| 283 | 1 # -*- coding: utf-8 -*- | 
|  | 2 """ | 
|  | 3 Created on Mon Jun 3 19:51:00 2019 | 
|  | 4 @author: Narger | 
|  | 5 """ | 
|  | 6 | 
|  | 7 import sys | 
|  | 8 import argparse | 
|  | 9 import os | 
|  | 10 from sklearn.datasets import make_blobs | 
|  | 11 from sklearn.cluster import KMeans, DBSCAN, AgglomerativeClustering | 
|  | 12 from sklearn.metrics import silhouette_samples, silhouette_score, cluster | 
|  | 13 import matplotlib | 
|  | 14 matplotlib.use('agg') | 
|  | 15 import matplotlib.pyplot as plt | 
|  | 16 import scipy.cluster.hierarchy as shc | 
|  | 17 import matplotlib.cm as cm | 
|  | 18 import numpy as np | 
|  | 19 import pandas as pd | 
|  | 20 from typing import Optional, Dict, List | 
|  | 21 | 
|  | 22 ################################# process args ############################### | 
|  | 23 def process_args(args :List[str]) -> argparse.Namespace: | 
|  | 24     """ | 
|  | 25     Processes command-line arguments. | 
|  | 26 | 
|  | 27     Args: | 
|  | 28         args (list): List of command-line arguments. | 
|  | 29 | 
|  | 30     Returns: | 
|  | 31         Namespace: An object containing parsed arguments. | 
|  | 32     """ | 
|  | 33     parser = argparse.ArgumentParser(usage = '%(prog)s [options]', | 
|  | 34                                      description = 'process some value\'s' + | 
|  | 35                                      ' genes to create class.') | 
|  | 36 | 
|  | 37     parser.add_argument('-ol', '--out_log', | 
|  | 38                         help = "Output log") | 
|  | 39 | 
|  | 40     parser.add_argument('-in', '--input', | 
|  | 41                         type = str, | 
|  | 42                         help = 'input dataset') | 
|  | 43 | 
|  | 44     parser.add_argument('-cy', '--cluster_type', | 
|  | 45                         type = str, | 
|  | 46                         choices = ['kmeans', 'dbscan', 'hierarchy'], | 
|  | 47                         default = 'kmeans', | 
|  | 48                         help = 'choose clustering algorythm') | 
|  | 49 | 
|  | 50     parser.add_argument('-k1', '--k_min', | 
|  | 51                         type = int, | 
|  | 52                         default = 2, | 
|  | 53                         help = 'choose minimun cluster number to be generated') | 
|  | 54 | 
|  | 55     parser.add_argument('-k2', '--k_max', | 
|  | 56                         type = int, | 
|  | 57                         default = 7, | 
|  | 58                         help = 'choose maximum cluster number to be generated') | 
|  | 59 | 
|  | 60     parser.add_argument('-el', '--elbow', | 
|  | 61                         type = str, | 
|  | 62                         default = 'false', | 
|  | 63                         choices = ['true', 'false'], | 
|  | 64                         help = 'choose if you want to generate an elbow plot for kmeans') | 
|  | 65 | 
|  | 66     parser.add_argument('-si', '--silhouette', | 
|  | 67                         type = str, | 
|  | 68                         default = 'false', | 
|  | 69                         choices = ['true', 'false'], | 
|  | 70                         help = 'choose if you want silhouette plots') | 
|  | 71 | 
|  | 72     parser.add_argument('-td', '--tool_dir', | 
|  | 73                         type = str, | 
|  | 74                         required = True, | 
|  | 75                         help = 'your tool directory') | 
|  | 76 | 
|  | 77     parser.add_argument('-ms', '--min_samples', | 
|  | 78                         type = float, | 
|  | 79                         help = 'min samples for dbscan (optional)') | 
|  | 80 | 
|  | 81     parser.add_argument('-ep', '--eps', | 
|  | 82                         type = float, | 
|  | 83                         help = 'eps for dbscan (optional)') | 
|  | 84 | 
|  | 85     parser.add_argument('-bc', '--best_cluster', | 
|  | 86                         type = str, | 
|  | 87                         help = 'output of best cluster tsv') | 
|  | 88 | 
|  | 89 | 
|  | 90 | 
|  | 91     args = parser.parse_args() | 
|  | 92     return args | 
|  | 93 | 
|  | 94 ########################### warning ########################################### | 
|  | 95 def warning(s :str) -> None: | 
|  | 96     """ | 
|  | 97     Log a warning message to an output log file and print it to the console. | 
|  | 98 | 
|  | 99     Args: | 
|  | 100         s (str): The warning message to be logged and printed. | 
|  | 101 | 
|  | 102     Returns: | 
|  | 103       None | 
|  | 104     """ | 
|  | 105     args = process_args(sys.argv) | 
|  | 106     with open(args.out_log, 'a') as log: | 
|  | 107         log.write(s + "\n\n") | 
|  | 108     print(s) | 
|  | 109 | 
|  | 110 ########################## read dataset ###################################### | 
|  | 111 def read_dataset(dataset :str) -> pd.DataFrame: | 
|  | 112     """ | 
|  | 113     Read dataset from a CSV file and return it as a Pandas DataFrame. | 
|  | 114 | 
|  | 115     Args: | 
|  | 116         dataset (str): the path to the dataset to convert into a DataFrame | 
|  | 117 | 
|  | 118     Returns: | 
|  | 119         pandas.DataFrame: The dataset loaded as a Pandas DataFrame. | 
|  | 120 | 
|  | 121     Raises: | 
|  | 122         pandas.errors.EmptyDataError: If the dataset file is empty. | 
|  | 123         sys.exit: If the dataset file has the wrong format (e.g., fewer than 2 columns) | 
|  | 124     """ | 
|  | 125     try: | 
|  | 126         dataset = pd.read_csv(dataset, sep = '\t', header = 0) | 
|  | 127     except pd.errors.EmptyDataError: | 
|  | 128         sys.exit('Execution aborted: wrong format of dataset\n') | 
|  | 129     if len(dataset.columns) < 2: | 
|  | 130         sys.exit('Execution aborted: wrong format of dataset\n') | 
|  | 131     return dataset | 
|  | 132 | 
|  | 133 ############################ rewrite_input ################################### | 
|  | 134 def rewrite_input(dataset :pd.DataFrame) -> Dict[str, List[Optional[float]]]: | 
|  | 135     """ | 
|  | 136     Rewrite the dataset as a dictionary of lists instead of as a dictionary of dictionaries. | 
|  | 137 | 
|  | 138     Args: | 
|  | 139         dataset (pandas.DataFrame): The dataset to be rewritten. | 
|  | 140 | 
|  | 141     Returns: | 
|  | 142         dict: The rewritten dataset as a dictionary of lists. | 
|  | 143     """ | 
|  | 144     #Riscrivo il dataset come dizionario di liste, | 
|  | 145     #non come dizionario di dizionari | 
|  | 146 | 
|  | 147     dataset.pop('Reactions', None) | 
|  | 148 | 
|  | 149     for key, val in dataset.items(): | 
|  | 150         l = [] | 
|  | 151         for i in val: | 
|  | 152             if i == 'None': | 
|  | 153                 l.append(None) | 
|  | 154             else: | 
|  | 155                 l.append(float(i)) | 
|  | 156 | 
|  | 157         dataset[key] = l | 
|  | 158 | 
|  | 159     return dataset | 
|  | 160 | 
|  | 161 ############################## write to csv ################################## | 
|  | 162 def write_to_csv (dataset :pd.DataFrame, labels :List[str], name :str) -> None: | 
|  | 163     """ | 
|  | 164     Write dataset and predicted labels to a CSV file. | 
|  | 165 | 
|  | 166     Args: | 
|  | 167         dataset (pandas.DataFrame): The dataset to be written. | 
|  | 168         labels (list): The predicted labels for each data point. | 
|  | 169         name (str): The name of the output CSV file. | 
|  | 170 | 
|  | 171     Returns: | 
|  | 172         None | 
|  | 173     """ | 
|  | 174     #labels = predict | 
|  | 175     predict = [x+1 for x in labels] | 
|  | 176 | 
|  | 177     classe = (pd.DataFrame(list(zip(dataset.index, predict)))).astype(str) | 
|  | 178 | 
|  | 179     dest = name | 
|  | 180     classe.to_csv(dest, sep = '\t', index = False, | 
|  | 181                       header = ['Patient_ID', 'Class']) | 
|  | 182 | 
|  | 183 ########################### trova il massimo in lista ######################## | 
|  | 184 def max_index (lista :List[int]) -> int: | 
|  | 185     """ | 
|  | 186     Find the index of the maximum value in a list. | 
|  | 187 | 
|  | 188     Args: | 
|  | 189         lista (list): The list in which we search for the index of the maximum value. | 
|  | 190 | 
|  | 191     Returns: | 
|  | 192         int: The index of the maximum value in the list. | 
|  | 193     """ | 
|  | 194     best = -1 | 
|  | 195     best_index = 0 | 
|  | 196     for i in range(len(lista)): | 
|  | 197         if lista[i] > best: | 
|  | 198             best = lista [i] | 
|  | 199             best_index = i | 
|  | 200 | 
|  | 201     return best_index | 
|  | 202 | 
|  | 203 ################################ kmeans ##################################### | 
|  | 204 def kmeans (k_min: int, k_max: int, dataset: pd.DataFrame, elbow: str, silhouette: str, best_cluster: str) -> None: | 
|  | 205     """ | 
|  | 206     Perform k-means clustering on the given dataset, which is an algorithm used to partition a dataset into groups (clusters) based on their characteristics. | 
|  | 207     The goal is to divide the data into homogeneous groups, where the elements within each group are similar to each other and different from the elements in other groups. | 
|  | 208 | 
|  | 209     Args: | 
|  | 210         k_min (int): The minimum number of clusters to consider. | 
|  | 211         k_max (int): The maximum number of clusters to consider. | 
|  | 212         dataset (pandas.DataFrame): The dataset to perform clustering on. | 
|  | 213         elbow (str): Whether to generate an elbow plot for kmeans ('true' or 'false'). | 
|  | 214         silhouette (str): Whether to generate silhouette plots ('true' or 'false'). | 
|  | 215         best_cluster (str): The file path to save the output of the best cluster. | 
|  | 216 | 
|  | 217     Returns: | 
|  | 218         None | 
|  | 219     """ | 
|  | 220     if not os.path.exists('clustering'): | 
|  | 221         os.makedirs('clustering') | 
|  | 222 | 
|  | 223 | 
|  | 224     if elbow == 'true': | 
|  | 225         elbow = True | 
|  | 226     else: | 
|  | 227         elbow = False | 
|  | 228 | 
|  | 229     if silhouette == 'true': | 
|  | 230         silhouette = True | 
|  | 231     else: | 
|  | 232         silhouette = False | 
|  | 233 | 
|  | 234     range_n_clusters = [i for i in range(k_min, k_max+1)] | 
|  | 235     distortions = [] | 
|  | 236     scores = [] | 
|  | 237     all_labels = [] | 
|  | 238 | 
|  | 239     clusterer = KMeans(n_clusters=1, random_state=10) | 
|  | 240     distortions.append(clusterer.fit(dataset).inertia_) | 
|  | 241 | 
|  | 242 | 
|  | 243     for n_clusters in range_n_clusters: | 
|  | 244         clusterer = KMeans(n_clusters=n_clusters, random_state=10) | 
|  | 245         cluster_labels = clusterer.fit_predict(dataset) | 
|  | 246 | 
|  | 247         all_labels.append(cluster_labels) | 
|  | 248         if n_clusters == 1: | 
|  | 249             silhouette_avg = 0 | 
|  | 250         else: | 
|  | 251             silhouette_avg = silhouette_score(dataset, cluster_labels) | 
|  | 252         scores.append(silhouette_avg) | 
|  | 253         distortions.append(clusterer.fit(dataset).inertia_) | 
|  | 254 | 
|  | 255     best = max_index(scores) + k_min | 
|  | 256 | 
|  | 257     for i in range(len(all_labels)): | 
|  | 258         prefix = '' | 
|  | 259         if (i + k_min == best): | 
|  | 260             prefix = '_BEST' | 
|  | 261 | 
|  | 262         write_to_csv(dataset, all_labels[i], 'clustering/kmeans_with_' + str(i + k_min) + prefix + '_clusters.tsv') | 
|  | 263 | 
|  | 264 | 
|  | 265         if (prefix == '_BEST'): | 
|  | 266             labels = all_labels[i] | 
|  | 267             predict = [x+1 for x in labels] | 
|  | 268             classe = (pd.DataFrame(list(zip(dataset.index, predict)))).astype(str) | 
|  | 269             classe.to_csv(best_cluster, sep = '\t', index = False, header = ['Patient_ID', 'Class']) | 
|  | 270 | 
|  | 271 | 
|  | 272 | 
|  | 273 | 
|  | 274         if silhouette: | 
|  | 275             silhouette_draw(dataset, all_labels[i], i + k_min, 'clustering/silhouette_with_' + str(i + k_min) + prefix + '_clusters.png') | 
|  | 276 | 
|  | 277 | 
|  | 278     if elbow: | 
|  | 279         elbow_plot(distortions, k_min,k_max) | 
|  | 280 | 
|  | 281 | 
|  | 282 | 
|  | 283 | 
|  | 284 | 
|  | 285 ############################## elbow_plot #################################### | 
|  | 286 def elbow_plot (distortions: List[float], k_min: int, k_max: int) -> None: | 
|  | 287     """ | 
|  | 288     Generate an elbow plot to visualize the distortion for different numbers of clusters. | 
|  | 289     The elbow plot is a graphical tool used in clustering analysis to help identifying the appropriate number of clusters by looking for the point where the rate of decrease | 
|  | 290     in distortion sharply decreases, indicating the optimal balance between model complexity and clustering quality. | 
|  | 291 | 
|  | 292     Args: | 
|  | 293         distortions (list): List of distortion values for different numbers of clusters. | 
|  | 294         k_min (int): The minimum number of clusters considered. | 
|  | 295         k_max (int): The maximum number of clusters considered. | 
|  | 296 | 
|  | 297     Returns: | 
|  | 298         None | 
|  | 299     """ | 
|  | 300     plt.figure(0) | 
|  | 301     x = list(range(k_min, k_max + 1)) | 
|  | 302     x.insert(0, 1) | 
|  | 303     plt.plot(x, distortions, marker = 'o') | 
|  | 304     plt.xlabel('Number of clusters (k)') | 
|  | 305     plt.ylabel('Distortion') | 
|  | 306     s = 'clustering/elbow_plot.png' | 
|  | 307     fig = plt.gcf() | 
|  | 308     fig.set_size_inches(18.5, 10.5, forward = True) | 
|  | 309     fig.savefig(s, dpi=100) | 
|  | 310 | 
|  | 311 | 
|  | 312 ############################## silhouette plot ############################### | 
|  | 313 def silhouette_draw(dataset: pd.DataFrame, labels: List[str], n_clusters: int, path:str) -> None: | 
|  | 314     """ | 
|  | 315     Generate a silhouette plot for the clustering results. | 
|  | 316     The silhouette coefficient is a measure used to evaluate the quality of clusters obtained from a clustering algorithmand it quantifies how similar an object is to its own cluster compared to other clusters. | 
|  | 317     The silhouette coefficient ranges from -1 to 1, where: | 
|  | 318     - A value close to +1 indicates that the object is well matched to its own cluster and poorly matched to neighboring clusters. This implies that the object is in a dense, well-separated cluster. | 
|  | 319     - A value close to 0 indicates that the object is close to the decision boundary between two neighboring clusters. | 
|  | 320     - A value close to -1 indicates that the object may have been assigned to the wrong cluster. | 
|  | 321 | 
|  | 322     Args: | 
|  | 323         dataset (pandas.DataFrame): The dataset used for clustering. | 
|  | 324         labels (list): The cluster labels assigned to each data point. | 
|  | 325         n_clusters (int): The number of clusters. | 
|  | 326         path (str): The path to save the silhouette plot image. | 
|  | 327 | 
|  | 328     Returns: | 
|  | 329         None | 
|  | 330     """ | 
|  | 331     if n_clusters == 1: | 
|  | 332         return None | 
|  | 333 | 
|  | 334     silhouette_avg = silhouette_score(dataset, labels) | 
|  | 335     warning("For n_clusters = " + str(n_clusters) + | 
|  | 336           " The average silhouette_score is: " + str(silhouette_avg)) | 
|  | 337 | 
|  | 338     plt.close('all') | 
|  | 339     # Create a subplot with 1 row and 2 columns | 
|  | 340     fig, (ax1) = plt.subplots(1, 1) | 
|  | 341 | 
|  | 342     fig.set_size_inches(18, 7) | 
|  | 343 | 
|  | 344     # The 1st subplot is the silhouette plot | 
|  | 345     # The silhouette coefficient can range from -1, 1 but in this example all | 
|  | 346     # lie within [-0.1, 1] | 
|  | 347     ax1.set_xlim([-1, 1]) | 
|  | 348     # The (n_clusters+1)*10 is for inserting blank space between silhouette | 
|  | 349     # plots of individual clusters, to demarcate them clearly. | 
|  | 350     ax1.set_ylim([0, len(dataset) + (n_clusters + 1) * 10]) | 
|  | 351 | 
|  | 352     # Compute the silhouette scores for each sample | 
|  | 353     sample_silhouette_values = silhouette_samples(dataset, labels) | 
|  | 354 | 
|  | 355     y_lower = 10 | 
|  | 356     for i in range(n_clusters): | 
|  | 357         # Aggregate the silhouette scores for samples belonging to | 
|  | 358         # cluster i, and sort them | 
|  | 359         ith_cluster_silhouette_values = \ | 
|  | 360         sample_silhouette_values[labels == i] | 
|  | 361 | 
|  | 362         ith_cluster_silhouette_values.sort() | 
|  | 363 | 
|  | 364         size_cluster_i = ith_cluster_silhouette_values.shape[0] | 
|  | 365         y_upper = y_lower + size_cluster_i | 
|  | 366 | 
|  | 367         color = cm.nipy_spectral(float(i) / n_clusters) | 
|  | 368         ax1.fill_betweenx(np.arange(y_lower, y_upper), | 
|  | 369                           0, ith_cluster_silhouette_values, | 
|  | 370                                      facecolor=color, edgecolor=color, alpha=0.7) | 
|  | 371 | 
|  | 372         # Label the silhouette plots with their cluster numbers at the middle | 
|  | 373         ax1.text(-0.05, y_lower + 0.5 * size_cluster_i, str(i)) | 
|  | 374 | 
|  | 375         # Compute the new y_lower for next plot | 
|  | 376         y_lower = y_upper + 10  # 10 for the 0 samples | 
|  | 377 | 
|  | 378         ax1.set_title("The silhouette plot for the various clusters.") | 
|  | 379         ax1.set_xlabel("The silhouette coefficient values") | 
|  | 380         ax1.set_ylabel("Cluster label") | 
|  | 381 | 
|  | 382         # The vertical line for average silhouette score of all the values | 
|  | 383         ax1.axvline(x=silhouette_avg, color="red", linestyle="--") | 
|  | 384 | 
|  | 385         ax1.set_yticks([])  # Clear the yaxis labels / ticks | 
|  | 386         ax1.set_xticks([-0.1, 0, 0.2, 0.4, 0.6, 0.8, 1]) | 
|  | 387 | 
|  | 388 | 
|  | 389         plt.suptitle(("Silhouette analysis for clustering on sample data " | 
|  | 390                           "with n_clusters = " + str(n_clusters) + "\nAverage silhouette_score = " + str(silhouette_avg)), fontsize=12, fontweight='bold') | 
|  | 391 | 
|  | 392 | 
|  | 393         plt.savefig(path, bbox_inches='tight') | 
|  | 394 | 
|  | 395 ######################## dbscan ############################################## | 
|  | 396 def dbscan(dataset: pd.DataFrame, eps: float, min_samples: float, best_cluster: str) -> None: | 
|  | 397     """ | 
|  | 398     Perform DBSCAN clustering on the given dataset, which is a clustering algorithm that groups together closely packed points based on the notion of density. | 
|  | 399 | 
|  | 400     Args: | 
|  | 401         dataset (pandas.DataFrame): The dataset to be clustered. | 
|  | 402         eps (float): The maximum distance between two samples for one to be considered as in the neighborhood of the other. | 
|  | 403         min_samples (float): The number of samples in a neighborhood for a point to be considered as a core point. | 
|  | 404         best_cluster (str): The file path to save the output of the best cluster. | 
|  | 405 | 
|  | 406     Returns: | 
|  | 407         None | 
|  | 408     """ | 
|  | 409     if not os.path.exists('clustering'): | 
|  | 410         os.makedirs('clustering') | 
|  | 411 | 
|  | 412     if eps is not None: | 
|  | 413         clusterer = DBSCAN(eps = eps, min_samples = min_samples) | 
|  | 414     else: | 
|  | 415         clusterer = DBSCAN() | 
|  | 416 | 
|  | 417     clustering = clusterer.fit(dataset) | 
|  | 418 | 
|  | 419     core_samples_mask = np.zeros_like(clustering.labels_, dtype=bool) | 
|  | 420     core_samples_mask[clustering.core_sample_indices_] = True | 
|  | 421     labels = clustering.labels_ | 
|  | 422 | 
|  | 423     # Number of clusters in labels, ignoring noise if present. | 
|  | 424     n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0) | 
|  | 425 | 
|  | 426 | 
|  | 427     labels = labels | 
|  | 428     predict = [x+1 for x in labels] | 
|  | 429     classe = (pd.DataFrame(list(zip(dataset.index, predict)))).astype(str) | 
|  | 430     classe.to_csv(best_cluster, sep = '\t', index = False, header = ['Patient_ID', 'Class']) | 
|  | 431 | 
|  | 432 | 
|  | 433 ########################## hierachical ####################################### | 
|  | 434 def hierachical_agglomerative(dataset: pd.DataFrame, k_min: int, k_max: int, best_cluster: str, silhouette: str) -> None: | 
|  | 435     """ | 
|  | 436     Perform hierarchical agglomerative clustering on the given dataset. | 
|  | 437 | 
|  | 438     Args: | 
|  | 439         dataset (pandas.DataFrame): The dataset to be clustered. | 
|  | 440         k_min (int): The minimum number of clusters to consider. | 
|  | 441         k_max (int): The maximum number of clusters to consider. | 
|  | 442         best_cluster (str): The file path to save the output of the best cluster. | 
|  | 443         silhouette (str): Whether to generate silhouette plots ('true' or 'false'). | 
|  | 444 | 
|  | 445     Returns: | 
|  | 446         None | 
|  | 447     """ | 
|  | 448     if not os.path.exists('clustering'): | 
|  | 449         os.makedirs('clustering') | 
|  | 450 | 
|  | 451     plt.figure(figsize=(10, 7)) | 
|  | 452     plt.title("Customer Dendograms") | 
|  | 453     shc.dendrogram(shc.linkage(dataset, method='ward'), labels=dataset.index.values.tolist()) | 
|  | 454     fig = plt.gcf() | 
|  | 455     fig.savefig('clustering/dendogram.png', dpi=200) | 
|  | 456 | 
|  | 457     range_n_clusters = [i for i in range(k_min, k_max+1)] | 
|  | 458 | 
|  | 459     scores = [] | 
|  | 460     labels = [] | 
|  | 461 | 
|  | 462     n_classi = dataset.shape[0] | 
|  | 463 | 
|  | 464     for n_clusters in range_n_clusters: | 
|  | 465         cluster = AgglomerativeClustering(n_clusters=n_clusters, affinity='euclidean', linkage='ward') | 
|  | 466         cluster.fit_predict(dataset) | 
|  | 467         cluster_labels = cluster.labels_ | 
|  | 468         labels.append(cluster_labels) | 
|  | 469         write_to_csv(dataset, cluster_labels, 'clustering/hierarchical_with_' + str(n_clusters) + '_clusters.tsv') | 
|  | 470 | 
|  | 471     best = max_index(scores) + k_min | 
|  | 472 | 
|  | 473     for i in range(len(labels)): | 
|  | 474         prefix = '' | 
|  | 475         if (i + k_min == best): | 
|  | 476             prefix = '_BEST' | 
|  | 477         if silhouette == 'true': | 
|  | 478             silhouette_draw(dataset, labels[i], i + k_min, 'clustering/silhouette_with_' + str(i + k_min) + prefix + '_clusters.png') | 
|  | 479 | 
|  | 480     for i in range(len(labels)): | 
|  | 481         if (i + k_min == best): | 
|  | 482             labels = labels[i] | 
|  | 483             predict = [x+1 for x in labels] | 
|  | 484             classe = (pd.DataFrame(list(zip(dataset.index, predict)))).astype(str) | 
|  | 485             classe.to_csv(best_cluster, sep = '\t', index = False, header = ['Patient_ID', 'Class']) | 
|  | 486 | 
|  | 487 | 
|  | 488 ############################# main ########################################### | 
|  | 489 def main() -> None: | 
|  | 490     """ | 
|  | 491     Initializes everything and sets the program in motion based on the fronted input arguments. | 
|  | 492 | 
|  | 493     Returns: | 
|  | 494         None | 
|  | 495     """ | 
|  | 496     if not os.path.exists('clustering'): | 
|  | 497         os.makedirs('clustering') | 
|  | 498 | 
|  | 499     args = process_args(sys.argv) | 
|  | 500 | 
|  | 501     #Data read | 
|  | 502 | 
|  | 503     X = read_dataset(args.input) | 
|  | 504     X = pd.DataFrame.to_dict(X, orient='list') | 
|  | 505     X = rewrite_input(X) | 
|  | 506     X = pd.DataFrame.from_dict(X, orient = 'index') | 
|  | 507 | 
|  | 508     for i in X.columns: | 
|  | 509         tmp = X[i][0] | 
|  | 510         if tmp == None: | 
|  | 511             X = X.drop(columns=[i]) | 
|  | 512 | 
|  | 513     if args.k_max != None: | 
|  | 514        numero_classi = X.shape[0] | 
|  | 515        while args.k_max >= numero_classi: | 
|  | 516           err = 'Skipping k = ' + str(args.k_max) + ' since it is >= number of classes of dataset' | 
|  | 517           warning(err) | 
|  | 518           args.k_max = args.k_max - 1 | 
|  | 519 | 
|  | 520 | 
|  | 521     if args.cluster_type == 'kmeans': | 
|  | 522         kmeans(args.k_min, args.k_max, X, args.elbow, args.silhouette, args.best_cluster) | 
|  | 523 | 
|  | 524     if args.cluster_type == 'dbscan': | 
|  | 525         dbscan(X, args.eps, args.min_samples, args.best_cluster) | 
|  | 526 | 
|  | 527     if args.cluster_type == 'hierarchy': | 
|  | 528         hierachical_agglomerative(X, args.k_min, args.k_max, args.best_cluster, args.silhouette) | 
|  | 529 | 
|  | 530 ############################################################################## | 
|  | 531 if __name__ == "__main__": | 
|  | 532     main() |