Mercurial > repos > bioit_sciensano > phagetermvirome
view PhageTerm.py @ 1:ee73cdf35532 draft default tip
"planemo upload"
author | bioit_sciensano |
---|---|
date | Fri, 11 Mar 2022 16:02:03 +0000 |
parents | 69e8f12c8b31 |
children |
line wrap: on
line source
#! /usr/bin/env python # -*- coding: utf-8 -*- ##@file phageterm.py # # main program ## PhageTerm software # # Phageterm is a tool to determine phage termini and packaging strategy # and other useful informations using raw sequencing reads. # (This programs works with sequencing reads from a randomly # sheared DNA library preparations as Illumina TruSeq paired-end or similar) # # ---------------------------------------------------------------------- # Copyright (C) 2017 Julian Garneau # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3 of the License, or # (at your option) any later version. # <http://www.gnu.org/licenses/gpl-3.0.html> # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # ---------------------------------------------------------------------- # # @author Julian Garneau <julian.garneau@usherbrooke.ca> # @author Marc Monot <marc.monot@pasteur.fr> # @author David Bikard <david.bikard@pasteur.fr> ### PYTHON Module # Base #import sys from __future__ import print_function # Multiprocessing import multiprocessing import os from multiprocessing import Manager # Project from _modules.utilities import checkReportTitle from _modules.functions_PhageTerm import * from _modules.common_readsCoverage_processing import processCovValuesForSeq from _modules.main_utils import setOptions,checkOptArgsConsistency ### MAIN def main(): getopt=setOptions() inRawDArgs, fParms, tParms, inDArgs=checkOptArgsConsistency(getopt) # For each fasta in file DR = {"Headful (pac)":{}, "COS (5')":{}, "COS (3')":{}, "COS":{}, "DTR (short)":{}, "DTR (long)":{}, "Mu-like":{}, "UNKNOWN":{}, "NEW":{}} results_pos = 0 no_match = [] draw = 0 # used when one wants to draw some graphs. chk_handler = RCCheckpoint_handler(tParms.chk_freq, tParms.dir_chk, tParms.test_mode) ## VL: keep this code just in case we want to try GPU implementation again later. # if tParms.gpu!=0: # ref_data = refData(inDArgs.refseq_liste, fParms.seed, inDArgs.hostseq) # nb_extracts=inRawDArgs.tot_reads # if (inRawDArgs.paired!=""): # nb_extracts_per_read=7 # else: # nb_extracts_per_read=4 # nb_extracts *= nb_extracts_per_read # # gpu_mapping_res_dir = tParms.gpu_mapping_res_dir # wanted_gpu_nb_chunks = tParms.wanted_chunks # mapper = GPU_chunkMapper() # mapper.setRefData(ref_data) # mapper.setFicDir(gpu_mapping_res_dir) # nb_kmer_in_chunk = nb_extracts//wanted_gpu_nb_chunks # doMapping(nb_kmer_in_chunk, mapper, inRawDArgs.fastq, "", ref_data, nb_extracts_per_read) # if tParms.gpu_mapping_res_dir!=0: # exit() # Consider that if we put results in files, it is because we are processing large datasets on a cluster. Otherwise, go on working. # # if tParms.dir_cov_res!=None and tParms.gpu_mapping_res_dir!=None: # Process the mapping results produced by the GPU and put results in files # if tParms.idx_chunk==None or tParms.idx_seq==None: # print "Indicate index of chunk and sequence to process" # exit(1) # seq_info = seqInfo(inDArgs.refseq_liste[tParms.idx_seq],tParms.idx_seq, inDArgs.hostseq) # fname=os.path.join(tParms.gpu_mapping_res_dir,base_fname_rinfo+str(tParms.idx_chunk)) # d_rinfo=load_d_rinfo(fname) # readsCoverageGPU_chunk(inRawDArgs.fastq, seq_info, tParms.idx_chunk, d_rinfo, fParms.edge, tParms.limit_coverage, fParms.virome, tParms.gpu_mapping_res_dir, # tParms.dir_cov_res, logger=None) # exit() # Consider that if we put results in files, it is because we are processing large datasets on a cluster. if tParms.multi_machine: print("Running on cluster") print(tParms.dir_cov_mm, tParms.seq_id, tParms.dir_seq_mm, tParms.DR_path) if tParms.dir_cov_mm!=None and tParms.gpu_mapping_res_dir==None and tParms.dir_seq_mm==None: # perform mapping and readCoverage calculation and write results in file. # In that case we are processing data in an embarrassingly parallel way on a cluster. position = [] read_indices = list(range(int(inRawDArgs.tot_reads))) part = chunks(read_indices, tParms.core) for i in range(tParms.core): position.append(next(part)[0]) position = position + [int(inRawDArgs.tot_reads)] idx_refseq=chk_handler.getIdxSeq(tParms.core_id) print("starting processing at sequence: ",idx_refseq) for refseq in inDArgs.refseq_liste[idx_refseq:]: readsCoverage(inRawDArgs, refseq, inDArgs, fParms,None,tParms.core_id, position[tParms.core_id], position[tParms.core_id + 1], tParms,chk_handler,idx_refseq) print("Processed: ", idx_refseq, " sequences") idx_refseq+=1 if tParms.core_id==0: fname=os.path.join(tParms.dir_cov_mm,"nb_seq_processed.txt") f=open(fname,"w") f.write(str(idx_refseq)) f.close() exit() # Consider that if we put results in files, it is because we are processing large datasets on a cluster. if tParms.dir_cov_mm!=None and tParms.seq_id!=None and tParms.dir_seq_mm!=None and tParms.DR_path!=None: from _modules.seq_processing import sum_readsCoverage_for_seq # in that case, we are processing all the results of readCoverage sequence by sequence in an embarrassingly parallel way on a cluster. sum_readsCoverage_for_seq(tParms.dir_cov_mm, tParms.seq_id, tParms.nb_pieces, inDArgs, fParms, inRawDArgs, tParms.dir_seq_mm,tParms.DR_path) exit() if tParms.dir_seq_mm!=None and tParms.dir_cov_mm==None and tParms.seq_id==None and tParms.DR_path!=None: # report generation from _modules.generate_report import loadDR,genReport loadDR(tParms.DR_path, DR) genReport(fParms, inDArgs, inRawDArgs, no_match, DR) exit() else: # mono machine original multi processing mode. ### COVERAGE print("\nCalculating coverage values, please wait (may take a while)...\n") start_run = time.time() if not fParms.test_run and tParms.core == 1: print("If your computer has more than 1 processor, you can use the -c or --core option to speed up the process.\n\n") for refseq in inDArgs.refseq_liste: jobs = [] manager = Manager() return_dict = manager.dict() position = [] read_indices = list(range(int(inRawDArgs.tot_reads))) part = chunks(read_indices, tParms.core) for i in range(tParms.core): position.append(next(part)[0]) position = position + [int(inRawDArgs.tot_reads)] for i in range(0, tParms.core): tParms.core_id=i process = multiprocessing.Process(target=readsCoverage, args=(inRawDArgs, refseq, inDArgs, fParms,return_dict, i,position[i], position[i+1], tParms, chk_handler,results_pos)) jobs.append(process) for j in jobs: j.start() for j in jobs: j.join() # merging results for core_id in range(tParms.core): if core_id == 0: termini_coverage = return_dict[core_id][0] whole_coverage = return_dict[core_id][1] paired_whole_coverage = return_dict[core_id][2] phage_hybrid_coverage = return_dict[core_id][3] host_hybrid_coverage = return_dict[core_id][4] host_whole_coverage = return_dict[core_id][5] list_hybrid = return_dict[core_id][6] insert = return_dict[core_id][7].tolist() paired_missmatch = return_dict[core_id][8] reads_tested = return_dict[core_id][9] else: termini_coverage += return_dict[core_id][0] whole_coverage += return_dict[core_id][1] paired_whole_coverage += return_dict[core_id][2] phage_hybrid_coverage += return_dict[core_id][3] host_hybrid_coverage += return_dict[core_id][4] host_whole_coverage += return_dict[core_id][5] list_hybrid += return_dict[core_id][6] insert += return_dict[core_id][7].tolist() paired_missmatch += return_dict[core_id][8] reads_tested += return_dict[core_id][9] termini_coverage = termini_coverage.tolist() whole_coverage = whole_coverage.tolist() paired_whole_coverage = paired_whole_coverage.tolist() phage_hybrid_coverage = phage_hybrid_coverage.tolist() host_hybrid_coverage = host_hybrid_coverage.tolist() host_whole_coverage = host_whole_coverage.tolist() list_hybrid = list_hybrid.tolist() # Estimate fParms.virome run time if fParms.virome: end_run = time.time() virome_run = int((end_run - start_run) * inDArgs.nbr_virome) print("\n\nThe fasta file tested contains: " + str(inDArgs.nbr_virome) + " contigs (mean length: " + str( inDArgs.mean_virome) + ")") print("\nA complete run takes approximatively (" + str(tParms.core) + " core used) : " + EstimateTime( virome_run) + "\n") exit() # Contigs without any match if sum(termini_coverage[0]) + sum(termini_coverage[1]) == 0: no_match.append((checkReportTitle(inDArgs.refseq_name[results_pos]))) continue s_stats=processCovValuesForSeq(refseq,inDArgs.hostseq,inDArgs.refseq_name,inDArgs.refseq_liste,fParms.seed,inRawDArgs.analysis_name,inRawDArgs.tot_reads,\ results_pos,fParms.test_run, inRawDArgs.paired,fParms.edge,inRawDArgs.host,fParms.test, fParms.surrounding,\ fParms.limit_preferred,fParms.limit_fixed,fParms.Mu_threshold,termini_coverage,whole_coverage,\ paired_whole_coverage,phage_hybrid_coverage,host_hybrid_coverage, host_whole_coverage,insert,list_hybrid,reads_tested,DR) results_pos += 1 ### EXPORT Data if len(inDArgs.refseq_liste) == 1: # Test No Match if len(no_match) == 1: print("\n\nERROR: No reads match, please check your reference file.") exit() # Text report only if fParms.workflow: WorkflowReport(inRawDArgs.analysis_name, s_stats.P_class, s_stats.P_left, s_stats.P_right, s_stats.P_type, s_stats.P_orient, s_stats.ave_whole_cov) else: # Statistics ExportStatistics(inRawDArgs.analysis_name, whole_coverage, paired_whole_coverage, termini_coverage, s_stats.phage_plus_norm, s_stats.phage_minus_norm, inRawDArgs.paired, fParms.test_run) # Sequence ExportCohesiveSeq(inRawDArgs.analysis_name, s_stats.ArtcohesiveSeq, s_stats.P_seqcoh, fParms.test_run) ExportPhageSequence(inRawDArgs.analysis_name, s_stats.P_left, s_stats.P_right, refseq, s_stats.P_orient, s_stats.Redundant, s_stats.Mu_like, \ s_stats.P_class, s_stats.P_seqcoh, fParms.test_run) # Report # TODO: just pass s_stat as argument; it will be cleaner. CreateReport(inRawDArgs.analysis_name, fParms.seed, s_stats.added_whole_coverage, draw, s_stats.Redundant, s_stats.P_left, s_stats.P_right, s_stats.Permuted, \ s_stats.P_orient, s_stats.termini_coverage_norm_close, \ s_stats.picMaxPlus_norm_close, s_stats.picMaxMinus_norm_close, s_stats.gen_len, inRawDArgs.tot_reads, s_stats.P_seqcoh, s_stats.phage_plus_norm, \ s_stats.phage_minus_norm, s_stats.ArtPackmode, s_stats.termini, s_stats.forward, s_stats.reverse, s_stats.ArtOrient, s_stats.ArtcohesiveSeq, \ s_stats.termini_coverage_close, s_stats.picMaxPlus_close, s_stats.picMaxMinus_close, \ s_stats.picOUT_norm_forw, s_stats.picOUT_norm_rev, s_stats.picOUT_forw, s_stats.picOUT_rev, s_stats.lost_perc, s_stats.ave_whole_cov, \ s_stats.R1, s_stats.R2, s_stats.R3, inRawDArgs.host, len(inDArgs.hostseq), host_whole_coverage, \ s_stats.picMaxPlus_host, s_stats.picMaxMinus_host, fParms.surrounding, s_stats.drop_cov, inRawDArgs.paired, insert, phage_hybrid_coverage,\ host_hybrid_coverage, s_stats.added_paired_whole_coverage, s_stats.Mu_like, fParms.test_run, s_stats.P_class, s_stats.P_type, s_stats.P_concat) if (inRawDArgs.nrt==True): # non regression tests, dump phage class name into file for later checking. fnrt=open("nrt.txt","w") fnrt.write(s_stats.P_class) fnrt.close() else: # Test No Match if len(no_match) == inDArgs.nbr_virome: print("\n\nERROR: No reads match, please check your reference file.") exit() # Report Resume multiReport = SummaryReport(inRawDArgs.analysis_name, DR, no_match) multiCohSeq = "" multiPhageSeq = "" multiWorkflow = "#analysis_name\tClass\tLeft\tPVal\tAdjPval\tRight\tPVal\tAdjPval\tType\tOrient\tCoverage\tComments\n" # No Match in workflow if fParms.workflow: for no_match_contig in no_match: multiWorkflow += WorkflowReport(no_match_contig, "-", "-", "-", "-", "-", 0, 1) for DPC in DR: for DC in DR[DPC]: stat_dict = DR[DPC][DC] # splat this in everywhere # Text report if fParms.workflow: multiWorkflow += WorkflowReport(phagename=DC, multi=1, **stat_dict) # Sequence idx_refseq=DR[DPC][DC]["idx_refseq_in_list"] refseq=inDArgs.refseq_liste[idx_refseq] multiCohSeq += ExportCohesiveSeq(DC, stat_dict["ArtcohesiveSeq"], stat_dict["P_seqcoh"], fParms.test_run, 1) multiPhageSeq += ExportPhageSequence(DC, stat_dict["P_left"], stat_dict["P_right"], refseq, stat_dict["P_orient"], stat_dict["Redundant"], stat_dict["Mu_like"], stat_dict["P_class"], stat_dict["P_seqcoh"], fParms.test_run, 1) # Report multiReport = CreateReport(phagename=DC, draw=draw, multi=1, multiReport=multiReport, **stat_dict) # Workflow if not fParms.test: if fParms.workflow: filoutWorkflow = open(inRawDArgs.analysis_name + "_workflow.txt", "w") filoutWorkflow.write(multiWorkflow) filoutWorkflow.close() # Concatene Sequences filoutCohSeq = open(inRawDArgs.analysis_name + "_cohesive-sequence.fasta", "w") filoutCohSeq.write(multiCohSeq) filoutCohSeq.close() filoutPhageSeq = open(inRawDArgs.analysis_name + "_sequence.fasta", "w") filoutPhageSeq.write(multiPhageSeq) filoutPhageSeq.close() # Concatene Report doc = SimpleDocTemplate("%s_PhageTerm_report.pdf" % inRawDArgs.analysis_name, pagesize=letter, rightMargin=10,leftMargin=10, topMargin=5, bottomMargin=10) doc.build(multiReport) # Real virome run time end_run = time.time() virome_run = int(end_run-start_run) print("\nThe fasta file tested contains: " + str(inDArgs.nbr_virome) + " contigs (mean length: " + str(inDArgs.mean_virome) + ")") print("The run has taken (" + str(tParms.core) + " core used) : " + EstimateTime(virome_run) + "\n") exit() if __name__ == '__main__': main()