0
|
1 #! /usr/bin/env python
|
|
2 # -*- coding: utf-8 -*-
|
|
3 ##@file phageterm.py
|
|
4 #
|
|
5 # main program
|
|
6 ## PhageTerm software
|
|
7 #
|
|
8 # Phageterm is a tool to determine phage termini and packaging strategy
|
|
9 # and other useful informations using raw sequencing reads.
|
|
10 # (This programs works with sequencing reads from a randomly
|
|
11 # sheared DNA library preparations as Illumina TruSeq paired-end or similar)
|
|
12 #
|
|
13 # ----------------------------------------------------------------------
|
|
14 # Copyright (C) 2017 Julian Garneau
|
|
15 #
|
|
16 # This program is free software; you can redistribute it and/or modify
|
|
17 # it under the terms of the GNU General Public License as published by
|
|
18 # the Free Software Foundation; either version 3 of the License, or
|
|
19 # (at your option) any later version.
|
|
20 # <http://www.gnu.org/licenses/gpl-3.0.html>
|
|
21 #
|
|
22 # This program is distributed in the hope that it will be useful,
|
|
23 # but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
24 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
25 # GNU General Public License for more details.
|
|
26 # ----------------------------------------------------------------------
|
|
27 #
|
|
28 # @author Julian Garneau <julian.garneau@usherbrooke.ca>
|
|
29 # @author Marc Monot <marc.monot@pasteur.fr>
|
|
30 # @author David Bikard <david.bikard@pasteur.fr>
|
|
31
|
|
32
|
|
33 ### PYTHON Module
|
|
34 # Base
|
|
35 #import sys
|
|
36
|
|
37
|
|
38 from __future__ import print_function
|
|
39
|
|
40 # Multiprocessing
|
|
41 import multiprocessing
|
|
42 import os
|
|
43 from multiprocessing import Manager
|
|
44
|
|
45
|
|
46 # Project
|
|
47
|
|
48 from _modules.utilities import checkReportTitle
|
|
49 from _modules.functions_PhageTerm import *
|
|
50 from _modules.common_readsCoverage_processing import processCovValuesForSeq
|
|
51 from _modules.main_utils import setOptions,checkOptArgsConsistency
|
|
52
|
|
53
|
|
54 ### MAIN
|
|
55 def main():
|
|
56
|
|
57 getopt=setOptions()
|
|
58 inRawDArgs, fParms, tParms, inDArgs=checkOptArgsConsistency(getopt)
|
|
59
|
|
60 # For each fasta in file
|
|
61 DR = {"Headful (pac)":{}, "COS (5')":{}, "COS (3')":{}, "COS":{}, "DTR (short)":{}, "DTR (long)":{}, "Mu-like":{}, "UNKNOWN":{}, "NEW":{}}
|
|
62 results_pos = 0
|
|
63 no_match = []
|
|
64 draw = 0 # used when one wants to draw some graphs.
|
|
65 chk_handler = RCCheckpoint_handler(tParms.chk_freq, tParms.dir_chk, tParms.test_mode)
|
|
66 ## VL: keep this code just in case we want to try GPU implementation again later.
|
|
67 # if tParms.gpu!=0:
|
|
68 # ref_data = refData(inDArgs.refseq_liste, fParms.seed, inDArgs.hostseq)
|
|
69 # nb_extracts=inRawDArgs.tot_reads
|
|
70 # if (inRawDArgs.paired!=""):
|
|
71 # nb_extracts_per_read=7
|
|
72 # else:
|
|
73 # nb_extracts_per_read=4
|
|
74 # nb_extracts *= nb_extracts_per_read
|
|
75 #
|
|
76 # gpu_mapping_res_dir = tParms.gpu_mapping_res_dir
|
|
77 # wanted_gpu_nb_chunks = tParms.wanted_chunks
|
|
78 # mapper = GPU_chunkMapper()
|
|
79 # mapper.setRefData(ref_data)
|
|
80 # mapper.setFicDir(gpu_mapping_res_dir)
|
|
81 # nb_kmer_in_chunk = nb_extracts//wanted_gpu_nb_chunks
|
|
82 # doMapping(nb_kmer_in_chunk, mapper, inRawDArgs.fastq, "", ref_data, nb_extracts_per_read)
|
|
83 # if tParms.gpu_mapping_res_dir!=0:
|
|
84 # exit() # Consider that if we put results in files, it is because we are processing large datasets on a cluster. Otherwise, go on working.
|
|
85 #
|
|
86 # if tParms.dir_cov_res!=None and tParms.gpu_mapping_res_dir!=None: # Process the mapping results produced by the GPU and put results in files
|
|
87 # if tParms.idx_chunk==None or tParms.idx_seq==None:
|
|
88 # print "Indicate index of chunk and sequence to process"
|
|
89 # exit(1)
|
|
90 # seq_info = seqInfo(inDArgs.refseq_liste[tParms.idx_seq],tParms.idx_seq, inDArgs.hostseq)
|
|
91 # fname=os.path.join(tParms.gpu_mapping_res_dir,base_fname_rinfo+str(tParms.idx_chunk))
|
|
92 # d_rinfo=load_d_rinfo(fname)
|
|
93 # readsCoverageGPU_chunk(inRawDArgs.fastq, seq_info, tParms.idx_chunk, d_rinfo, fParms.edge, tParms.limit_coverage, fParms.virome, tParms.gpu_mapping_res_dir,
|
|
94 # tParms.dir_cov_res, logger=None)
|
|
95 # exit() # Consider that if we put results in files, it is because we are processing large datasets on a cluster.
|
|
96
|
|
97 if tParms.multi_machine:
|
|
98 print("Running on cluster")
|
|
99 print(tParms.dir_cov_mm, tParms.seq_id, tParms.dir_seq_mm, tParms.DR_path)
|
|
100 if tParms.dir_cov_mm!=None and tParms.gpu_mapping_res_dir==None and tParms.dir_seq_mm==None: # perform mapping and readCoverage calculation and write results in file.
|
|
101 # In that case we are processing data in an embarrassingly parallel way on a cluster.
|
|
102 position = []
|
|
103 read_indices = list(range(int(inRawDArgs.tot_reads)))
|
|
104 part = chunks(read_indices, tParms.core)
|
|
105 for i in range(tParms.core):
|
|
106 position.append(next(part)[0])
|
|
107
|
|
108 position = position + [int(inRawDArgs.tot_reads)]
|
|
109 idx_refseq=chk_handler.getIdxSeq(tParms.core_id)
|
|
110 print("starting processing at sequence: ",idx_refseq)
|
|
111 for refseq in inDArgs.refseq_liste[idx_refseq:]:
|
|
112 readsCoverage(inRawDArgs, refseq, inDArgs, fParms,None,tParms.core_id, position[tParms.core_id], position[tParms.core_id + 1],
|
|
113 tParms,chk_handler,idx_refseq)
|
|
114 print("Processed: ", idx_refseq, " sequences")
|
|
115 idx_refseq+=1
|
|
116 if tParms.core_id==0:
|
|
117 fname=os.path.join(tParms.dir_cov_mm,"nb_seq_processed.txt")
|
|
118 f=open(fname,"w")
|
|
119 f.write(str(idx_refseq))
|
|
120 f.close()
|
|
121 exit() # Consider that if we put results in files, it is because we are processing large datasets on a cluster.
|
|
122 if tParms.dir_cov_mm!=None and tParms.seq_id!=None and tParms.dir_seq_mm!=None and tParms.DR_path!=None:
|
|
123 from _modules.seq_processing import sum_readsCoverage_for_seq
|
|
124 # in that case, we are processing all the results of readCoverage sequence by sequence in an embarrassingly parallel way on a cluster.
|
|
125 sum_readsCoverage_for_seq(tParms.dir_cov_mm, tParms.seq_id, tParms.nb_pieces, inDArgs, fParms, inRawDArgs, tParms.dir_seq_mm,tParms.DR_path)
|
|
126 exit()
|
|
127 if tParms.dir_seq_mm!=None and tParms.dir_cov_mm==None and tParms.seq_id==None and tParms.DR_path!=None: # report generation
|
|
128 from _modules.generate_report import loadDR,genReport
|
|
129 loadDR(tParms.DR_path, DR)
|
|
130 genReport(fParms, inDArgs, inRawDArgs, no_match, DR)
|
|
131 exit()
|
|
132 else: # mono machine original multi processing mode.
|
|
133 ### COVERAGE
|
|
134 print("\nCalculating coverage values, please wait (may take a while)...\n")
|
|
135 start_run = time.time()
|
|
136
|
|
137 if not fParms.test_run and tParms.core == 1:
|
|
138 print("If your computer has more than 1 processor, you can use the -c or --core option to speed up the process.\n\n")
|
|
139
|
|
140
|
|
141 for refseq in inDArgs.refseq_liste:
|
|
142 jobs = []
|
|
143 manager = Manager()
|
|
144 return_dict = manager.dict()
|
|
145 position = []
|
|
146
|
|
147 read_indices = list(range(int(inRawDArgs.tot_reads)))
|
|
148 part = chunks(read_indices, tParms.core)
|
|
149 for i in range(tParms.core):
|
|
150 position.append(next(part)[0])
|
|
151
|
|
152 position = position + [int(inRawDArgs.tot_reads)]
|
|
153
|
|
154 for i in range(0, tParms.core):
|
|
155 tParms.core_id=i
|
|
156 process = multiprocessing.Process(target=readsCoverage, args=(inRawDArgs, refseq, inDArgs, fParms,return_dict, i,position[i], position[i+1],
|
|
157 tParms, chk_handler,results_pos))
|
|
158 jobs.append(process)
|
|
159
|
|
160 for j in jobs:
|
|
161 j.start()
|
|
162
|
|
163 for j in jobs:
|
|
164 j.join()
|
|
165
|
|
166 # merging results
|
|
167 for core_id in range(tParms.core):
|
|
168 if core_id == 0:
|
|
169 termini_coverage = return_dict[core_id][0]
|
|
170 whole_coverage = return_dict[core_id][1]
|
|
171 paired_whole_coverage = return_dict[core_id][2]
|
|
172 phage_hybrid_coverage = return_dict[core_id][3]
|
|
173 host_hybrid_coverage = return_dict[core_id][4]
|
|
174 host_whole_coverage = return_dict[core_id][5]
|
|
175 list_hybrid = return_dict[core_id][6]
|
|
176 insert = return_dict[core_id][7].tolist()
|
|
177 paired_missmatch = return_dict[core_id][8]
|
|
178 reads_tested = return_dict[core_id][9]
|
|
179 else:
|
|
180 termini_coverage += return_dict[core_id][0]
|
|
181 whole_coverage += return_dict[core_id][1]
|
|
182 paired_whole_coverage += return_dict[core_id][2]
|
|
183 phage_hybrid_coverage += return_dict[core_id][3]
|
|
184 host_hybrid_coverage += return_dict[core_id][4]
|
|
185 host_whole_coverage += return_dict[core_id][5]
|
|
186 list_hybrid += return_dict[core_id][6]
|
|
187 insert += return_dict[core_id][7].tolist()
|
|
188 paired_missmatch += return_dict[core_id][8]
|
|
189 reads_tested += return_dict[core_id][9]
|
|
190
|
|
191 termini_coverage = termini_coverage.tolist()
|
|
192 whole_coverage = whole_coverage.tolist()
|
|
193 paired_whole_coverage = paired_whole_coverage.tolist()
|
|
194 phage_hybrid_coverage = phage_hybrid_coverage.tolist()
|
|
195 host_hybrid_coverage = host_hybrid_coverage.tolist()
|
|
196 host_whole_coverage = host_whole_coverage.tolist()
|
|
197 list_hybrid = list_hybrid.tolist()
|
|
198
|
|
199
|
|
200 # Estimate fParms.virome run time
|
|
201 if fParms.virome:
|
|
202 end_run = time.time()
|
|
203 virome_run = int((end_run - start_run) * inDArgs.nbr_virome)
|
|
204 print("\n\nThe fasta file tested contains: " + str(inDArgs.nbr_virome) + " contigs (mean length: " + str(
|
|
205 inDArgs.mean_virome) + ")")
|
|
206 print("\nA complete run takes approximatively (" + str(tParms.core) + " core used) : " + EstimateTime(
|
|
207 virome_run) + "\n")
|
|
208 exit()
|
|
209
|
|
210 # Contigs without any match
|
|
211 if sum(termini_coverage[0]) + sum(termini_coverage[1]) == 0:
|
|
212 no_match.append((checkReportTitle(inDArgs.refseq_name[results_pos])))
|
|
213 continue
|
|
214
|
|
215 s_stats=processCovValuesForSeq(refseq,inDArgs.hostseq,inDArgs.refseq_name,inDArgs.refseq_liste,fParms.seed,inRawDArgs.analysis_name,inRawDArgs.tot_reads,\
|
|
216 results_pos,fParms.test_run, inRawDArgs.paired,fParms.edge,inRawDArgs.host,fParms.test, fParms.surrounding,\
|
|
217 fParms.limit_preferred,fParms.limit_fixed,fParms.Mu_threshold,termini_coverage,whole_coverage,\
|
|
218 paired_whole_coverage,phage_hybrid_coverage,host_hybrid_coverage, host_whole_coverage,insert,list_hybrid,reads_tested,DR)
|
|
219
|
|
220
|
|
221 results_pos += 1
|
|
222
|
|
223
|
|
224
|
|
225 ### EXPORT Data
|
|
226 if len(inDArgs.refseq_liste) == 1:
|
|
227 # Test No Match
|
|
228 if len(no_match) == 1:
|
|
229 print("\n\nERROR: No reads match, please check your reference file.")
|
|
230 exit()
|
|
231
|
|
232 # Text report only
|
|
233 if fParms.workflow:
|
|
234 WorkflowReport(inRawDArgs.analysis_name, s_stats.P_class, s_stats.P_left, s_stats.P_right, s_stats.P_type, s_stats.P_orient, s_stats.ave_whole_cov)
|
|
235 else:
|
|
236 # Statistics
|
|
237 ExportStatistics(inRawDArgs.analysis_name, whole_coverage, paired_whole_coverage, termini_coverage, s_stats.phage_plus_norm, s_stats.phage_minus_norm, inRawDArgs.paired, fParms.test_run)
|
|
238
|
|
239 # Sequence
|
|
240 ExportCohesiveSeq(inRawDArgs.analysis_name, s_stats.ArtcohesiveSeq, s_stats.P_seqcoh, fParms.test_run)
|
|
241 ExportPhageSequence(inRawDArgs.analysis_name, s_stats.P_left, s_stats.P_right, refseq, s_stats.P_orient, s_stats.Redundant, s_stats.Mu_like, \
|
|
242 s_stats.P_class, s_stats.P_seqcoh, fParms.test_run)
|
|
243
|
|
244 # Report
|
|
245 # TODO: just pass s_stat as argument; it will be cleaner.
|
|
246 CreateReport(inRawDArgs.analysis_name, fParms.seed, s_stats.added_whole_coverage, draw, s_stats.Redundant, s_stats.P_left, s_stats.P_right, s_stats.Permuted, \
|
|
247 s_stats.P_orient, s_stats.termini_coverage_norm_close, \
|
|
248 s_stats.picMaxPlus_norm_close, s_stats.picMaxMinus_norm_close, s_stats.gen_len, inRawDArgs.tot_reads, s_stats.P_seqcoh, s_stats.phage_plus_norm, \
|
|
249 s_stats.phage_minus_norm, s_stats.ArtPackmode, s_stats.termini, s_stats.forward, s_stats.reverse, s_stats.ArtOrient, s_stats.ArtcohesiveSeq, \
|
|
250 s_stats.termini_coverage_close, s_stats.picMaxPlus_close, s_stats.picMaxMinus_close, \
|
|
251 s_stats.picOUT_norm_forw, s_stats.picOUT_norm_rev, s_stats.picOUT_forw, s_stats.picOUT_rev, s_stats.lost_perc, s_stats.ave_whole_cov, \
|
|
252 s_stats.R1, s_stats.R2, s_stats.R3, inRawDArgs.host, len(inDArgs.hostseq), host_whole_coverage, \
|
|
253 s_stats.picMaxPlus_host, s_stats.picMaxMinus_host, fParms.surrounding, s_stats.drop_cov, inRawDArgs.paired, insert, phage_hybrid_coverage,\
|
|
254 host_hybrid_coverage, s_stats.added_paired_whole_coverage, s_stats.Mu_like, fParms.test_run, s_stats.P_class, s_stats.P_type, s_stats.P_concat)
|
|
255
|
|
256 if (inRawDArgs.nrt==True): # non regression tests, dump phage class name into file for later checking.
|
|
257 fnrt=open("nrt.txt","w")
|
|
258 fnrt.write(s_stats.P_class)
|
|
259 fnrt.close()
|
|
260 else:
|
|
261 # Test No Match
|
|
262 if len(no_match) == inDArgs.nbr_virome:
|
|
263 print("\n\nERROR: No reads match, please check your reference file.")
|
|
264 exit()
|
|
265
|
|
266 # Report Resume
|
|
267 multiReport = SummaryReport(inRawDArgs.analysis_name, DR, no_match)
|
|
268 multiCohSeq = ""
|
|
269 multiPhageSeq = ""
|
|
270 multiWorkflow = "#analysis_name\tClass\tLeft\tPVal\tAdjPval\tRight\tPVal\tAdjPval\tType\tOrient\tCoverage\tComments\n"
|
|
271
|
|
272 # No Match in workflow
|
|
273 if fParms.workflow:
|
|
274 for no_match_contig in no_match:
|
|
275 multiWorkflow += WorkflowReport(no_match_contig, "-", "-", "-", "-", "-", 0, 1)
|
|
276
|
|
277 for DPC in DR:
|
|
278 for DC in DR[DPC]:
|
|
279 stat_dict = DR[DPC][DC] # splat this in everywhere
|
|
280 # Text report
|
|
281 if fParms.workflow:
|
|
282 multiWorkflow += WorkflowReport(phagename=DC, multi=1, **stat_dict)
|
|
283 # Sequence
|
|
284 idx_refseq=DR[DPC][DC]["idx_refseq_in_list"]
|
|
285 refseq=inDArgs.refseq_liste[idx_refseq]
|
|
286 multiCohSeq += ExportCohesiveSeq(DC, stat_dict["ArtcohesiveSeq"], stat_dict["P_seqcoh"], fParms.test_run, 1)
|
|
287 multiPhageSeq += ExportPhageSequence(DC, stat_dict["P_left"], stat_dict["P_right"], refseq, stat_dict["P_orient"], stat_dict["Redundant"], stat_dict["Mu_like"], stat_dict["P_class"], stat_dict["P_seqcoh"], fParms.test_run, 1)
|
|
288
|
|
289 # Report
|
|
290 multiReport = CreateReport(phagename=DC,
|
|
291 draw=draw,
|
|
292 multi=1,
|
|
293 multiReport=multiReport,
|
|
294 **stat_dict)
|
|
295
|
|
296 # Workflow
|
|
297 if not fParms.test:
|
|
298 if fParms.workflow:
|
|
299 filoutWorkflow = open(inRawDArgs.analysis_name + "_workflow.txt", "w")
|
|
300 filoutWorkflow.write(multiWorkflow)
|
|
301 filoutWorkflow.close()
|
|
302
|
|
303 # Concatene Sequences
|
|
304 filoutCohSeq = open(inRawDArgs.analysis_name + "_cohesive-sequence.fasta", "w")
|
|
305 filoutCohSeq.write(multiCohSeq)
|
|
306 filoutCohSeq.close()
|
|
307
|
|
308 filoutPhageSeq = open(inRawDArgs.analysis_name + "_sequence.fasta", "w")
|
|
309 filoutPhageSeq.write(multiPhageSeq)
|
|
310 filoutPhageSeq.close()
|
|
311
|
|
312 # Concatene Report
|
|
313 doc = SimpleDocTemplate("%s_PhageTerm_report.pdf" % inRawDArgs.analysis_name, pagesize=letter, rightMargin=10,leftMargin=10, topMargin=5, bottomMargin=10)
|
|
314 doc.build(multiReport)
|
|
315
|
|
316
|
|
317 # Real virome run time
|
|
318 end_run = time.time()
|
|
319 virome_run = int(end_run-start_run)
|
|
320 print("\nThe fasta file tested contains: " + str(inDArgs.nbr_virome) + " contigs (mean length: " + str(inDArgs.mean_virome) + ")")
|
|
321 print("The run has taken (" + str(tParms.core) + " core used) : " + EstimateTime(virome_run) + "\n")
|
|
322 exit()
|
|
323
|
|
324
|
|
325
|
|
326 if __name__ == '__main__':
|
|
327 main()
|
|
328
|
|
329
|
|
330
|
|
331
|
|
332
|
|
333
|
|
334
|
|
335
|
|
336
|