchical Clustering\nwith " + str(n_clusters) + " clusters and " + str(silhouette_avg) + " silhouette score") + plt.scatter(dataset[:,0], dataset[:,1], c = cluster_labels, cmap='rainbow') + s = 'clustering/agglomerative_output/hierachical_' + str(n_clusters) + '_clusters.png' + fig = plt.gcf() + fig.set_size_inches(10, 7, forward = True) + fig.savefig(s, dpi=200) + + write_to_csv(dataset, cluster_labels, 'clustering/agglomerative_output/agglomerative_hierarchical_with_' + str(n_clusters) + '_clusters.tsv') + + -def f_cluster(resolve_rules): - os.makedirs('cluster_out') - args = process_args(sys.argv) - k_min = args.k_min - k_max = args.k_max - if k_min > k_max: - warning('k range boundaries inverted.\n') - tmp = k_min - k_min = k_max - k_max = tmp - else: - warning('k range correct.\n') - cluster_data = pd.DataFrame.from_dict(resolve_rules, orient = 'index') - for i in cluster_data.columns: - tmp = cluster_data[i][0] - if tmp == None: - cluster_data = cluster_data.drop(columns=[i]) - distorsion = [] - for i in range(k_min, k_max+1): - tmp_kmeans = KMeans(n_clusters = i, - n_init = 100, - max_iter = 300, - random_state = 0).fit(cluster_data) - distorsion.append(tmp_kmeans.inertia_) - predict = tmp_kmeans.predict(cluster_data) - predict = [x+1 for x in predict] - classe = (pd.DataFrame(list(zip(cluster_data.index, predict)))).astype(str) - dest = 'cluster_out/K=' + str(i) + '_' + args.name+'.tsv' - classe.to_csv(dest, sep = '\t', index = False, - header = ['Patient_ID', 'Class']) - plt.figure(0) - plt.plot(range(k_min, k_max+1), distorsion, marker = 'o') - plt.xlabel('Number of cluster') - plt.ylabel('Distorsion') - plt.savefig(args.elbow, dpi = 240, format = 'pdf') - if args.cond_hier == 'yes': - import scipy.cluster.hierarchy as hier - lin = hier.linkage(cluster_data, args.linkage) - plt.figure(1) - plt.figure(figsize=(10, 5)) - hier.dendrogram(lin, leaf_font_size = 2, labels = cluster_data.index) - plt.savefig(args.dendro, dpi = 480, format = 'pdf') - return None + +############################# main ########################################### -################################# main ######################################## def main(): + if not os.path.exists('clustering'): + os.makedirs('clustering') + args = process_args(sys.argv) - if args.rules_selector == 'HMRcore': - recon = pk.load(open(args.tool_dir + '/local/HMRcore_rules.p', 'rb')) - elif args.rules_selector == 'Recon': - recon = pk.load(open(args.tool_dir + '/local/Recon_rules.p', 'rb')) - elif args.rules_selector == 'Custom': - ids, rules, gene_in_rule = make_recon(args.custom) - resolve_none = check_bool(args.none) - dataset = read_dataset(args.data, args.name) - dataset.iloc[:, 0] = (dataset.iloc[:, 0]).astype(str) - type_gene = gene_type(dataset.iloc[0, 0], args.name) - if args.rules_selector != 'Custom': - genes = data_gene(dataset, type_gene, args.name, None) - ids, rules = load_id_rules(recon.get(type_gene)) - elif args.rules_selector == 'Custom': - genes = data_gene(dataset, type_gene, args.name, gene_in_rule) - resolve_rules, err = resolve(genes, rules, ids, resolve_none, args.name) - if err: - warning('WARNING: gene\n' + str(err) + '\nnot found in class ' - + args.name + ', the expression level for this gene ' + - 'will be considered NaN\n') - f_cluster(resolve_rules) - warning('Execution succeeded') - return None - -############################################################################### + + #Data read + + X = read_dataset(args.input) + X = pd.DataFrame.to_dict(X, orient='list') + X = rewrite_input(X) + X = pd.DataFrame.from_dict(X, orient = 'index') + + for i in X.columns: + tmp = X[i][0] + if tmp == None: + X = X.drop(columns=[i]) + + X = pd.DataFrame.to_numpy(X) + + + if args.cluster_type == 'kmeans': + kmeans(args.k_min, args.k_max, X, args.elbow, args.silhouette, args.davies) + + if args.cluster_type == 'dbscan': + dbscan(X, args.eps, args.min_samples) + + if args.cluster_type == 'hierarchy': + hierachical_agglomerative(X, args.k_min, args.k_max) + +############################################################################## if __name__ == "__main__": main()